
Citation: Chen, S.; Lai, W.; Ye, J.; Ma,

Y. A Fast and Low-Power Detection

System for the Missing Pin Chip

Based on YOLOv4-Tiny Algorithm.

Sensors 2023, 23, 3918. https://

doi.org/10.3390/s23083918

Academic Editors: Jae-Hoon Kim,

Ricardo Jardim Goncalves and

Woon-Young Yeo

Received: 17 March 2023

Revised: 4 April 2023

Accepted: 10 April 2023

Published: 12 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Fast and Low-Power Detection System for the Missing Pin
Chip Based on YOLOv4-Tiny Algorithm
Shiyi Chen 1, Wugang Lai 1,*,† , Junjie Ye 2,† and Yingjie Ma 2

1 School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
2 College of Computer Science and Cyber Security (Oxford Brookes College), Chengdu University of

Technology, Chengdu 610059, China
* Correspondence: laiwugang08@cdut.edu.cn
† These authors contributed equally to this work.

Abstract: In the current chip quality detection industry, detecting missing pins in chips is a critical
task, but current methods often rely on inefficient manual screening or machine vision algorithms
deployed in power-hungry computers that can only identify one chip at a time. To address this issue,
we propose a fast and low-power multi-object detection system based on the YOLOv4-tiny algorithm
and a small-size AXU2CGB platform that utilizes a low-power FPGA for hardware acceleration.
By adopting loop tiling to cache feature map blocks, designing an FPGA accelerator structure with
two-layer ping-pong optimization as well as multiplex parallel convolution kernels, enhancing the
dataset, and optimizing network parameters, we achieve a 0.468 s per-image detection speed, 3.52 W
power consumption, 89.33% mean average precision (mAP), and 100% missing pin recognition rate
regardless of the number of missing pins. Our system reduces detection time by 73.27% and power
consumption by 23.08% compared to a CPU, while delivering a more balanced boost in performance
compared to other solutions.

Keywords: chip detection; FPGA; inference accelerator; low-power system

1. Introduction

In the field of industrial chip production, defects often occur due to various factors,
such as technological processes, materials, and environment. Defect detection is a criti-
cal part of the chip production process to ensure high-quality and reliable products [1].
However, traditional manual detection methods are inefficient and unable to meet the
growing demand for high-speed and accurate detection in modern chip production [2] and
are gradually being replaced by automatic detection technology. In traditional machine
vision detection, the automatic optical inspection method has gained popularity for quality
detection of PCBs in electronic devices using optical sensors and computer technology [3,4].
However, this approach still presents urgent problems with the measurement of key ge-
ometric dimensions of chip pins [5,6]. To address this challenge, various methods have
been proposed for efficient defect detection. For instance, Liu et al. proposed an adaptive
threshold FAST feature points extraction for chip pin feature extraction and used cascaded
region segmentation to determine the pin positions, improving the efficiency of defect
detection for missing, bent, and bonded chip pins using machine vision [7]. Qiao et al.
used a computer terminal to control an industrial camera and processed it using Halcon
software algorithms to monitor chips with surface scratches in real time [8]. Lu et al. used
a binocular vision inspection system, combined with a corner detection algorithm and a
preprocessing algorithm of gradient correlation matrices, to automatically identify the chips
on the conveyor belt [9]. As chips become increasingly integrated and complex, defects
produced in industrial production are often diverse in type, complex in features, and
variable in background. Traditional machine vision technology is inefficient and ineffective
in extracting defect features sufficiently and effectively and has become inadequate for

Sensors 2023, 23, 3918. https://doi.org/10.3390/s23083918 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23083918
https://doi.org/10.3390/s23083918
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0613-9885
https://doi.org/10.3390/s23083918
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23083918?type=check_update&version=1

Sensors 2023, 23, 3918 2 of 17

the task. In recent years, deep learning models, especially convolutional neural networks
(CNNs), have shown superior performance and adaptability in defect detection, making
them particularly applicable to various industrial scenarios [10–14]. Ding et al. combined
feature pyramidal convolutional networks with the Faster R-CNN for PCB surface de-
fect detection [15]. Yang et al. fine-tuned the YOLOv3 network for multiple classes of
chip defect detection [16]. Ghosh et al. proposed a CNN-based classification scheme and
two unsupervised techniques to identify bent and corroded pins from RGB maps and
depth maps [17]. Hou et al. deployed some lightweight networks such as AlexNet and
GoogLeNet using a single-board computer to achieve edge device detection of laser chip
defects [18].

However, the current method of deploying machine vision in industrial scenarios still
involves using power-hungry computers as terminal devices. While solutions related to
using neural networks for chip defect detection have been proposed, they mostly focus on
algorithmic improvements and do not provide specific industrial deployment strategies.
Additionally, the machine vision solutions used by previous researchers can only detect
one chip at a time, which significantly reduces detection efficiency.

To address these issues, this paper proposes an innovative approach that utilizes
the YOLOv4-tiny algorithm with multi-object detection capability [19] and deploys it on
an FPGA system to detect missing pins in chip production. The FPGA platform offers
significant advantages, including low power consumption, small size, high performance,
and flexible sensor integration [20–24], making it an ideal choice for industrial deployment.

In this paper, we propose an innovative design of an FPGA accelerator structure with
two-layer ping-pong optimization and multiplex parallel convolution kernels, resulting in
a more balanced improvement among precision, inference time, and power consumption
compared to previous solutions. Furthermore, our system addresses the limitations of
previous chip detection methods, such as the inability to simultaneously detect multiple
chips and the neglect of continuous missing pins on a chip. As a result, our system is
capable of coping with a wider range of complex industrial environments.

Overall, this paper demonstrates the tremendous potential of combining advanced
algorithms with innovative hardware design to achieve efficient and reliable defect detec-
tion in industrial scenarios. Our method offers an effective solution for detecting missing
pin defects in industrial chip production. By utilizing FPGA technology, we not only
improve the performance of the system but also offer a feasible deployment strategy for
industrial applications.

2. Experimental Setup

In this section, we first introduce our experimental platform and provide specific
hardware information. Then, we separately describe the development tools used in this
study for both the neural network training process and the hardware development process.

2.1. Experimental Platform

To meet industrial requirements and keep costs manageable, we chose the AXU2CEG
development board, which measures only 10.00 cm × 8.50 cm, as shown in Figure 1. It
features an ARM Cortex-A53 processor for handling complex tasks and future expandability,
as well as an ARM Cortex-R5 coprocessor to improve real-time processing efficiency. The
AXU2CGB supports multiple interfaces, including USB, HDMI, Ethernet, SPI, and UART,
among others, making it suitable for industrial inspection scenarios. The AXU2CEG is cost-
effective due to its low-end FPGA from Xilinx’s Zynq UltraScale+ MPSoC family, which
has limited internal resources. Therefore, the design can easily expand to simultaneously
detect more images by switching to a more powerful FPGA chip.

Sensors 2023, 23, 3918 3 of 17
Sensors 2023, 23, x FOR PEER REVIEW 3 of 17

Figure 1. The AXU2CGB development board.

2.2. Development Tools
In the neural network training process, we first perform image preprocessing and

other image-related input/output operations using the OpenCV 4.6.0 computer vision li-
brary. Then, we construct the YOLOv4-tiny network using the PyTorch 1.11.0 deep learn-
ing framework and its associated Torchvision 0.12.0 library for framework construction.
Finally, we employ various third-party libraries for training. To evaluate the training re-
sults, we use the Matplotlib 3.4.3 visualization library to plot the Epoch-Loss and Epoch-
mAP graphs.

In the hardware development process, we use three development tools: Vivado HLS,
Vivado, and Xilinx Vitis IDE, all with version numbers of 2019.2. First, we design the bot-
tom-level convolution IP in Vivado HLS. Then, we construct the system hardware plat-
form in Vivado and obtain resource and power consumption information. Finally, we con-
struct the top-level YOLOv4-tiny network based on this hardware platform in the Xilinx
Vitis IDE and analyze inference time and precision.

3. Theoretical Analysis
3.1. YOLOv4-Tiny Network

YOLO is an object detection model proposed to meet object detection tasks in differ-
ent situations. Its principle is to learn object positions directly from object types in a light-
weight network. Essentially, YOLO is to directly locate and label objects by learning them
once, allowing it to quickly achieve good performance in the overall image [25]. Therefore,
a series of versions of YOLO networks have been widely used in the industry. For exam-
ple, Adibhatla et al. applied YOLOv2-tiny to the detection of printed circuit board defects
[26], and Wang et al. applied YOLOv3 to the detection of wearing safety helmets [27].

In this paper, the 416 × 416 YOLOv4-tiny network is used. Compared to the almost
60 million parameters of YOLOv4, YOLOv4-tiny is only one-tenth of it, which not only
makes its detection speed six to eight times faster than YOLOv4 [28], but also occupies a
small amount of storage space. Apart from that, the relatively simple structure of
YOLOv4-tiny also enables faster inference speed on devices with limited computing re-
sources. On the other hand, the higher versions of the YOLO model introduce more new
features, such as attention mechanisms, which increase the complexity. Although
YOLOv4-tiny may have slightly lower accuracy than its higher versions, it still performs

Figure 1. The AXU2CGB development board.

2.2. Development Tools

In the neural network training process, we first perform image preprocessing and other
image-related input/output operations using the OpenCV 4.6.0 computer vision library.
Then, we construct the YOLOv4-tiny network using the PyTorch 1.11.0 deep learning
framework and its associated Torchvision 0.12.0 library for framework construction. Finally,
we employ various third-party libraries for training. To evaluate the training results, we use
the Matplotlib 3.4.3 visualization library to plot the Epoch-Loss and Epoch-mAP graphs.

In the hardware development process, we use three development tools: Vivado HLS,
Vivado, and Xilinx Vitis IDE, all with version numbers of 2019.2. First, we design the
bottom-level convolution IP in Vivado HLS. Then, we construct the system hardware
platform in Vivado and obtain resource and power consumption information. Finally, we
construct the top-level YOLOv4-tiny network based on this hardware platform in the Xilinx
Vitis IDE and analyze inference time and precision.

3. Theoretical Analysis
3.1. YOLOv4-Tiny Network

YOLO is an object detection model proposed to meet object detection tasks in different
situations. Its principle is to learn object positions directly from object types in a lightweight
network. Essentially, YOLO is to directly locate and label objects by learning them once,
allowing it to quickly achieve good performance in the overall image [25]. Therefore, a
series of versions of YOLO networks have been widely used in the industry. For example,
Adibhatla et al. applied YOLOv2-tiny to the detection of printed circuit board defects [26],
and Wang et al. applied YOLOv3 to the detection of wearing safety helmets [27].

In this paper, the 416 × 416 YOLOv4-tiny network is used. Compared to the almost
60 million parameters of YOLOv4, YOLOv4-tiny is only one-tenth of it, which not only
makes its detection speed six to eight times faster than YOLOv4 [28], but also occupies a
small amount of storage space. Apart from that, the relatively simple structure of YOLOv4-
tiny also enables faster inference speed on devices with limited computing resources. On
the other hand, the higher versions of the YOLO model introduce more new features, such
as attention mechanisms, which increase the complexity. Although YOLOv4-tiny may have
slightly lower accuracy than its higher versions, it still performs well and can meet many

Sensors 2023, 23, 3918 4 of 17

practical needs. Therefore, it is more suitable for deployment on embedded devices such
as FPGAs.

The YOLOv4-tiny network structure has 38 layers and uses three residual units: a
Leaky ReLU for the activation function, two feature layers for target classification and
regression, and a Feature Pyramid Network (FPN) to merge the effective feature layer. The
YOLOv4-tiny network structure is shown in Figure 2a.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 17

well and can meet many practical needs. Therefore, it is more suitable for deployment on
embedded devices such as FPGAs.

The YOLOv4-tiny network structure has 38 layers and uses three residual units: a
Leaky ReLU for the activation function, two feature layers for target classification and
regression, and a Feature Pyramid Network (FPN) to merge the effective feature layer.
The YOLOv4-tiny network structure is shown in Figure 2a.

Figure 2. (a) YOLOv4-tiny network structure. (b) Resblock_body module structure.

The CSPDarknet53 module in Figure 2a completes three operations in turn: Dark-
netConv2D, Batch Normalization (BN), and the Leaky ReLU activation function, which
increases the learning capabilities of the CNN and ensures accuracy while reducing
memory costs. The Resblock_body module is then used to prevent problems such as the
vanishing gradient problem.

In Figure 2b, the ResBlock_body module divides the Base Layer into two parts, Part1
and Part2. Part2 is simply a copy of the input data. Part1, on the other hand, needs to
undergo a residual network operation and is subsequently combined with Part2 through
a fusion process to obtain the Partial Transition. This process is a cooperative task per-
formed by Part1 and Part2 working together and can be seen as two fusions of residual
features.

The main operation of the FPN is to upsample the higher layer features of the two
feature layers twice, while the lower layer features undergo 1×1 convolution to change the
number of channels of the lower layer features. Then, the corresponding upsampled re-
sults from the previous higher layers are added to the results of the 1×1 convolution.

After the above operation, two YOLO Head feature output layers of sizes (26, 26, 255)
and (13, 13, 255) are obtained. Both YOLO Head feature output layers contain the width,
height, and number of channels of the predicted result, which are then decoded by YOLO
to show the position of the entire prediction frame.

3.2. Fixed-Point 16-Bit Quantization
CNNs are robust to data precision and can reduce computational resources by reduc-

ing data bit-width while keeping precision constant [29–31]. Moreover, as the data bit
width is reduced, the amount of data transferred is also reduced. Before quantization, the
data is in 32-bit floating point, and YOLOv4-tiny contains approximately 5.9 MB of pa-
rameters [32], which would require 23.6 MB of storage, and more advanced networks tend
to contain a larger number of parameters. Therefore, this paper uses fixed-point 16-bit

Figure 2. (a) YOLOv4-tiny network structure. (b) Resblock_body module structure.

The CSPDarknet53 module in Figure 2a completes three operations in turn: Dark-
netConv2D, Batch Normalization (BN), and the Leaky ReLU activation function, which
increases the learning capabilities of the CNN and ensures accuracy while reducing memory
costs. The Resblock_body module is then used to prevent problems such as the vanishing
gradient problem.

In Figure 2b, the ResBlock_body module divides the Base Layer into two parts, Part1
and Part2. Part2 is simply a copy of the input data. Part1, on the other hand, needs to
undergo a residual network operation and is subsequently combined with Part2 through a
fusion process to obtain the Partial Transition. This process is a cooperative task performed
by Part1 and Part2 working together and can be seen as two fusions of residual features.

The main operation of the FPN is to upsample the higher layer features of the two
feature layers twice, while the lower layer features undergo 1×1 convolution to change
the number of channels of the lower layer features. Then, the corresponding upsampled
results from the previous higher layers are added to the results of the 1×1 convolution.

After the above operation, two YOLO Head feature output layers of sizes (26, 26, 255)
and (13, 13, 255) are obtained. Both YOLO Head feature output layers contain the width,
height, and number of channels of the predicted result, which are then decoded by YOLO
to show the position of the entire prediction frame.

3.2. Fixed-Point 16-Bit Quantization

CNNs are robust to data precision and can reduce computational resources by reducing
data bit-width while keeping precision constant [29–31]. Moreover, as the data bit width is

Sensors 2023, 23, 3918 5 of 17

reduced, the amount of data transferred is also reduced. Before quantization, the data is in
32-bit floating point, and YOLOv4-tiny contains approximately 5.9 MB of parameters [32],
which would require 23.6 MB of storage, and more advanced networks tend to contain a
larger number of parameters. Therefore, this paper uses fixed-point 16-bit quantization for
the model’s weights and bias parameters, input and output feature maps, and intermediate
results. Due to the limited resources of this development board and to reduce computational
effort, we set the number of decimal places to nine. Fixed-point data x f ixed is represented
as a complement, and its representation and conversion relationship with floating-point
data x f loat are as follows:

x f ixed = ∑15
i=0 Bk × 2−9 × 2k, Bk ∈ {0, 1} , (1)

x f ixed = (int)
(

x f loat × 29
)

, (2)

x f loat = (f loat)x f ixed/29 , (3)

where Bk is the kth bit of the 16-bit fixed-point data.

3.3. Fusion of the Batch Normalization (BN) Layer and Convolution Layer

In general, the BN layer is located after the convolution layer and normalizes the
feature map, an operation that speeds up the network learning rate and has the effect
of regularization. By fusing the BN layer to the upper convolutional layer, the two-step
operation can be reduced to one step, which has an accelerated effect.

In the convolution layer, the main convolution process is that the filter traverses the
input image through a set number of steps. The equation for this operation is as follows:

yconv = ω · x + b , (4)

where the convolution kernel weight ω and bias b is used to perform a linear operation on
an element x in its input feature map and yconv is the result of the convolution calculation.

In the BN layer, it is necessary to calculate the mean and variance of a minibatch
of elements, then subtract the mean by x and divide the standard deviation, and finally
perform the affine operation. The specific calculation formula is as follows:

µβ =
1
m ∑m

i=1 xi , (5)

δ2
β =

1
m ∑m

i=1

(
xi − µβ

)2 , (6)

∧
xi =

xi − µβ√
σ2

β + ε
. (7)

where m is the number of elements in a minibatch, xi is the ith element in a minibatch, and
µβ and δ2

β are the mean and variance of a minibatch of elements, respectively. ε is a small

constant set to avoid division by zero errors.
∧
xi is the result after normalizing xi.

By introducing the zoom variable γ and the translation variable β obtained by model
training for affine operation, we can obtain the processed convolution formula:

BNγβ(xi) = γ
∧
xi + β , (8)

where BNγβ(xi) is the result of the processed convolution calculation.

Sensors 2023, 23, 3918 6 of 17

The final fusion step brings the convolution formula directly into the BN formula, e.g.,

BNγβ(xi) = γ
ω · x + b− µβ√

σβ
2 + ε

+ β =
ω · γ√
σβ

2 + ε
· x +

γ√
σβ

2 + ε
·
(
b− µβ

)
+ β , (9)

Order
∧
ω =

ω · γ√
σβ

2 + ε
, (10)

∧
b =

γ√
σβ

2 + ε
·
(
b− µβ

)
+ β , (11)

Then BNγβ(xi) =
∧
ω · x +

∧
b . (12)

With the above transformation, the BN layer is fused to the convolutional layer,
reducing the amount of model operations and random access memory.

3.4. Mean Average Precision (mAP) Derivation

In object detection, the precision of each category can be represented using a Precision-
Recall curve, which is a graph of recall on the x-axis and precision on the y-axis. The curve
reflects the trade-off between precision and recall in the detection algorithm. For each
category, the average precision (AP) is calculated as the area under the Precision-Recall
curve. The higher the AP, the better the performance of the object detection algorithm in
that category.

mAP is a metric used to evaluate the performance of object detection models. It is the
average of the AP scores for all object categories. Therefore, a higher mAP value indicates
higher detection precision for the model across all categories. The formulas for precision
(P), recall (R), and AP calculation are as follows:

P =
TP

TP + FP
, (13)

R =
TP

TP + FN
, (14)

AP =
∫ 1

0
P(R)dR, (15)

mAP =
∑N

i=1 AP
N

. (16)

where True Positives (TP) are the number of correctly detected objects, False Positives (FP)
are the number of incorrectly detected objects, False Negatives (FN) are the number of
objects not detected by the model, and N is the number of categories.

4. Methods

In this section, we first present the system workflow and hardware architecture and the
YOLOv4-tiny network in a holistic manner, then show the scheme for dataset enhancement,
and finally propose a two-layer ping-pong optimized FPGA accelerator architecture for
FPGA deployment, in which the design of the convolution kernel is described in detail.

4.1. System Model
4.1.1. System Workflow

The detection system uses an accelerated deep learning algorithm to screen the missing
pin chip and locate the missing pin locations by detecting chip photos on the process line.
First, the chip photos taken by the camera are edge-extracted for enhancement, and then
16-bit fixed-point quantization is performed. Quantized images and BN fused weights

Sensors 2023, 23, 3918 7 of 17

are fed into a YOLOv4-tiny network, where the FPGA accelerator performs acceleration
operations to produce inference results. If a defect is detected, it is stored on the SD Card;
otherwise, it continues to read the next image. The system workflow is shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 17

Figure 3. Chip defect detection system workflow.

4.1.2. System Hardware Architecture
The storage component of the chip defect detection system comprises an SD Card,

DDR, and on-chip storage resources, specifically Block RAM (BRAM). The overall system
architecture is illustrated in Figure 4. Due to the relatively simple nature of the detection
task in this project, only one Cortex-A53 processor is utilized without any operating sys-
tem being employed.

The ARM processor is responsible for executing the application program, which con-
trols the entire system. This includes constructing the overall architecture of the YOLOv4-
Tiny network, preprocessing the image, weight, and bias files stored on the SD Card, load-
ing them into DDR, continuously calling the convolutional accelerator in the FPGA, and
storing the inference results back to the SD Card.

On the other hand, for specific hardware acceleration and customized design, the
FPGA generates IP cores through Vivado HLS. Its functions include loading data from
DDR into respective BRAM buffers in a multi-channel parallel transmission manner, per-
forming convolutional acceleration operations in the compute and store modules in a two-
layer ping-pong form, and finally storing the results back into DDR.

Figure 4. Hardware architecture of the chip defect detection system.

Figure 3. Chip defect detection system workflow.

4.1.2. System Hardware Architecture

The storage component of the chip defect detection system comprises an SD Card,
DDR, and on-chip storage resources, specifically Block RAM (BRAM). The overall system
architecture is illustrated in Figure 4. Due to the relatively simple nature of the detection
task in this project, only one Cortex-A53 processor is utilized without any operating system
being employed.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 17

Figure 3. Chip defect detection system workflow.

4.1.2. System Hardware Architecture
The storage component of the chip defect detection system comprises an SD Card,

DDR, and on-chip storage resources, specifically Block RAM (BRAM). The overall system
architecture is illustrated in Figure 4. Due to the relatively simple nature of the detection
task in this project, only one Cortex-A53 processor is utilized without any operating sys-
tem being employed.

The ARM processor is responsible for executing the application program, which con-
trols the entire system. This includes constructing the overall architecture of the YOLOv4-
Tiny network, preprocessing the image, weight, and bias files stored on the SD Card, load-
ing them into DDR, continuously calling the convolutional accelerator in the FPGA, and
storing the inference results back to the SD Card.

On the other hand, for specific hardware acceleration and customized design, the
FPGA generates IP cores through Vivado HLS. Its functions include loading data from
DDR into respective BRAM buffers in a multi-channel parallel transmission manner, per-
forming convolutional acceleration operations in the compute and store modules in a two-
layer ping-pong form, and finally storing the results back into DDR.

Figure 4. Hardware architecture of the chip defect detection system. Figure 4. Hardware architecture of the chip defect detection system.

Sensors 2023, 23, 3918 8 of 17

The ARM processor is responsible for executing the application program, which con-
trols the entire system. This includes constructing the overall architecture of the YOLOv4-
Tiny network, preprocessing the image, weight, and bias files stored on the SD Card,
loading them into DDR, continuously calling the convolutional accelerator in the FPGA,
and storing the inference results back to the SD Card.

On the other hand, for specific hardware acceleration and customized design, the
FPGA generates IP cores through Vivado HLS. Its functions include loading data from DDR
into respective BRAM buffers in a multi-channel parallel transmission manner, performing
convolutional acceleration operations in the compute and store modules in a two-layer
ping-pong form, and finally storing the results back into DDR.

The blue line in Figure 4 is controlled by the FPGA and is the high-speed bus of the
AXI4 bus, which adopts a multiplex burst transmission mode and can improve transmission
efficiency and increase throughput [33–35]. It allows a large amount of data interaction
between the off-chip DDR and the on-chip BRAM. The remaining black lines are controlled
by ARM, which transmits commands and configurations to the accelerator IP via the
AXI4Lite bus and sends read and write signals to the DDR and SD Card via the DDR bus
and multiuse I/O (MIO), respectively.

4.2. Dataset Enhancement

Due to the lack of large-scale open-source datasets for chip defect detection, we need
to create our own dataset. This approach allows us to design and collect data tailored to
the specific issues we are studying and adjust the dataset’s size and content as needed.
Additionally, because there are so many types of chip packages, we only select the SOP
series, a typical package series, in order to better control the complexity of the experiments
and facilitate comparison and validation of results.

Before feeding into the inference, we first perform image enhancement by binarizing
the images and using the Canny algorithm for edge extraction, which simplifies redundant
features such as image color and emphasizes the feature of missing pins or not. The
corresponding target detection model trained by this operation was tested and proved
to perform better. The image enhancement process before and after is shown in Figure 5.
Considering that industrial deployment requires high efficiency in the production line, we
add multiple chips to the field of view to enhance the batch processing capability of the
detection system.

4.3. FPGA Deployment
4.3.1. Overall Design of the FPGA Accelerator

The FPGA accelerator consists of two modules: compute and store; the overall design
of the FPGA accelerator is shown in Figure 6. In the compute module, the parameters
are loaded into the respective buffers in BRAM in the form of multiplex parallel burst
transmission via the AXI4 high-speed bus, and convolution is realized by the processing
elements (PEs) in the FPGA through multiplication and addition operations. In the store
module, the PEs perform Leaky ReLU activation and send the results out in multiplex
parallel, as shown in Figure 6a. For the blue and green lines in Figure 6b, they represent
operations that are completed at different times under fine-grained ping-pong, while the
red line represents operations under coarse-grained ping-pong.

For the two-layer ping-pong operation, the accelerator first caches the DDR input to
BRAMA and BRAMB, then performs ping-pong operations on load and convolve and write,
and writes the result to one of the OFM_buffers in the form of time division multiplexing
(TDM) to complete the compute module, as shown in the blue and green lines in Figure 6b.
At the same time, we perform coarse-grained ping-pong between the compute module and
the store module, i.e., while the compute module writes to OFM_buffer1, the result of the
previous calculation cache is read out from OFM_buffer2 to DDR, as shown in the red line
in Figure 6b. The work of the red line, blue line, and green line is carried out simultaneously,
allowing fine-grained ping-pong within modules and coarse-grained ping-pong between

Sensors 2023, 23, 3918 9 of 17

modules to be performed at the same time. Thus, from the DDR side, data is sent out and
in without interruption, and from the BRAM side, the utilization of on-chip resources is
greatly improved.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 17

The blue line in Figure 4 is controlled by the FPGA and is the high-speed bus of the
AXI4 bus, which adopts a multiplex burst transmission mode and can improve transmis-
sion efficiency and increase throughput [33–35]. It allows a large amount of data interac-
tion between the off-chip DDR and the on-chip BRAM. The remaining black lines are con-
trolled by ARM, which transmits commands and configurations to the accelerator IP via
the AXI4Lite bus and sends read and write signals to the DDR and SD Card via the DDR
bus and multiuse I/O (MIO), respectively.

4.2. Dataset Enhancement
Due to the lack of large-scale open-source datasets for chip defect detection, we need

to create our own dataset. This approach allows us to design and collect data tailored to
the specific issues we are studying and adjust the dataset’s size and content as needed.
Additionally, because there are so many types of chip packages, we only select the SOP
series, a typical package series, in order to better control the complexity of the experiments
and facilitate comparison and validation of results.

Before feeding into the inference, we first perform image enhancement by binarizing
the images and using the Canny algorithm for edge extraction, which simplifies redun-
dant features such as image color and emphasizes the feature of missing pins or not. The
corresponding target detection model trained by this operation was tested and proved to
perform better. The image enhancement process before and after is shown in Figure 5.
Considering that industrial deployment requires high efficiency in the production line,
we add multiple chips to the field of view to enhance the batch processing capability of
the detection system.

Figure 5. Chip data set. (a) One chip before enhancement. (b) One chip after enhancement. (c) Mul-
tiple chips before enhancement. (d) Multiple chips after enhancement.

4.3. FPGA Deployment
4.3.1. Overall Design of the FPGA Accelerator

The FPGA accelerator consists of two modules: compute and store; the overall design
of the FPGA accelerator is shown in Figure 6. In the compute module, the parameters are
loaded into the respective buffers in BRAM in the form of multiplex parallel burst trans-

Figure 5. Chip data set. (a) One chip before enhancement. (b) One chip after enhancement.
(c) Multiple chips before enhancement. (d) Multiple chips after enhancement.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17

mission via the AXI4 high-speed bus, and convolution is realized by the processing ele-
ments (PEs) in the FPGA through multiplication and addition operations. In the store
module, the PEs perform Leaky ReLU activation and send the results out in multiplex
parallel, as shown in Figure 6a. For the blue and green lines in Figure 6b, they represent
operations that are completed at different times under fine-grained ping-pong, while the
red line represents operations under coarse-grained ping-pong.

Figure 6. (a) Internal architecture of the FPGA accelerator. (b) The two-layer ping-pong design.

For the two-layer ping-pong operation, the accelerator first caches the DDR input to
BRAMA and BRAMB, then performs ping-pong operations on load and convolve and
write, and writes the result to one of the OFM_buffers in the form of time division
multiplexing (TDM) to complete the compute module, as shown in the blue and green
lines in Figure 6b. At the same time, we perform coarse-grained ping-pong between the
compute module and the store module, i.e., while the compute module writes to
OFM_buffer1, the result of the previous calculation cache is read out from OFM_buffer2
to DDR, as shown in the red line in Figure 6b. The work of the red line, blue line, and
green line is carried out simultaneously, allowing fine-grained ping-pong within modules
and coarse-grained ping-pong between modules to be performed at the same time. Thus,
from the DDR side, data is sent out and in without interruption, and from the BRAM side,
the utilization of on-chip resources is greatly improved.

4.3.2. Detail Design of Convolution Kernel
Convolutional operations account for more than 90% of computation in most neural

networks [36]. Therefore, accelerating the convolutional operations can significantly re-
duce the processing latency of the entire network. Since FPGA on-chip storage resources
are very limited and the weights of the convolutional neural network and the feature maps
of the intermediate computation results have large storage footprints, it is obviously im-
practical to cache the entire feature maps, so we adopt a loop tiling strategy. Suppose the
input feature map I is of size N×R×C, the weight W is of size M×N×K×K, the output fea-
ture map O is of size M×R×C, and the block factors for the input channel, output channel,
and output feature map height and width are Tn, Tm, Tr, Tc. After each block is computed,
the next block of input features and weights is then read for computation.

Figure 6. (a) Internal architecture of the FPGA accelerator. (b) The two-layer ping-pong design.

Sensors 2023, 23, 3918 10 of 17

4.3.2. Detail Design of Convolution Kernel

Convolutional operations account for more than 90% of computation in most neural
networks [36]. Therefore, accelerating the convolutional operations can significantly reduce
the processing latency of the entire network. Since FPGA on-chip storage resources are very
limited and the weights of the convolutional neural network and the feature maps of the
intermediate computation results have large storage footprints, it is obviously impractical
to cache the entire feature maps, so we adopt a loop tiling strategy. Suppose the input
feature map I is of size N× R× C, the weight W is of size M×N× K× K, the output
feature map O is of size M× R× C, and the block factors for the input channel, output
channel, and output feature map height and width are Tn, Tm, Tr, Tc. After each block is
computed, the next block of input features and weights is then read for computation.

This design uses parallel input channels and parallel output channels. That is, convo-
lutions of feature maps and weights for multiplex input channels are computed simultane-
ously, and partial results and multiplex output feature maps are computed simultaneously.
The corresponding pseudo code is shown in Algorithm 1.

Algorithm 1 Pseudo code of optimized convolutional kernels

for (r = 0; r < R; r += Tr) {//Traverse the rows of the feature map in steps of Tr
for (c = 0; c < C; c += Tc) {//Traverse the columns of the feature map in steps of Tm
for (m = 0; m < M; m += Tm) {//Traverse the channels of the output feature map in steps of Tm
for (n = 0; n < N; n += Tn) {//Traverse the channels of the input feature map in steps of Tn
load I [n:n + Tn][r:r + Tr + K][c:c + Tc + K] to IFM_buffer;
load W [m:m + Tm][n:n + Tn][:][:] to weight_buffer;
//Compute partial sum and write to OFM_buffer
for (ii = 0; ii < K; ii++)//Traverse the rows of the convolution kernel
for (jj = 0; jj < K; jj++)//Traverse the columns of the convolution kernel
for (rr = 0; rr < Tr; rr++)//Traverse the rows of the feature map block
for (cc = 0; cc < Tc; cc++)//Traverse the columns of the feature map block

#pragma HLS PIPELINE II = 1
for (mm = 0; mm < Tm; mm++)//Traverse the channels of the output feature map block
for (nn = 0; nn < Tn; nn++)//Traverse the channels of the input feature map block
OFM_buffer [mm][rr][cc]+=
IFM_buffer [nn][rr + ii][cc + jj] × weight_buffer [mm][nn][ii][jj];

store OFM_buffer to O [m:m + Tm][r:r + Tr][c:c + Tc];
}}}}

We use PIPELINE optimization to unroll all its internal loops in parallel, and each
iteration is completed by its own circuit, so there is no need for time division multiplexing
of the common circuit. As a result, each iteration of the input and output channel loops is
executed in parallel, and all iterations are completed in one cycle, resulting in an increase
in computational speed.

5. Results

In this section, we first show the resource consumption of FPGA. Then, we show the
model training process and results, and then, in order to verify the performance of our
algorithm, we present the inference results on CPU and FPGA, respectively.

5.1. Resource Consumption

We present the overall resource consumption of the system and the resource consump-
tion of convolutional operations that occupy the maximum computation in the system
(as a percentage of total resources) in Table 1. Due to the limited FPGA resources of the
AXU2CGB platform, our YOLOv4-tiny network almost exhausts the DSP units and con-
sumes a substantial amount of LUT units. The importance of convolutional operations
to the entire system can be seen from the convolutional consumption, which also sug-

Sensors 2023, 23, 3918 11 of 17

gests that optimizing the convolution module can greatly enhance the performance of the
entire system.

Table 1. Resource consumption of FPGA.

Resource LUT (47,232) FF (94,464) BRAM (150) DSP (240) f/MHz

System
consumption

41,369
(87.6%)

47,111
(49.9%) 96 (64.0%) 223 (92.9%) 100

Convolution
consumption

23,361
(49.5%)

21,878
(23.2%) 92 (61.3%) 199 (82.9%) 100

5.2. Model Training and Results

In training the target detection model, we use 505 images for training the network,
49 images for evaluation during the training process, and 50 images for testing the general-
ization effect of the model. Because the dataset is small, 50 images from the validation set
are combined into the training set. The maximum learning rate is set at 0.001, the minimum
learning rate is set at 0.0001, and the total number of epochs is set at 300. During the
training process, the algorithm generates various metrics, such as loss and mAP, which are
collected at the end of each training cycle. Typically, a lower loss value and higher mAP
indicate better predictive performance of the model. The loss and mAP with the number of
epochs are shown in Figure 7.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 17

5.1. Resource Consumption
We present the overall resource consumption of the system and the resource con-

sumption of convolutional operations that occupy the maximum computation in the sys-
tem (as a percentage of total resources) in Table 1. Due to the limited FPGA resources of
the AXU2CGB platform, our YOLOv4-tiny network almost exhausts the DSP units and
consumes a substantial amount of LUT units. The importance of convolutional operations
to the entire system can be seen from the convolutional consumption, which also suggests
that optimizing the convolution module can greatly enhance the performance of the entire
system.

Table 1. Resource consumption of FPGA.

Resource LUT (47,232) FF (94,464) BRAM (150) DSP (240) 𝒇/MHz
System consumption 41,369 (87.6%) 47,111 (49.9%) 96 (64.0%) 223 (92.9%) 100

Convolution consumption 23,361 (49.5%) 21,878 (23.2%) 92 (61.3%) 199 (82.9%) 100

5.2. Model Training and Results
In training the target detection model, we use 505 images for training the network,

49 images for evaluation during the training process, and 50 images for testing the
generalization effect of the model. Because the dataset is small, 50 images from the
validation set are combined into the training set. The maximum learning rate is set at
0.001, the minimum learning rate is set at 0.0001, and the total number of epochs is set at
300. During the training process, the algorithm generates various metrics, such as loss and 𝑚𝐴𝑃, which are collected at the end of each training cycle. Typically, a lower loss value
and higher 𝑚𝐴𝑃 indicate better predictive performance of the model. The loss and 𝑚𝐴𝑃
with the number of epochs are shown in Figure 7.

Figure 7. (a) Training Epoch-Loss diagram. (b) Training Epoch-mAP diagram.

It can be seen from Figure 7a that the loss value of training decreases rapidly in the
first 10 epochs, falling below 0.1 in the 25th epoch, and that the decreasing trend tends to
be stable, and the final loss drops to about 0.023. In Figure 7b, the 𝑚𝐴𝑃 increases rapidly
in the first 60 epochs and continues to increase slowly thereafter, reaching a maximum of
approximately 0.92. Therefore, it can be seen that the operation achieves a good training
effect.

5.3. Inference Results
We infer SOP8, SOP16, and SOP20 chips separately and compare the results obtained

between the CPU and FPGA platforms, as shown in Figure 8. The blue recognition box

Figure 7. (a) Training Epoch-Loss diagram. (b) Training Epoch-mAP diagram.

It can be seen from Figure 7a that the loss value of training decreases rapidly in the
first 10 epochs, falling below 0.1 in the 25th epoch, and that the decreasing trend tends
to be stable, and the final loss drops to about 0.023. In Figure 7b, the mAP increases
rapidly in the first 60 epochs and continues to increase slowly thereafter, reaching a maxi-
mum of approximately 0.92. Therefore, it can be seen that the operation achieves a good
training effect.

5.3. Inference Results

We infer SOP8, SOP16, and SOP20 chips separately and compare the results obtained
between the CPU and FPGA platforms, as shown in Figure 8. The blue recognition box
represents the CPU inference result, the red recognition box represents the FPGA inference
result, and the recognition box above displays the detected object type and confidence.

Sensors 2023, 23, 3918 12 of 17

Sensors 2023, 23, x FOR PEER REVIEW 12 of 17

represents the CPU inference result, the red recognition box represents the FPGA infer-
ence result, and the recognition box above displays the detected object type and confi-
dence.

Figure 8. Inference results. (a) The result of the CPU inferring SOP16 chip. (b) The result of the CPU
inferring SOP20 chip. (c) The result of the CPU inferring multiple SOP8 chips. (d) The result of the
FPGA inferring SOP16 chip. (e) The result of the FPGA inferring SOP20 chip. (f) The result of the
FPGA inferring multiple SOP8 chips.

From Figure 8, we can see that the precision is relatively high. In comparison, the
precision of FPGA inference is slightly lower than that of the CPU, and the recognition
accuracy of SOP20 chips decreases due to the increase in the number of pins and the de-
crease in chip size. Additionally, our system has the ability to simultaneously detect mul-
tiple chips, as shown in Figure 8c,f. Due to the presence of multiple missing pins in the
field of view, especially when a chip has multiple consecutively missing pins, the detec-
tion difficulty is high. Therefore, there are a few missing pins that are not detected in Fig-
ure 8c,f, which reduces the overall precision. However, considering the current industrial
scenario, a chip will be treated as defective as long as there is a missing pin. Thus, if we
do not care about the number of missing pins, just from the ability to distinguish between
normal and defective chips, we achieve a recognition rate of 100% and can meet the re-
quirements of general industrial deployments.

After testing was performed on the dataset, we obtained the following results: On the
CPU platform, the detection time for each photo was 1.751 s, with a power consumption
of 15.25 W and a precision of 90.76%. On the FPGA platform, the detection time for each
photo was 0.468 s, with a power consumption of 3.52 W and a precision of 89.33%.

6. Comparison and Discussion
In this section, we compare our approach for detecting missing pin chips with other

existing methods, highlighting their respective merits and downsides. We then explore
the detection performance on both CPU and FPGA platforms and compare and discuss
the detection time, precision, and power consumption of deploying neural networks on
other platforms. Finally, we list some limitations and possible areas for development.

Figure 8. Inference results. (a) The result of the CPU inferring SOP16 chip. (b) The result of the CPU
inferring SOP20 chip. (c) The result of the CPU inferring multiple SOP8 chips. (d) The result of the
FPGA inferring SOP16 chip. (e) The result of the FPGA inferring SOP20 chip. (f) The result of the
FPGA inferring multiple SOP8 chips.

From Figure 8, we can see that the precision is relatively high. In comparison, the
precision of FPGA inference is slightly lower than that of the CPU, and the recognition
accuracy of SOP20 chips decreases due to the increase in the number of pins and the
decrease in chip size. Additionally, our system has the ability to simultaneously detect
multiple chips, as shown in Figure 8c,f. Due to the presence of multiple missing pins in the
field of view, especially when a chip has multiple consecutively missing pins, the detection
difficulty is high. Therefore, there are a few missing pins that are not detected in Figure 8c,f,
which reduces the overall precision. However, considering the current industrial scenario,
a chip will be treated as defective as long as there is a missing pin. Thus, if we do not care
about the number of missing pins, just from the ability to distinguish between normal and
defective chips, we achieve a recognition rate of 100% and can meet the requirements of
general industrial deployments.

After testing was performed on the dataset, we obtained the following results: On the
CPU platform, the detection time for each photo was 1.751 s, with a power consumption
of 15.25 W and a precision of 90.76%. On the FPGA platform, the detection time for each
photo was 0.468 s, with a power consumption of 3.52 W and a precision of 89.33%.

6. Comparison and Discussion

In this section, we compare our approach for detecting missing pin chips with other
existing methods, highlighting their respective merits and downsides. We then explore the
detection performance on both CPU and FPGA platforms and compare and discuss the

Sensors 2023, 23, 3918 13 of 17

detection time, precision, and power consumption of deploying neural networks on other
platforms. Finally, we list some limitations and possible areas for development.

6.1. Comparison with Other Detection Solutions

To evaluate the effectiveness of our detection approach, we compared it to three other
solutions commonly used in the industry:

Solution [7] utilizes machine vision to detect geometric differences in chip dimensions.
Compared to our approach, this solution obtains higher precision and faster detection
speeds, and it is also able to detect pin bending and bonding defects. However, its disad-
vantage lies in the complexity of the entire detection device, which makes it unsuitable for
edge computing requirements due to its size and power consumption.

Solution [8] uses machine vision to screen defective chips through template matching.
Compared to our approach, this solution provides a more intuitive human-computer
interaction interface and achieves higher precision. However, its drawbacks include the
use of a high-power computer as a terminal and the need for manual addition of each chip,
making it unsuitable for industrial automation scenarios.

Solution [9] employs a binocular vision measurement system to detect pin defects by
extracting corner features of chip pins. Compared to our approach, this solution provides
a more comprehensive measurement system and can adapt to more complex lighting
environments. However, its drawbacks include the use of a high-power computer as a
terminal and the need to set different algorithms for each type of chip, making it more
difficult to transplant.

Moreover, these three approaches cannot simultaneously detect multiple chips, nor do
they consider the case of continuously missing pins on a chip. In comparison, our detection
solution can cope with a wider range of complex industrial environments.

6.2. Comparison with Other Platforms Deploying Neural Networks

To further validate the performance of our algorithm on the FPGA platform, we also
compare it with an unquantified CPU platform, as well as with the Zedboard [37,38], a
platform running on a system on programmable chip (SOPC) consisting of ARM and FPGA,
and the Stratix V GSD8 [39], a platform consisting solely of FPGA. The comparison is
conducted in terms of inference time, mAP, power, and so on, and the results are presented
in Table 2. These metrics are crucial for industrial applications as fast, low-power, and
accurate detection of objects can impact efficiency and productivity.

Table 2. Comparison of the different solutions.

Parameters CPU Paper [37] Paper [38] Paper [39] This Paper

Experimental Platform Core i5-10210U Zedboard Zedboard Stratix V GSD8 AXU2CGB
Quantization Float-32 Fixed-16 Fixed-16 Fixed-16 Fixed-16

Frequency/Hz 1.6 G 100 M 100 M 120 M 100 M
Inference time per img/s 1.751 18.025 0.532 0.651 0.468

Mean average precision (mAP) 90.76% 69% 30.9% 87.48% 89.33%
Power/W 15.25 2.384 3.36 25.40 3.52

From Table 2, it can be observed that the use of fixed-point 16-bit quantization leads
to some precision loss compared to the original 32-bit floating-point data on the CPU.
Nevertheless, the mAP of our accelerated IP decreases only by 1.43% compared to the
original floating-point 32-bit model. Moreover, our system’s inference time, which is the
average time taken to perform inference on each image in the test set, reduces by 73.27%
compared to the unquantified CPU platform, and the power consumption is only 23.08%
of the CPU.

Compared to paper [37], although our power consumption is higher, the detection
time decreases significantly, and the mAP is also higher. Similarly, compared to paper [38],
our power consumption is slightly higher, but the detection time is shorter, and the mAP

Sensors 2023, 23, 3918 14 of 17

increases significantly. Furthermore, compared to paper [39], our power consumption
decreases significantly, the detection time is shorter, and the mAP is higher. Overall, our
approach achieves a more balanced optimization in terms of detection precision, detection
time, and power consumption, making it more suitable for industrial applications.

6.3. Limitations and Potential Applications

After comparison, we identify certain limitations in the application of our system:

• As neural networks grow more complex, richer FPGA resources are needed. To deploy
a high-performing neural network on a resource-constrained FPGA, it is necessary
to implement optimizations such as network compression and pruning to reduce the
computational load and number of parameters.

• FPGA is not suitable for floating-point calculations, and quantization inevitably leads
to reduced precision. A more fine-grained quantization scheme needs to be chosen to
mitigate the impact of quantization on precision.

• This method primarily aims to detect chips in SOP packages. Since different chip
packages may have distinct characteristics and specifications, the dataset requires
extensive modification and augmentation, and the model must undergo rigorous
training to ensure effective detection performance.

Based on the advantages and limitations of our system, we suggest several possible
uses and influences on the industry:

• The system can be combined with advanced sensors, Internet of Things (IoT) technol-
ogy, and human-machine interaction technology to expand its application prospects.

• The target detection technology can be applied to high-precision, low-power
consumption-demanding fields such as intelligent security, traffic safety, and au-
tonomous driving, significantly improving production efficiency and reducing costs.

• This method provides an effective solution for deploying neural networks on FPGA
and offers new ideas for the application of FPGA technology in the electronics industry.

We will continue to explore these directions in future research to further improve the
performance and applicability of the system.

7. Conclusions

This paper presents an FPGA-based missing pin chip detection system using the
YOLOv4-tiny network that achieves fast and low-power operation through the implemen-
tation of various strategies, which are discussed in detail below:

1. To improve the precision and FPGA computational performance, we preprocess image
and weight files before feeding them into the YOLOv4-tiny network, using image
enhancement, fixed-point 16-bit quantization, and the fusion of the BN layer and
convolution layer.

2. For the FPGA accelerator architecture, we design a two-layer ping-pong operation for
uninterrupted read and write of off-chip memory DDR data. A loop tiling strategy
is first used to cache feature blocks, and then the input and output channels are
multiplexed in parallel to accelerate the convolution.

3. The final result shows a precision of 89.33% on the AXU2CEG development board,
which takes 0.468 s to process a single photo, consuming 3.52 W. Compared to a CPU
platform, the time spent is reduced by 73.27%, and the power consumption is reduced
to 23.08%. Moreover, the system can support multi-object detection scenarios, which
greatly improves the detection efficiency.

Overall, this system addresses the gap in the field of efficient and low-power multi-
object detection for detecting missing pin chips and achieves a more balanced boost in
performance compared to other solutions, which meets the expected target.

Sensors 2023, 23, 3918 15 of 17

Author Contributions: Conceptualization, S.C. and W.L.; data curation, S.C. and J.Y.; methodology,
S.C., W.L., J.Y. and Y.M.; investigation, S.C. and J.Y.; resources, W.L. and S.C.; visualization, S.C., J.Y.
and Y.M.; supervision, S.C., W.L., J.Y. and Y.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China, grant
number 41574136, and Key Research and Development Project of the Sichuan Provincial Science and
Technology Plan, grant number 2020YFS0472.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
mAP mean average precision
CNN convolutional neural network
FPN feature pyramid network
BN batch normalization
AP average precision
TP ture positives
FP false positives
FN false negatives
BRAM block RAM
MIO multiuse I/O
PEs processing elements
TDM time division multiplexing
IoT internet of things

References
1. Fan, T.; Huang, D.; Tian, J.; Yu, S.; Wu, Z.; Dong, N. Research on height detection system based on machine vision element. Opt.

Technol. 2020, 46, 102–109.
2. Chen, J.; Zhang, Z.; Wu, F. A data-driven method for enhancing the image-based automatic inspection of IC wire bonding defects.

Int. J. Prod. Res. 2021, 59, 4779–4793. [CrossRef]
3. Song, J.; Kim, Y.; Park, T. SMT defect classification by feature extraction region optimization and machine learning. Int. J. Adv.

Manuf. Technol. 2019, 101, 1303–1313. [CrossRef]
4. Liu, C.; Chang, L. Characterization of surface micro-roughness by off-specular measurements of polarized optical scattering.

Meas. Sci. Rev. 2019, 19, 257–263. [CrossRef]
5. Jin, W.; Lin, W.; Yang, X.; Gao, H. Reference-free path-walking method for ball grid array inspection in surface mounting machines.

IEEE Trans. Ind. Electron. 2017, 64, 6310–6318. [CrossRef]
6. Liu, G.; Tong, H.; Li, Y.; Zhong, H.; Tan, Q. A profile shaping and surface finishing process of micro electrochemical machining for

microstructures on microfluidic chip molds. Int. J. Adv. Manuf. Technol. 2021, 115, 1621–1636. [CrossRef]
7. Liu, W.; Yang, X.; Yang, X.; Gao, H. A novel industrial chip parameters identification method based on cascaded region

segmentation for surface-mount equipment. IEEE Trans. Ind. Electron. 2021, 69, 5247–5256. [CrossRef]
8. Qiao, X.; Chen, T.; Zhuang, W.; Wu, J. A Chip Defect Detection System Based on Machine Vision. In Proceedings of the IncoME-

VI and TEPEN 2021: Performance Engineering and Maintenance Engineering; Springer: Berlin/Heidelberg, Germany, 2022;
pp. 555–568.

9. Lu, S.; Zhang, J.; Hao, F.; Jiao, L. Automatic Detection of Chip Pin Defect in Semiconductor Assembly Using Vision Measurement.
Meas. Sci. Rev. 2022, 22, 231–240. [CrossRef]

10. Jiang, L.; Wang, Y.; Tang, Z.; Miao, Y.; Chen, S. Casting defect detection in X-ray images using convolutional neural networks and
attention-guided data augmentation. Measurement 2021, 170, 108736. [CrossRef]

11. Gao, M.; Song, P.; Wang, F.; Liu, J.; Mandelis, A.; Qi, D. A novel deep convolutional neural network based on ResNet-18 and
transfer learning for detection of wood knot defects. J. Sensors 2021, 2021, 4428964. [CrossRef]

12. Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect inspection technologies for additive manufacturing. Int. J.
Extreme. Manuf. 2021, 3, 022002. [CrossRef]

https://doi.org/10.1080/00207543.2020.1821928
https://doi.org/10.1007/s00170-018-3022-6
https://doi.org/10.2478/msr-2019-0033
https://doi.org/10.1109/TIE.2017.2682008
https://doi.org/10.1007/s00170-021-07264-3
https://doi.org/10.1109/TIE.2021.3082072
https://doi.org/10.2478/msr-2022-0029
https://doi.org/10.1016/j.measurement.2020.108736
https://doi.org/10.1155/2021/4428964
https://doi.org/10.1088/2631-7990/abe0d0

Sensors 2023, 23, 3918 16 of 17

13. Wang, K.; Fan-Jiang, H.; Lee, Y. A multiple-stage defect detection model by convolutional neural network. Comput. Ind. Eng.
2022, 168, 108096. [CrossRef]

14. Zhao, L.; Li, F.; Zhang, Y.; Xu, X.; Xiao, H.; Feng, Y. A deep-learning-based 3D defect quantitative inspection system in CC
products surface. Sensors 2020, 20, 980. [CrossRef] [PubMed]

15. Ding, R.; Dai, L.; Li, G.; Liu, H. TDD—Net: A tiny defect detection network for printed circuit boards. CAAI Trans. Intell.
Technology 2019, 4, 110–116. [CrossRef]

16. Yang, X.; Dong, F.; Liang, F.; Zhang, G. Chip defect detection based on deep learning method. In Proceedings of the 2021 IEEE
International Conference on Power Electronics, Computer Applications (ICPECA, 2021), Shenyang, China, 22–24 January 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 215–219.

17. Ghosh, P.; Bhattacharya, A.; Forte, D.; Chakraborty, R.S. Automated defective pin detection for recycled microelectronics
identification. J. Hardw. Syst. Secur. 2019, 3, 250–260. [CrossRef]

18. Hou, D.; Liu, T.; Pan, Y.; Hou, J. AI on edge device for laser chip defect detection. In Proceedings of the 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 7–9 January 2019; IEEE: Piscataway,
NJ, USA, 2019; pp. 0247–0251.

19. Howell, L.; Anagnostidis, V.; Gielen, F. Multi—Object detector yolov4—Tiny enables high—Throughput combinatorial and
spatially—Resolved sorting of cells in microdroplets. Adv. Mater. Technol. 2022, 7, 2101053. [CrossRef]

20. Huang, H.; Liu, Z.; Chen, T.; Hu, X.; Zhang, Q.; Xiong, X. Design space exploration for yolo neural network accelerator. Electronics
2020, 9, 1921. [CrossRef]

21. Kim, T.; Park, S.; Cho, Y. Study on the Implementation of a Simple and Effective Memory System for an AI Chip. Electronics 2021,
10, 1399. [CrossRef]

22. Zhang, N.; Wei, X.; Chen, H.; Liu, W. FPGA implementation for CNN-based optical remote sensing object detection. Electronics
2021, 10, 282. [CrossRef]

23. Yu, Y.; Wu, C.; Zhao, T.; Wang, K.; He, L. OPU: An FPGA-based overlay processor for convolutional neural networks. IEEE Trans.
VLSI Syst. 2019, 28, 35–47. [CrossRef]

24. Luo, Y.; Chen, Y. FPGA-based acceleration on additive manufacturing defects inspection. Sensors 2021, 21, 2123. [CrossRef]
25. Adibhatla, V.A.; Chih, H.; Hsu, C.; Cheng, J.; Abbod, M.F.; Shieh, J. Defect detection in printed circuit boards using you-only-look-

once convolutional neural networks. Electronics 2020, 9, 1547. [CrossRef]
26. Adibhatla, V.A.; Chih, H.; Hsu, C.; Cheng, J.; Abbod, M.F.; Shieh, J. Applying deep learning to defect detection in printed circuit

boards via a newest model of you-only-look-once. Math. Biosci. Eng. 2021, 18, 4411–4428. [CrossRef] [PubMed]
27. Bing, W.; Wenjing, L.; Huan, T. Improved Yolo V3 algorithm and its application in helmet detection. Comput. Eng. Appl. 2020,

56, 33–40.
28. Zhu, J.; Wang, J.L.; Wang, B. Lightweight mask detection algorithm based on improved YOLOv4-tiny. Chin. J. Liq. Cryst. Disp.

2021, 36, 1525–1534. [CrossRef]
29. Young, S.I.; Zhe, W.; Taubman, D.; Girod, B. Transform quantization for cnn compression. IEEE Trans. Pattern Anal. Mach. Intell.

2021, 44, 5700–5714. [CrossRef]
30. Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard, A.; Adam, H.; Kalenichenko, D. Quantization and training of neural

networks for efficient integer-arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2704–2713.

31. Nakata, K.; Miyashita, D.; Deguchi, J.; Fujimoto, R. Adaptive quantization method for CNN with computational-complexity-
aware regularization. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu,
Republic of Korea, 22–28 May 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–5.

32. Genaev, M.A.; Komyshev, E.G.; Shishkina, O.D.; Adonyeva, N.V.; Karpova, E.K.; Gruntenko, N.E.; Zakharenko, L.P.; Koval,
V.S.; Afonnikov, D.A. Classification of fruit flies by gender in images using smartphones and the YOLOv4-tiny neural network.
Mathematics 2022, 10, 295. [CrossRef]

33. Ling, Y.; Chin, H.; Wu, H.; Tsay, R. Designing a compact convolutional neural network processor on embedded fpgas. In
Proceedings of the 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United Arab
Emirates, 12–16 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–7.

34. Gerhards, J.; Held, D.; Schneider, T.; Hirmer, P. Burst-a dynamic bus routing system. In Proceedings of the 2021 IEEE International
Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops), Kassel,
Germany, 22–26 March 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 395–397.

35. Dwivedi, P.; Mishra, N.; Singh-Rajput, A. Assertion & Functional Coverage Driven Verification of AMBA Advance Peripheral
Bus Protocol Using System Verilog. In Proceedings of the 2021 International Conference on Advances in Electrical, Computing,
Communication and Sustainable Technologies (ICAECT), Bhilai, India, 19–20 February 2021; IEEE: Piscataway, NJ, USA, 2021;
pp. 1–6.

36. Qiu, J.; Wang, J.; Yao, S.; Guo, K.; Li, B.; Zhou, E.; Yu, J.; Tang, T.; Xu, N.; Song, S. Going deeper with embedded fpga platform for
convolutional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 26–35.

https://doi.org/10.1016/j.cie.2022.108096
https://doi.org/10.3390/s20040980
https://www.ncbi.nlm.nih.gov/pubmed/32059442
https://doi.org/10.1049/trit.2019.0019
https://doi.org/10.1007/s41635-019-00069-7
https://doi.org/10.1002/admt.202101053
https://doi.org/10.3390/electronics9111921
https://doi.org/10.3390/electronics10121399
https://doi.org/10.3390/electronics10030282
https://doi.org/10.1109/TVLSI.2019.2939726
https://doi.org/10.3390/s21062123
https://doi.org/10.3390/electronics9091547
https://doi.org/10.3934/mbe.2021223
https://www.ncbi.nlm.nih.gov/pubmed/34198445
https://doi.org/10.37188/CJLCD.2021-0059
https://doi.org/10.1109/TPAMI.2021.3084839
https://doi.org/10.3390/math10030295

Sensors 2023, 23, 3918 17 of 17

37. Li, P.; Che, C. Mapping YOLOv4-Tiny on FPGA-Based DNN Accelerator by Using Dynamic Fixed-Point Method. In Proceedings
of the 2021 12th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP), Xi’an, China,
10–12 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 125–129.

38. Yu, Z.; Bouganis, C. A parameterisable FPGA-tailored architecture for YOLOv3-tiny. In Applied Reconfigurable Computing.
Architectures, Tools, and Applications, Proceedings of the 16th International Symposium, ARC 2020, Toledo, Spain, 1–3 April 2020;
Springer: Berlin/Heidelberg, Germany, 2020; pp. 330–344.

39. Suda, N.; Chandra, V.; Dasika, G.; Mohanty, A.; Ma, Y.; Vrudhula, S.; Seo, J.; Cao, Y. Throughput-optimized OpenCL-based FPGA
accelerator for large-scale convolutional neural networks. In Proceedings of the 2016 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016; pp. 16–25.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Experimental Setup
	Experimental Platform
	Development Tools

	Theoretical Analysis
	YOLOv4-Tiny Network
	Fixed-Point 16-Bit Quantization
	Fusion of the Batch Normalization (BN) Layer and Convolution Layer
	Mean Average Precision (mAP) Derivation

	Methods
	System Model
	System Workflow
	System Hardware Architecture

	Dataset Enhancement
	FPGA Deployment
	Overall Design of the FPGA Accelerator
	Detail Design of Convolution Kernel

	Results
	Resource Consumption
	Model Training and Results
	Inference Results

	Comparison and Discussion
	Comparison with Other Detection Solutions
	Comparison with Other Platforms Deploying Neural Networks
	Limitations and Potential Applications

	Conclusions
	References

