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Abstract: Dynamic compensation is the (partial) correction of the measurement signals for the effects
due to bandwidth limitations of measurement systems and constitutes a research topic in dynamic
measurement. The dynamic compensation of an accelerometer is here considered, as obtained
by a method that directly comes from a general probabilistic model of the measurement process.
Although the application of the method is simple, the analytical development of the corresponding
compensation filter is quite complex and had been previously developed only for first-order systems,
whilst here a second-order system is considered, thus moving from a scalar to a vector problem. The
effectiveness of the method has been tested both through simulation and by a dedicated experiment.
Both tests have shown the capability of the method of significantly improve the performance of the
measurement system when dynamic effects are more prevalent than additive observation noise.

Keywords: dynamic measurement; measurement modeling; probabilistic models; dynamic
compensation; accelerometers

1. Introduction

Dynamic measurement can be defined as measurement where the measurand value
varies during the observation time and the investigation of such variations is the main
goal of measurement, whilst in static measurement, the measurand is assumed to remain
constant and assessing its value is the major goal. Dynamic measurement is the object
of study nowadays, due to the importance of its application and to the scientific and
technological challenges it still poses. A metrological approach, where issues such as
dynamics calibration, uncertainty reduction, and evaluation are particularly considered,
can contribute to improve greatly the quality of such measurements.

Papers in this area include, e.g., a report of the results of a European-funded project
on this subject [1], careful consideration of calibration issues [2], and general modelling
aspects [3]. The adoption of models from generic system theory has been suggested [4],
and related terminological issues have been considered [5].

A special problem in dynamical measurement is the (partial) correction of the mea-
surement signals for the effects due to bandwidth limitations of measurement systems
and the accuracy of this correction. This is called dynamic compensation and it can be
obtained by dedicated analog devices, called (dynamic) compensators [6], or through
digital signal processing [7]. In [8], it was stressed that the approach to be followed may
depend upon the form of the available information, either frequency response, differential,
or finite-difference equations. In [9], a finite impulse response (FIR) filter was developed
based on an optimization process. Special application cases were also considered, includ-
ing hydrophone measurements [10], contact probes [11], force sensors [12], and pressure
sensors [13].
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Yet, most of the current literature on this subject seems to take the approach, explicitly
declared in [4], that, whilst looking forward to developing “a self-evident definition of . . .
measurement plus observation”, it appears that “dynamic systems and subsystems can
model and visualize this structurally demanding result within Signal and System Theory
best”. In other words, what is needed is simply a proper application of methods from sys-
tem and signal theory. In this paper, instead, a somewhat different approach is pursued as
a step in a series of studies that the authors have carried out in the last, say, ten years, with
the aim of developing a unified theory/model of measurement, where static and dynamic
measurements share the same structure. In this regard, a general probabilistic structure
of the measurement process was proposed in [14,15], and, more recently, a logistic inter-
pretation of probability was proposed in [16,17]. Then, static and dynamic measurements
were investigated separately, yet maintaining the same basic framework for both of them.
Investigation on static measurement included, e.g., a special but important application area:
that of instruments subject to the Measuring Instrument Directive (MID) [18], for which
guidelines were proposed [19], and a proposal for a revision of the GUM [20] in order to
make it more user oriented [21]. Concerning dynamic measurement, the application of the
approach proposed by the authors requires the selection of a general model. In this regard,
a Markovian model with additive observation noise was proposed. The development is not
trivial, although the final result comes out being manageable and even simple. A complete
development was proposed for first order models [22]. The purpose of this paper is to
extend the approach to second-order systems. This step is important, since it implies a tran-
sition from scalar to vector systems and because a second order approximation nearby the
first resonance frequency can be in some cases appropriate. The results to be presented here
were partially anticipated in a conference communication [23], where the approach was
validated by simulation only, whilst an experimental validation, concerning an important
class of measuring systems, namely accelerometers, is here included. Such an experimental
validation seems particularly important when the focus is on measurement, as it is the
case here.

Therefore, the paper is organized as follows. In Section 2, the proposed method
is presented. In Section 3, validation by simulation is performed by considering two
different test cases. In Section 4, the experimental validation is carried out on piezoelectric
accelerometers by examining three test cases. Lastly, in Section 5, conclusions are drawn.

2. The Proposed Method
2.1. The Generic Modelling Framework

It is suggested that measurement can be parsed in two phases, called observation and
restitution. In the observation phase the “object” carrying the property to be measured,
x, interacts with the measurement system in such a way that an observable output, the
instrument indication, y, is produced based on which a measurement value can be assigned
to the measurand. In probabilistic terms, observation can be described by the conditional
probability density p(y|x). The successive phase, where the result is produced based on
the instrument indication and accounting for calibration results (calibration curve), is here
called restitution and described by the conditional probability density p(x|y). Restitution
can thus be performed through the Bayes–Laplace rule, assuming a uniform, uninformative
prior for the measurand, as is natural in measurement, obtaining [15,24]:

p(x|y) = p(y|x)∫
X p(y|x)dx

, (1)

where X denotes the domain of x. Interestingly enough, this same framework remains
valid when considering different types of measurements, although at different levels of
complexity. In practice, scalars may become vectors or matrices, and the model will be
more complex, but the basic structure remains the same, which allows us to treat different
types of measurements in a consistent way. For example [14],
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• for static measurement, based on a single observation, x and y are both scalar quantities;
• for static measurement, based on N repeated observation, x remains a scalar quantity,

but y becomes a vector, y, with N components;
• for direct dynamic measurement, where the goal is to measure the time history of

some quantity, based on N time-sampled observations, both x and y become vectors
with N components;

• for indirect dynamic measurement, where, for example, the final goal is to obtain a
spectrum of the phenomenon, with, say, M spectral lines, both x and y are still vectors,
but x, which is now the spectrum, has now M components.

Here we are interested in direct dynamic measurement.

2.2. The Proposed Method

Let then x be a quantity that characterizes a dynamic phenomenon and xi the value
it takes at instant ti = i∆t, where i is an integer, ∆t the sampling interval, and yi the
corresponding indication obtained by a measurement system suited for that quantity. Let x
and y denote the vectors that collect the measurand values and the instrument indications
respectively, acquired in a time interval of duration T = N∆t.

Then, the generic structure presented in (1) now becomes:

p(x|y) = p(y|x)∫
X p(y|x)dx

. (2)

To implement this model, it is necessary to calculate the distribution p(y|x). Let us
introduce the following convenient notation:

xi = (x1, x2, . . . , xi),
yi = (y1, y2 . . . , yi).

(3)

As a general property of joint probability distributions, the following factorization
holds true [16]

p(y|x) = p(y1|x) . . . p
(

yi

∣∣∣yi−1, x
)

. . . p
(

yN

∣∣∣yN−1, x
)

. (4)

With the additional assumption of causality, i.e., that the indication y at instant ti
depends on the measurand values only up to instant ti, (4) further simplifies into

p(y|x) = p(y1|x1) . . . p
(

yi

∣∣∣yi−1, xi−1
)

. . . p
(

yN

∣∣∣yN−1, xN−1
)

. (5)

In [16] the problem was solved in the case of first-order systems. Here a second-order
system expressed by a second-order difference equation of the type

zi = a1zi−1 + a2zi−2 + b1xi−1 + b2xi−2 (6)

is considered, where z is some state variable of the device. In the case of accelerometers,
of direct interest in this study, z may be the displacement of the seismic mass within the
sensor case or the force transmitted to a secondary piezoelectric transducer, depending
upon the technology. Let the indication y be linked to z by the observation equation:

yi = kzi + vi, (7)

where k is the sensitivity and vi is a sequence of random variations which are uncorrelated
realization of a zero-mean probabilistic variable, with variance σ2.

Then, by combining (6) and (7), the input–output equation results in

yi = a1yi−1 + a2yi−2 + kb1xi−1 + kb2xi−2 + wi, (8)
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where
wi = vi − a1vi−1 − a2vi−2. (9)

Therefore, the i-th term of (5), for i > 2, is

p
(
yi
∣∣yi−1, xi−1) = pw(yi − a1yi−1 − a2yi−2 − kb1xi−1 − kb2xi−2) =

p(yi|yi−1, yi−2, xi−1, xi−2).
(10)

If we include (10) in (5) and in (2), we obtain

p(x|y) ∝ ∏N
i=3 pw(yi − a1yi−1 − a2yi−2 + kb1xi−1 + kb2xi−2) . (11)

To extract the marginal distribution for the generic term xi, let us re-write (8) one
step ahead:

yi+1 = a1yi + a2yi−1 + kb1xi + kb2xi−1 + wi+1 (12)

and solving it for xi, we obtain

xi = (kb1)
−1(yi+1 − a1yi − a2yi−1) + b−1

1 b2xi−1 + (kb1)
−1wi+1. (13)

Using now the same approximation suggested in [16], i.e., substituting x̂i−1 to xi−1,
we obtain the following recursive estimator for xi:

x̂i = (kb1)
−1(yi+1 − a1yi − a2yi−1) + b−1

1 b2 x̂i−1, (14)

which constitutes a non-causal second order linear filter. Checking the validity of this
approximation will be one of the major goals of simulation.

If x̂i is substituted for xi in (10), after assuming a Gaussian distribution for v and
consequently for w, we lastly obtain

p(xi|y) = ς−1 ϕ
(

ς−1(xi − x̂i)
)

, (15)

where [16]

σ2
ς ≤

1 + a2
1 + a2

2
k2b1

2 σ2 (16)

and x̂i is given by (14).

2.3. Overall View of the Method

An overall view of the method is presented in Figure 1. The measuring device,
operating in continuous time, is modelled through its differential dynamic equation and
its corresponding continuous-time frequency response. This equation is discretized by a
suited method, and the corresponding finite-difference equation is used to develop a filter
that performs the required dynamic compensation.

Such compensation is a part of the restitution process that yields the final result.
A discrete-time frequency response corresponds to the finite difference equation, and
its comparison with the continuous time response is an important checking step for the
validation of the discretization method.

The effectiveness of the method will be checked in the next sections, both by simulation
and by a dedicated experiment. In the test cases, different kind of input signals will be
considered and the method will be validated in all the cases.
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3. Testing the Method by Simulation
3.1. Design of the Simulation Tests

The method has been tested through simulation first and then experimentally vali-
dated, considering the case of a piezoelectric accelerometer, a typical important instrument
for mechanical measurements, which has been already considered as an interesting example
of dynamic measurements [25].

The dynamic (mechanical) behaviour of the sensor can be described, in continuous
time, by the second order differential equation [6]

..
F(t) = −2ζ(2π f0)

.
F(t)− (2π f0)

2F(t) + m(2π f0)
2a(t) , (17)

where:

• a (m /s2) is the acceleration to be measured,
• F (N) is the force detected by the piezoelectric transducer,
• m (kg) is the seismic mass of the inertial sensor,
• f0 (Hz) is its natural frequency, and
• ζ is the damping factor.

The equation can be put in the standard form:

..
z = α1

.
z + α2z + βx , (18)

where dependence upon time is implied, x = a is the measurand and z = F is the
state variable of the sensor relevant for the transduction, to be done through a secondary
piezoelectric transducer, α1 = −2ζ(2π f0), α2 = −(2π f0)

2 and β = +m(2π f0)
2. For the

simulation, the following values for the system’s parameters were assumed as: f0 = 1 kHz,
ζ = 0.5, m = 0.050 kg. The state variable of the sensor, z = F, is measured by the
secondary piezoelectric transducer with its electronics, obtaining an overall sensitivity
k0 = 0.01 Vs2/m, which is a typical value for low–mid frequency devices. The system was
tested in respect of both a sinusoidal and a step-like input.

3.2. Simulated Periodic Phenomenon

The measurand was modeled firstly as a periodic process,

x(t) = x0 sin 2π fxt , (19)
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with x0 = 1 ms−2, and fx = 600 Hz. In particular, the testing frequency was assumed in
the range where dynamical effects are relevant for checking the effectiveness of the method.
For the noise, a rms value of 0.2 mV was assumed to check the influence of noise which is a
relevant aspect of dynamic compensation.

The system response was calculated by integrating the differential Equation (18) by
a fourth order Runge–Kutta method. The result is shown in Figure 2, where the measur-
and, x(t) is compared with uncompensated result, y(t)/k0, where y(t) is the instrument
indication (voltage). Therefore, the signals in the figure are both accelerations and can thus
be directly compared. The amplification of the amplitude and the phase delay effect can
be noted.
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Figure 2. Comparison of the measurand with the (uncompensated) scaled instrument indication.

Then the discretized version of the continuous system (18) was considered, assuming a
sampling interval ∆t = 0.2 ms, and adopting the zero-hold approximation method [26]. The
following values were obtained for the parameters of the discrete difference Equation (8):

• a1 = 0.4951,
• a2 = −0.2846,
• b1 = 0.0240, and
• b2 = 0.0155.

In order to check that the finite difference equation provides a good approximation
of the original continuous-time differential Equation (18), the corresponding frequency
responses were compared, as shown in Figure 3.

The effectiveness of the procedure can be appreciated by comparing the compensated
measurement result with the measurand in Figure 4. It clearly appears that both the
amplitude and the phase effects have been visibly compensated. The phase appears slightly
anticipated, yet it should be noted that the output of the filter is produced with a delay of
∆t, and thus this anticipation is a postprocessing effect.

Figure 5 presents the error for compensated output

e(t) = x̂(t)− x(t), (20)

together with the error for the un-compensated output:

euc(t) = k−1
0 y(t)− x(t). (21)
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coming from the discrete model.
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The benefit of compensation is evident. The phase shift is explained considering the
comment to Figure 4.

3.3. Simulated Step-like Phenomenon

As an additional example, a step-like signal, with additional noise, was considered.
The signal was simulated by a sigmoidal function:

x(t) = x0
1

1 + e−
(t−t0)

T

, (22)

with x0 = 1.0 m
s2 , t0 = 5 ms, and T = 0.167 ms. For observation noise, an rms value of

0.1 mV was assumed. Results are shown in Figure 6.
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It appears that dynamic compensation allows us to eliminate dynamic effects but with
some increase in noise. Therefore, this method is particularly convenient when dynamic
effects are considered more critical than noise.

To sum up, simulation requires the following steps:

- Definition of the differential equation describing the dynamic behaviour of the mea-
suring instrument, Equations (17) and (18), with its parameters;

- Discretization of the continuous time equation (for example with zero hold method)
to obtain a discrete time Equation (8);

- Definition of the II order linear compensation filter from the discrete time equation
coefficients (14);

- Use the system for a dynamical measurement of a signal x(t), with proper sampling
frequency, to obtain an array of readings yi;

- Application of the compensation filter (14) to the readings to obtain the compensated
measurement result x̂i.

In the experimental validation we will follow the same steps.

4. Experimental Validation of the Method

The method validation was carried out in two steps. At first, the frequency response of
the accelerometer to be tested was obtained for the given mounting condition. Then,
the accelerometer was subjected to a set of inputs, measured also by a reference de-
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vice, and the performance of the accelerometer under test was evaluated both with and
without compensation.

Tested inputs include:

1. Two mono-harmonic signals: a signal with one sinusoidal component with a frequency
within the bandwidth of the accelerometer under test and the other having a frequency
out of band and near the accelerometer resonant frequency (see Section 4.1);

2. A bi-harmonic signal: a signal with two sinusoidal components, one with a frequency
in band and the other with a frequency out of band (Section 4.2);

3. A multicomponent signal including several in-band and out-of-band harmonic com-
ponents (see Section 4.3).

The experimental set up consisted in two accelerometers excited by an electromagnetic
shaker and mounted on a shaker’s adapter plate. The plate and fixation methods for the
accelerometers (screw for the accelerometer under test and epoxy for the reference) can be
considered rigid in the frequency band considered [27,28]. In the test setup, the sensor to be
tested (T) was a low frequency accelerometer (PCB model 393B31), whilst an accelerometer
with a higher bandwidth compared to T (PCB model 333B30) acted as the reference (R) (see
Figure 7). Some important technical details of the sensors involved in the experiment are
reported in Table 1.
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Table 1. Reference (R) and under test (T) accelerometers technical specifications (nominal values).

PCB 333B30 (R) PCB 393B31 (T)

Mass (kg) 0.004 0.635
Sensitivity (mV/ms−2) 10.2 1020
±5% bandwidth (Hz) 0.5–3000 0.1–200

Resonant frequency (kHz) ≥40 ≥0.7

The experimental setup is shown in Figure 7.
Vibrations were generated by means of an electromagnetic shaker driven with a

random signal (see Figure 8) in the 20–4500 Hz frequency band (see Figure 9). The signal
was sampled with a sampling rate fs = 10, 240 Hz and acquired for about 600 s.

The frequency response aT( f )/aR( f ), where aT and aR are the acceleration measured
by the tested and reference accelerometer, respectively, was then obtained using the non-
parametric Welch method and the H1 estimator for the frequency response function [29,30].
The estimate was obtained using time windows of 10 s each and an overlap of 66%. Then,
the experimental frequency response function, represented in Figure 10, was fitted with
a model with two poles and two zeros to take into account the dynamics of both the
accelerometers (see Figure 7).
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Figure 9. Power spectral density of the driving signal.

The poles of the fitting model were extracted and the continuous time model of the
tested accelerometer was derived as:

Hy/a(ω) =
k0ω2

0
−ω2 + 2jζoω0ω + ω2

0
, (23)

with k0 = 0.985 mV
m/s2 , ω0 = 806.53·2π rad

s and ζ0 = 0.014.
Then, the identified continuous time system (23) was discretized by the z-hold method,

with ∆t = 19.531 µs. This sampling interval was chosen to meet that of the signals used for
testing the method (see Sections 4.1–4.3). The obtained discrete time equation was:

yi = 1.083yi−1 − 0.9727yi−2 + 0.4403xi−1 + 0.4361xi−2 + wi , (24)

where yi is the (discretized) output voltage (V) and xi is the input acceleration (m/s2).
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In Figure 11, the continuous model of the frequency response (23) is compared to the
discrete one corresponding to the finite difference Equation (24).

Looking at Figure 11 it can be noticed that the approximation of the modulus is very
good, whilst the phase departs somewhat to the original.

4.1. Test Case 1: Pure Sine (in Band and out of Band)

In this first test case, the compensation was applied to two different sinusoidal signals:
one out of band at 700 Hz and another in band at 160 Hz.

It is worth remembering that the accelerometer under test considered has a nominal
resonant frequency > 700 Hz and an experimentally estimated resonant frequency of about
800 Hz (see Figure 10); therefore, the sinusoidal component at 700 Hz is significantly out
of the accelerometer bandwidth (i.e., 200 Hz, see Table 1) and near the resonance for the
device under test.
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Results related to the 700 Hz out-of-band signal are shown in Figures 12 and 13.
Figure 12 shows, in the top graph, the overall acquisition of the signals measured by the
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reference accelerometer, by the one under test, and the signal of the accelerometer under
test after the compensation process. From this figure it is possible to notice that the filtering
process aimed at compensating the signal does not lead to instabilities, or long transient
effects. Figure 13 is a zoom of Figure 12 where signals are presented in a duration of
few hundredths of a second. The reference (measurand), the un-compensated (under
test), and the compensated (SDOF filtered) results are compared in the upper graph. The
improvement in modulus is remarkable. Concerning the phase some anticipation can be
noted, in contrast with the delay of the uncompensated result. This effect is due to the
phase difference between the discrete and the continuous models as shown in Figure 11.
It can be noted that such anticipation is of the order of one sampling interval and can be
reduced if the sampling frequency is increased. However, this oversampling can lead to an
increase of the noise in the compensated measurement and, therefore, it can be used when
the signal-to-noise ratio is high.
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The bottom graph of Figures 12 and 13 shows the difference between the reference
and the uncompensated and compensated signals, evidencing the effectiveness of the
proposed compensation method in reducing the error due to the use of the accelerometer
for measuring a signal out of its bandwidth.

To verify the reliability of the procedure also when signals inside the bandwidth of
the sensor are measured, a sinusoidal input at 160 Hz has been considered. Figure 14
shows results similar to those shown in Figure 13: the compensation procedure does not
compromise the measurement result. The compensated and uncompensated signals are in
good agreement, and the anticipation introduced by the filter is smaller than that observed
in the previous case due to the higher accuracy of the estimated frequency response
function in the considered frequency band with respect to the previous case. However, it
is worth underlining that the filtering procedure leads, as mentioned, to a decrease in the
signal-to-noise ratio (see Figure 14, bottom).
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4.2. Test Case 2: Two Components Signal (out of Band + in Band)

In this test case, the compensation filter was applied to a harmonic signal with two
components of equal amplitude: an in-band component at 160 Hz (close to the upper limit
of the device under test, which is 200 Hz, see Table 1) and an out-of-band component
at 700 Hz. Results are presented in Figure 15 in terms of time histories of the reference,
measured and compensated signals together with the dynamic measurement error.

Even in this case the compensation filter operates a clear reduction of the dynamic
measurement error, without compromising the contribution of the in-band signal compo-
nent. This test case allows demonstrating the reliability of the proposed approach even
when a part of the signal is within the bandwidth of the considered device, so it would not
require a compensation.

4.3. Test Case 3: Multicomponent

Lastly, the compensation filter was applied to a complex pluri-harmonic signal com-
posed by 10 sinusoidal components both in band and out of band whose frequency content
is reported in Table 2. Particularly, this test case considers a signal having four in band, one
at the limit, and six out-of-band components, going up to a frequency near the experimental
resonant frequency as in test case 1. Amplitudes were chosen equal for all the components.
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Figure 15. Test case 2, periodic signal with two harmonic components at 160 Hz and 700 Hz:
comparison of the measurand with the (uncompensated) scaled instrument indication and the
compensated measurement result. Short time histories (top) and errors for uncompensated euc and
compensated result e (bottom).

Table 2. Test case 3. Frequencies for the multi-harmonic signal. Refer to Figure 8 and Table 1 for
device under test data.

Multicomponent
frequencies (Hz) 160 170 180 200 300 350 400 600 650 700

Accelerometer under test
bandwidth and resonant

frequency (Hz)
0.07 200 806

Results are presented in Figure 16 in terms of time histories of the signals and the
errors as in the previous cases.
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Test case 3 was chosen to test the filter behaviour in a demanding case, including
several components to be compensated, each one in a different way, and several components
to be kept unaltered.

As shown in Figure 16, the proposed approach proved to be effective in this case also,
leading to a drastic reduction of the dynamic error.

4.4. Result Discussion

The three test cases proposed—Figures 13, 15 and 16—were chosen to increasingly
stress the working conditions of the accelerometer under test, obtaining always a significant
reduction, about ten times, in the dynamic error for the compensated output. However, as
shown by the error trend in Figures 13–16, the compensation does not lead to a null error,
as expected, but this error shows a deterministic component which cannot be ascribed to
the different noise level of the considered sensors and to the additional noise brought by
the filtering process. The deterministic part of the difference between the reference and the
compensated signal depends on the accuracy of the filter in describing the behaviour of the
tested sensor. Indeed, looking closely Figures 10 and 11, it is possible to notice that there are
differences between the experimental and the estimated frequency response function of the
sensor, both in terms of phase and amplitude which imply a residual difference between
the compensated signal and the reference. To verify the consistency between the error
obtained in the different test cases and the theoretical one ascribed to the inaccuracy of the
filter used, it is possible to make a comparison in terms of the ratio of the mean square
value of the compensated Ψ2

ec, and the uncompensated error Ψ2
euc:

rexp =
Ψ2

ec

Ψ2
euc

, (25)

where the mean square value of the compensated and uncompensated error can be
obtained as:

Ψ2
e = µ2 + σ2, (26)

where µ is the mean value of the time history of the considered signal and σ its standard deviation.
As for the expected mean square value of the error signals, harmonic components of

equal amplitude A, different frequencies ωi, and phases ϕi are considered. The mean square
values of the uncompensated and compensated error can be estimated respectively as:

Ψ2
euc = nA2 ∑n

i=1

[
1
2 +

H2
i,th(ωi)

2 − Hi,th(ωi) cos(ϕi,th(ωi))

]
,

Ψ2
ec = nA2 ∑n

i=1

[
1
2 +

H2
i,th(ωi)

2Ĥ2
i (ωi)

− Hi,th(ωi)

Ĥi(ωi)
cos(ϕi,th(ωi)− ϕ̂i(ωi))

]
,

(27)

where i indicates the i-th harmonic component of the signal, the subscript −th is related to
the amplitude and phase of the frequency response function of the tested sensor evaluated
experimentally (see Figure 10), and the ˆ refers instead to amplitude and phases of the
estimated discrete frequency response (see Figure 11).

Substituting Equation (27) in (25), it is possible to obtain the expected error reduction:

rth =
∑n

i=1

[
1
2 +

H2
i,th(ωi)

2Ĥ2
i (ωi)

− Hi,th(ωi)

Ĥi(ωi)
cos(ϕi,th(ωi)− ϕ̂i(ωi))

]
∑n

i=1

[
1
2 +

H2
i,th(ωi)

2 − Hi,th(ωi) cos(ϕi,th(ωi))

] . (28)

The results in terms of rth and rexp are shown in Table 3 for all the test-cases considered.
Comparing the results, it is possible to notice that the filtering process provides an error
attenuation which is in agreement with the theoretical expectation given the estimated
and measured sensor frequency response. The difference between the two values can
be ascribed to the uncertainties associated to the estimates of the amplitude and the
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phases used in (27), and the different noise level associated with the reference and tested
accelerometers. However, Test case 1b, associated with the in-band mono-harmonic signal,
deserves a deeper analysis. Looking at the rth value, it is possible to notice that it does not
assume a value higher than 100%, as expected (i.e., the compensation should introduce an
error due to the differences between the estimated and experimental frequency response
of the sensor tested), but the compensation reduces the error, which is about 20% of the
uncompensated one. This behaviour can be explained by the compensation, caused by
the filter, of the small delay between the reference and measured signal—see Figure 14.
Moreover, it is worth noticing that both rth and rexp assume higher values with respect
to the other test cases. This is due to the small mean square value of the uncompensated
error Ψ2

euc when considering an in band signal—see (25). Finally, the difference between
the estimated and the theoretical error reduction is higher with respect to the other cases.
This effect is a consequence of the filtering process, which leads, in this case, to an increase
of the noise on the compensated signal—see Figure 14.

Table 3. RMS values for dynamic errors in the three test cases.

Test Case rth (Equation (28)) % rexp (Equation (25)) %

1a: mono-harmonic, out of band 0.76 0.93
1b: mono-harmonic, in band 20.30 35.14
2: bi-harmonic 0.85 1.42
3: multi-harmonic 1.86 3.60

5. Conclusions

A method for the dynamic compensation of accelerometers that is the outcome of a
general probabilistic model of the measurement process was presented, illustrated, and
discussed. The proposed method up to now had been fully developed and tested only for
first-order measurement systems. Here, it is applied to an accelerometer described by a
second-order model. This constitutes a major step in the research program of the authors,
which ultimately aims at dealing n-th order (causal) systems since the transition from a
first to a second order involves moving from scalar to vector systems, which is a key point.
Furthermore, second-order systems are particularly significant since they may constitute
local approximations nearby the resonance frequency even of systems of higher order.
This is in fact the case of piezoelectric accelerometers, which also exhibit a low frequency
high-pass behaviour due to the piezoelectric transducer.

The method has been carefully validated by simulation and experimentation. Such a
validation, in particular, confirmed that the hypothesis assumed for the implementation
of the method, i.e., that at the i-th step, the value of the measurand, can be replaced by
its estimate obtained at the previous step—see comment just before (14)—and the use of
a second-order model approximating the behaviour of the system nearby the resonance
frequency were appropriate. We suggest that this confirms the applicability of the method
in other similar important cases such as the case of piezoelectric force transducers.

Therefore, to sum up, a method for the dynamic compensation of a second-order device
(i.e., an accelerometer) was developed and tested. The method directly comes from a general
probabilistic model of the measurement system, whose basic structure is virtually common
to all types of measurement. This may be of interest in a theoretical and epistemological
perspective for putting dynamic measurement on a sound foundation rather than simply
taking methods and results from system and signal theory. The validation of the method
for accelerometers may encourage its application for this type of sensors and other similar,
such as, e.g., force transducers.
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