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Abstract: Acoustic logging instruments generate high voltages in the order of thousands of volts.
Electrical interferences are thus induced by high-voltage pulses that affect the logging tool and
make it inoperable owing to damaged components in severe cases. High-voltage pulses from the
acoustoelectric logging detector interfere with the electrode measurement loop through capacitive
coupling, which has seriously affected the acoustoelectric signal measurements. In this paper,
we simulate high voltage pulses, capacitive coupling and electrode measurement loops based on
qualitative analysis of the causes of electrical interference. Based on the structure of the acoustoelectric
logging detector and the logging environment, an electrical interference simulation and prediction
model was developed to quantify the characteristics of the electrical interference signal.

Keywords: acoustoelectric logging; acoustoelectric logging detector; high-voltage pulse; capacitive
coupling; electrode measurement loop

1. Introduction

In the field of oil and gas exploration, the electromagnetic waves generated by the
excitation of acoustic waves and the effect of coupling and conversion between the wave
fields are referred to as the Acoustoelectric Effects [1,2]. These theoretical and experimental
studies [3–7] have demonstrated that acoustoelectric logging can be directly applied to
detecting formation properties related to pore fluid, such as conductivity, porosity, viscosity,
ion concentration, and permeability. In particular, the formation permeability can be
detected directly by acoustoelectric logging, and most logging methods cannot achieve that
function. AcoustoElectric Logging Tool 2.0 (AELT 2.0) is a second-generation acoustoelectric
logging detector [8–10] developed by the Acoustic Logging Laboratory of China University
of Petroleum (Beijing).

Electrodes received a large interference signal at the zero moment, which was in-
cidental to the work of the transmitting acoustic system. When logging, the interface
acoustoelectric conversion wave arrives early, about 10 µs [11]. At this time, the amplitude
of the interference is considerably larger than the interface acoustoelectric conversion wave,
which causes it to be drowned. If the interference lasts long, it will mask the later accompa-
nying acoustoelectric conversion wave signals, distorting the data. It can be seen that the
interference has seriously jeopardized the acoustoelectric measurements.

At present, the progress of research on electrical interference of acoustoelectric logging
detectors is mainly a summary of experiments. According to Sun, electrical interference
is generated by the radiation of high-voltage pulse source [12]. According to Yin, elec-
trical isolation of the transmitting and receiving circuits is not effective against electrical
interference [13]. In the experiments of Zheng, the longer the trailing of the high voltage
pulse, the longer the electrical interference. By adding impedance matching circuit to the
transducer, the electrical interference is significantly shorter [14]. According to Fu and

Sensors 2023, 23, 3928. https://doi.org/10.3390/s23083928 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083928
https://doi.org/10.3390/s23083928
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2813-4348
https://doi.org/10.3390/s23083928
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083928?type=check_update&version=1


Sensors 2023, 23, 3928 2 of 14

Wang, the electrical interference is related to the source excitation parameters, such as
excitation pulse width, excitation power and source location [15,16]. According to Sheng,
electrical interference arises from sudden voltage changes on the surface of the transmitting
transducer [17].

By qualitatively analyzing the main interference causes of the acoustoelectric logging
detector, an electrical interference simulation and prediction model based on AELT 2.0
and the logging environment was developed to quantitatively simulate the electrical
interference caused by high voltage pulses to the electrode measurement loop through
capacitive coupling. The analysis of the coupling path of the detector is more complex,
which is related to the system structure, circuit layout and wiring. Changes in the resistivity
of the drilling fluid and the formation can also have an effect on the electrode measurements.
Thus, the model is able to describe both the electrical interference characteristics of AELT
2.0 and the response of electrical interference in the logging environment.

The interference signal not only affects the observation of the acoustoelectric signal,
but it also leads to the inability to obtain clean results by data processing. The electrical
interference simulation and prediction models not only assesses the degree of influence of
interference signals on acoustoelectric signals and judges the effectiveness of logging data,
but also predicts the effect of EMC rectification.

2. Analysis of the Causes of Electrical Interference
2.1. Structure of the Detector

The structure of the AELT 2.0 [18] is shown in Figure 1. The transmitting transducer
T is a binary linear phased array. Each array element is composed of three high-power
monopole transmitting transducers connected in parallel, generating 3800 V in a certain
delay sequence. The high-voltage pulse excites the transmitting transducer. Four measuring
electrodes, E1–E4, are added around the receiver transducer R1, R2, and R3. The instrument
adds three measuring electrodes, E5, E6 and E7, around the transmitting transducer T. The
distance between the electrodes is 200 mm. E6 is received in the form of potential, and the
combination of E5 and E7 is a differential mode receiver that realizes the measurement of
the interface acoustoelectric conversion wave signal at the zero-source distance. For the
insulation between the electrodes, fibreglass material is used for the casing of the short
section of the composite detector, while titanium steel alloy is used for the casing of the
main control circuit and reference electrode.
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of the important features added to AELT 2.0 compared to AELT 1.0. 

  

Figure 1. AELT 2.0.

The auxiliary measurement electrodes, E5, E6 and E7, acquire the interface acousto-
electric conversion wave near the sound source, whose energy is highly correlated with the
acoustoelectric coupling coefficient and even the formation permeability, which is one of
the important features added to AELT 2.0 compared to AELT 1.0.

2.2. Interference Source

The high-voltage pulses generated by the transmitting circuit are the main source of
interference in the system. The operating principle of the transmitting acoustic system [19]
is shown in Figure 2. The transmitting power charges the high-voltage capacitor C. When
the system receives a discharge command, the transmitting circuit provides a trigger pulse
to transistor Q to turn it on. Thus, C discharges through the discharge circuit composed of
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the primary coil T and the ground line. Finally, a secondary voltage UHs is obtained on the
secondary coil to excite the transducer Y.
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2.3. Sensitive Source

The acoustoelectric signals are weak. The detector is designed to comprise analogue
signal processing and data acquisition circuits with a high signal-to-noise ratio and large
dynamic range response characteristics. The gain dynamic range designed for each channel
is 90 dB, and the passband range is (2~22) kHz. Figure 3 is a schematic diagram of the
electrodes and their measurement circuit. The electrode input circuit uses a two-core
shielded line, with the signal line connected to the measuring electrodes and the shielded
casing connected to the signal ground.
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Figure 3. Schematic diagram of the electrodes and measurement circuits.

2.4. Qualitative Electrical Interference Model

High-voltage pulses interfere with the electrode measurement loop through capacitive
coupling. The electric field interaction between two adjacent circuits is capacitive coupling,
also known as electrical coupling [20]. Figure 4 shows the capacitive coupling model and
its equivalent circuit between a pair of parallel wires on the ground. In Figure 4a, conductor
1 is the interference line. U1 is the interference source. ZL1 is the termination load. Wire 2
is the victim wire. ZS2 and ZL2 is the termination load. C12 is the distributed capacitance
between conductors 1 and 2. C1G and C2G are the distributed capacitances between the
wires 1 and 2 and the ground, respectively.
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According to the equivalent circuit in Figure 4b, the interference voltage on circuit 2
can be expressed as:

U2 =
jωC12R2

1 + jωR2(C12 + C2G)
U1 (1)

where R2 is defined as R2 = ZS2 ‖ ZL2.
If R2 is a low impedance and satisfies:

R2 ≤
1

jω(C12 + C2G)
(2)

Then the expression for U2 can be reduced to

U2 ≈ jωC12R2U1 (3)

The small internal resistance of the signal between the fluid and the electrodes satisfies
the assumption that R2 is low impedance. The interference voltage U2 is 90 degrees ahead
of the phase of the interference source U1. Once the detector system is established, the
distributed capacitance C12 is fixed and the interference voltage U2 is mainly positively
related to the resistivity R2 and the frequency ω. The higher the energy of high frequency
ω interference, the more serious the distortion of U2.

2.5. Qualitative Electrical Interference Experiment

The following shows the experimental results of the main interference cause analysis
of the acoustoelectric detector, not the interference test results of AELT 2.0. As shown in
Figure 5, a very strong high-frequency spike pulse is generated at the moment when the
switching tube Q turns on and off (the position indicated by the black arrow). The energy
of the high-frequency interference causes a brief distortion of the electrical interference.
The electrical interference UEx has the same pattern as the high-voltage pulse UHs, but the
electrical interference UEx is 90 degrees ahead of the phase of the high-voltage pulse UHs
(shaded area shown in the figure). The experimental results are in high agreement with the
qualitative electrical interference model.
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Figure 5. Time domain diagram of UEx and UHs (experiment).

As shown in Figure 6, the frequency-amplitude characteristics of the electrical interfer-
ence UEx and the high-voltage pulse UHs match extremely well in the passband range of
(2~22) kHz, which indicates that the interference voltage UEx on the electrodes is due to
the electrical coupling of the high-voltage pulse UHs.
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3. Electrical Interference Simulation and Prediction Model
3.1. Equivalent Circuit for Electrode Measurement

The electrode equivalent circuit [21] are shown in Figure 7. R12 and R22 are the contact
resistance formed by the two measuring electrodes in contact with the fluid respectively. C13
and C23 are the double layer capacitance formed by the two measuring electrodes in contact
with the fluid respectively. Cx4 is the capacitance between the two measuring electrodes.
Rx1 is the resistance of the fluid. The signal internal resistance of the sensor is mainly the
R12, R22 and Rx1. Higher signal internal resistance can introduce greater interference and
at the same time can destroy the amplification characteristics of the preamplifier.
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The equivalent circuit diagram of the electrode measurement structure of the detector
are shown in Figure 8. Both the circuit and the signal can be expressed in symmetric form
and the parameters of symmetry are assumed to be equal. The corresponding measurement
relationship is as follows:

Uo = A(eae1
Z01

Z1 + Z01
+ eae2

Z02

Z2 + Z02
) (4)

where eae1 and eae2 are the acoustoelectric signal voltage. A is the amplifier gain. Uo is
the amplifier output. Z1 and Z2 are the equivalent impedance of the fluid between the
electrodes. Z01 and Z02 are the equivalent input resistances of the amplifier input.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 15 
 

 

3. Electrical Interference Simulation and Prediction Model 
3.1. Equivalent Circuit for Electrode Measurement 

The electrode equivalent circuit [21] are shown in Figure 7. 12R  and 22R  are the con-
tact resistance formed by the two measuring electrodes in contact with the fluid respec-
tively. 13C  and 23C  are the double layer capacitance formed by the two measuring elec-
trodes in contact with the fluid respectively. x4C   is the capacitance between the two 
measuring electrodes. x1R  is the resistance of the fluid. The signal internal resistance of 
the sensor is mainly the 12R , 22R  and x1R . Higher signal internal resistance can intro-
duce greater interference and at the same time can destroy the amplification characteris-
tics of the preamplifier. 

C13

R12
Rx1 R22

C23
Cx4

Electrode 5 Electrode 7

 
Figure 7. Equivalent circuit composed of electrode and fluid. 

The equivalent circuit diagram of the electrode measurement structure of the detector 
are shown in Figure 8. Both the circuit and the signal can be expressed in symmetric form 
and the parameters of symmetry are assumed to be equal. The corresponding measure-
ment relationship is as follows: 

= +
+ +

01 02
1 2

1 0 21 02
( )o ae ae

Z Z
U A e e

Z Z Z Z
 (4)

where 1aee  and 2aee  are the acoustoelectric signal voltage. A  is the amplifier gain. oU  
is the amplifier output. 1Z  and 2Z  are the equivalent impedance of the fluid between 
the electrodes. 01Z  and 02Z  are the equivalent input resistances of the amplifier input. 

Z1

eae1

eae2

Z2

Z01

Z02

UoA

+

 Figure 8. Equivalent circuit diagram of the detector.

The interference signal picked up by the electrodes is introduced passively but is
analyzed here as a measurement signal. Assuming that the interference signal picked up
by the electrode is UEx, the acoustoelectric signal picked up by the electrode is UAe, and
the total signal picked up by the electrode is U57, the measurement equation is therefore
as follows:

U57 = (UAe + UEx) (5)

The equivalent circuit of the electrode measurement loop based on Equation (5) is
built to analyze the quantitative relationship between the acoustoelectric signal UAe and
the interference signal UEx in the electrode measurement loop. The electrical interference
applied to the electrode by the interference source can be equated to an electrical excitation
acting on the impedance formed at both ends of the electrode.

3.2. Equivalent Circuit for Electrode Measurement Based on Electrical Coupling

The interference source acts on the electrode measurement loop through electrical
coupling, so the equivalent circuit diagram of the electrode measurement loop based on
electrical coupling is shown in Figure 9.
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The equivalent circuit shown in Figure 9 is a symmetrical structure centered on the
signal ground, and the symmetrical parameters are assumed to be equal. According to
the characteristics and working principle of the measuring circuit, the description and
relationship of each parameter in the figure are as follows:

A is the amplification factor of the pre-stage differential amplifier; Uo is the output
of the amplifier; R01 and R02 are the input resistance of the amplifier; eae1 and eae2 are the
signal source of the acoustoelectric effect; R11 and R21 are the equivalent resistance of the
fluid between the electrode and the signal ground; R12 and R22 are the polarization contact
resistance between the electrode and the fluid; C1 and C2 are the capacitance between the
measuring cable and the ground wire; C13 and C23 are the electric double layer capacitance
formed by the contact between the electrode and the fluid; C14 and C24 are the capacitance
between the two measuring electrodes; eex1 and eex2 are sources of interference; Rex1 and
Rex2 are the coupling resistances of the interference source acting on the electrodes, which
can be considered as the resistive part of the internal resistance of the signal source. Cex1
and Cex2 are the coupling capacitance of the interference source acting on the electrodes,
which can be regarded as the capacitive reactance part of the internal resistance of the
signal source.

The acoustoelectric signal picked up by the electrode satisfies the following relationship:

UAe = α(eae1 + eae2) (6)

where α is the transmission coefficient of the acoustoelectric effect.
The coupling between the high voltage pulse and the electrode measurement loop is

mainly through the distributed capacitance, since there is no specially designed coupling
channel between them. For electrode measurement loops, high-voltage pulse sources are
high-impedance signal sources because of the distributed capacitance between arbitrary
conductors, whose magnitude is related to the distance and the surface area of the coupling
between conductors, usually in the pF order [21]. From Figure 9, it can be seen that the
model has negligible shunting effect on the acoustoelectric signal, although the equivalent
impedance of the interference source constitutes a parallel relationship with the electrodes.
The equivalent circuit for electrode measurements based on electrical coupling describes
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both the electrical coupling process from the interference source to the electrode and the
process of picking up the acoustoelectric signal by the electrodes.

The interference signal picked up by the electrodes is expressed as follows.

UEx = β(eex1 + eex2) (7)

where β is the transmission coefficient of electrical coupling.
The signal obtained at the output of the signal amplifier includes the acoustoelec-

tric signal and the interference signal, so that the following measurement equation can
be obtained.

Uo = A(UAe + UEx) = A(α(eae1 + eae2) + β(eex1 + eex2)) (8)

3.3. Parameters of the Model

The transmission characteristics of the interference source in the electrode measure-
ment loop are modeled and analyzed separately, since the electrode measurement loop is a
linear signal transmission system.

UEx = β(eex1 + eex2) (9)

The coupling path of the high-voltage cable to the electrode measurement loop is
mainly the distributed capacitance Cex1 and Cex2, as its resistance path is mainly the leakage
resistance, which can be seen as an open circuit, i.e., Rex1 and Rex2 are infinite. An equivalent
circuit is formed as shown in Figure 10 with excitation sources eex1 and eex2.
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In Figure 10, Cex1 and Cex2 are the distributed capacitances. C1 and C2 are the capaci-
tance between the electrode signal line and the ground line. Z1 and Z2 are the equivalent
impedances between the electrodes and the fluid, with polarization impedance. R01 and
R02 are the equivalent input resistances of the two input ends of the amplifier, respectively.

Let the radius of the metal wire of both the measuring electrodes and the high-voltage
cable be r. The distance between the two measuring electrodes and the high-voltage cable
is l1 and l2, respectively, and the unshielded length is l3. The distance between the two
measuring electrodes and the high-voltage cable is expressed by the following relationship.

l2 = l1 + 0.2 (10)
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Analyzing with the model of parallel wires [21], the distributed capacitance per unit
length between two parallel wires can be found by the following equation.

C =
πε

ln l
r

(11)

where l is the distance between the wires, r is the radius of the wires, π is the circumference
ratio, and the dielectric constant of the medium is ε.

When the intermediate medium is air, the above equation is used to obtain the the-
oretical value of the distributed capacitance between the parallel lines. In practice, the
distributed capacitance between the lines can be calculated by finding the coefficients
according to the geometry of the lines in Figure 11.
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Depending on the structure of the detector, the parameters are taken as follows:
l1 = 5 mm, l2 = 205 mm, l3 = 20 mm, and r = 0.5 mm. Calculate the distributed
capacitance Cex1 and Cex2.

Cex1 ≈ 40 pF/m× 0.02 m = 0.8 pF (12)

Cex2 ≈ 6 pF/m× 0.02 m = 0.12 pF (13)

The signal line is a twisted pair with the shield connected to the signal ground, and its
length is taken as 1.5 m. Assuming that the ratio of the diameter of the signal line to the
distance between the two wires is 2, the distributed capacitance between the signal line
and the signal ground is obtained:

C1 ≈ C2= 11 pF/m× 1.5 m = 16.5 pF (14)

The actual capacitance will be greater than the above value because the intermediate
medium is an insulating plastic, whose dielectric constant is usually greater than 1, for
example, the commonly used polypropylene has a dielectric constant of about 3. Here we
take C1 ≈ C2 = 150 pF.

3.4. Construction of the Model

A simulation and prediction model of electrical interference based on the logging
environment was developed, since changes of Z1 and Z2 in the logging environment can
have an impact on the electrode measurements.

The AC/DC module of Finite Element Software is used for the simulation study be-
cause the finite element method can simulate complex detector structures as well as logging
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environments and the current mode of the AC/DC module is suitable for quasi-static field
time harmonic analysis with small current conduction and dielectric materials [22].

Based on the structure of AELT 2.0 and the logging environment, a two-dimensional
axisymmetric model was developed, as shown in Figure 12. The ring-shaped differential
electrode pairs (E5, E7) and the reference electrode, all arranged at the outer surface of the
detector. The distance d1 between E5 and E7 is 0.2 m. The distance d2 between E5 and
the reference electrode is 3.5 m. The radius of the detector rtool is 45 mm, the radius of
the borehole a is 100 mm, and the radius of the formation r f orm is 2 m. Assume that the
conductivity of the drilling fluid σm is 1 S/m and the conductivity of the formation σt is
0.1 S/m.
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In Finite Element Software, the equivalent circuit for electrode measurements based
on electrical coupling is coupled to the “current” field via the “circuit” interface. The
parameter values of Figure 12 are as follows: R01 = R11 = 100 kΩ, C01 = C11 = 20 µF,
C1 ≈ 0.8 pF, C2 ' 0.12 pF, and C1 ≈ C2 = 150 pF. The expression for the high-voltage
pulse UHs is as follows:

UHs(t) = 6000e−20859.5t sin
(

1.1× 105t
)

(15)

3.5. Results of Simulation and Prediction

Figure 13 shows the time domain simulation of the UEx and the UHs. The simulation
results are consistent with the qualitative analysis results in Section 2.4. The electrical
interference has the same pattern as the high-voltage pulse (shaded area), but the electrical
interference is 90 degrees ahead of the phase of the high-voltage pulse. At the moment 0, the
electrode receives an interference signal of about a dozen millivolts, which is characterized
by a rapid oscillatory decay. The interference signal magnitude and characteristics obtained
from the simulation are similar to the interference test results of AELT 2.0, which shows that
the selection of the detector system parameters is reasonable. According to the detection
characteristics of AELT 2.0, the interface acoustoelectric conversion wave acquired by the
electrode is in the mV to sub-mV range, and its arrival time is very early, about 10 µs. At this
time, the amplitude of the electrical interference is greater than the interface acoustoelectric
conversion wave, which is very unfavorable to the measurement of the interface conversion
wave at zero source distance.
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Figure 15 shows the potential distribution of the borehole and the formation at the 10 
µs moment. The detection range of the electrodes is large enough to reflect the contribu-
tion of the formation. The formation radius of 2 m is still used for the subsequent simula-
tions, because the effect of the formation beyond 1 m on the measurement results is small 
according to the potential distribution. 

Figure 13. Time domain diagram of UEx and UHs (simulation).

Figure 14 shows the frequency domain simulation of the UEx and the UHs. The
frequency-amplitude characteristics of the electrical interference UEx and the high-voltage
pulses UHs match very well, indicating that the frequency components of the electrical
interference originate from the high-voltage pulses. The main component of the electrical
interference falls in the frequency band range of (2~22) kHz, because High voltage pulses
with high power excite the transmitting transducer to produce acoustic waves while also
excite strong electrical interference.
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Figure 15 shows the potential distribution of the borehole and the formation at the 10 
µs moment. The detection range of the electrodes is large enough to reflect the contribu-
tion of the formation. The formation radius of 2 m is still used for the subsequent simula-
tions, because the effect of the formation beyond 1 m on the measurement results is small 
according to the potential distribution. 

Figure 14. Frequency domain diagram of UEx and UHs (simulation).

Therefore, the interference signal not only affects the observation of the acoustoelectric
signal, but it also leads to the inability to obtain clean results by data processing.

Figure 15 shows the potential distribution of the borehole and the formation at the 10 µs
moment. The detection range of the electrodes is large enough to reflect the contribution
of the formation. The formation radius of 2 m is still used for the subsequent simulations,
because the effect of the formation beyond 1 m on the measurement results is small
according to the potential distribution.
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The effect of the change in formation conductivity σt  on the electrode measurement 
results is examined in the range of −3(10 1) S/m , when the drilling fluid conductivity σ m  
is 0.1 S/m . As shown in Figure 17, the electrical interference ExU  decreases as the for-
mation conductivity σt   increases. Large changes in formation conductivity σt   have a 

Figure 15. Potential distribution of the borehole and the formation at 10 µs.

The effect of the change in drilling fluid conductivity σm on the electrode measurement
results is examined in the range of (1 ∼ 125) S/m, when the formation conductivity σt is
0.1 S/m. As shown in Figure 16, the electrical interference UEx decreases as the drilling
fluid conductivity σm increases. Large changes in drilling fluid conductivity σm do not have
a significant effect on electrical interference UEx because of the deeper detection range of
the electrodes.
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Figure 16. Relationship between σm and UEx.

The effect of the change in formation conductivity σt on the electrode measurement
results is examined in the range of (10−3 ∼ 1) S/m, when the drilling fluid conductivity σm
is 0.1 S/m. As shown in Figure 17, the electrical interference UEx decreases as the formation
conductivity σt increases. Large changes in formation conductivity σt have a greater impact
on electrical interference UEx because of the deeper detection range of the electrodes.
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Figure 17. Relationship between σt and UEx. (The curves are moderately enlarged for ease of display).

Electrical interference is positively correlated with the resistivity of the electrode
measurement environment, which is consistent with the qualitative analysis in Section 2.4.

4. Conclusions

High-voltage pulses generate interference signals to the electrode measurement loop
through capacitive coupling. In this paper, an equivalent model of electrode measurement
based on electrical coupling is constructed on the basis of qualitative analysis of the causes
of interference. The distributed capacitance of the model is calculated according to the
system characteristics of AELT 2.0. The model portrays the logging environment in detail,
as resistivity changes in the electrode measurement environment can have an impact on
the model results. Ultimately, an electrical interference simulation and prediction model of
the acoustoelectric logging detector is formed.

The quantitative simulation results for electrical interference and high voltage pulses
are consistent with the qualitative analysis of the interference characteristics. 1. The
electrical interference has the same shape as the high-voltage pulse, but the electrical
interference is 90 degrees ahead of the phase of the high-voltage pulse. 2. The frequency-
amplitude characteristics of electrical interference originate from high-voltage pulses.

The predicted results of electrical interference in the logging environment are as fol-
lows. 1. the magnitude of electrical interference is proportional to the formation resistivity.
2. large changes in formation resistivity have a large effect on electrical interference.

The direction of interference suppression is proposed: Electrical interference is the
main factor because the transmitting transducer is close to the electrode. Isolation of the
coupling path by means of an electrical shield is the most effective method. The shield
plays the role of reducing the distributed capacitance between the high-voltage pulse and
the electrode measurement loop.
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