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Abstract: This study presents a comprehensive approach to mapping local magnetic field anomalies
with robustness to magnetic noise from an unmanned aerial vehicle (UAV). The UAV collects magnetic
field measurements, which are used to generate a local magnetic field map through Gaussian process
regression (GPR). The research identifies two categories of magnetic noise originating from the UAV’s
electronics, adversely affecting map precision. First, this paper delineates a zero-mean noise arising
from high-frequency motor commands issued by the UAV’s flight controller. To mitigate this noise,
the study proposes adjusting a specific gain in the vehicle’s PID controller. Next, our research reveals
that the UAV generates a time-varying magnetic bias that fluctuates throughout experimental trials.
To address this issue, a novel compromise mapping technique is introduced, enabling the map to learn
these time-varying biases with data collected from multiple flights. The compromise map circumvents
excessive computational demands without sacrificing mapping accuracy by constraining the number
of prediction points used for regression. A comparative analysis of the magnetic field maps’ accuracy
and the spatial density of observations employed in map construction is then conducted. This
examination serves as a guideline for best practices when designing trajectories for local magnetic
field mapping. Furthermore, the study presents a novel consistency metric intended to determine
whether predictions from a GPR magnetic field map should be retained or discarded during state
estimation. Empirical evidence from over 120 flight tests substantiates the efficacy of the proposed
methodologies. The data are made publicly accessible to facilitate future research endeavors.

Keywords: Gaussian process regression; magnetic field mapping; unmanned aerial vehicle (UAV);
fingerprinting; indoor environments; electromagnetic noise reduction; robust mapping

1. Introduction

The materials used to make buildings create anomalies in the magnetic field that are not
modeled by global magnetic field maps (e.g., the World Magnetic Model [1]). Applications
that use magnetic fields for indoor navigation must either reject [2] or map [3] these local
magnetic anomalies. Mapping the local field requires gathering observations throughout
the working volume which can be time consuming if performed by hand [4]. Thus, many
researchers instead use robots to spatially sample the local magnetic field. However,
the electronics on robots create magnetic noise that reduces map accuracy. Some avoid
this electromagnetic noise by separating the magnetometer from other electronics [5,6]
or characterizing the vehicle’s noise [7]. In this work, we present new tools to create
indoor magnetic field maps using an unmanned aerial vehicle (UAV) while mitigating
UAV-induced magnetic noise.

This study, outlined in Figure 1, presents a comprehensive approach to mapping
local magnetic field anomalies with robustness to magnetic noise from an unmanned
aerial vehicle. The overarching goal of the work is to augment indoor sensor suites with
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magnetic field data by demonstrating how to create and validate magnetic field maps of
indoor spaces. The value of indoor magnetic field maps is demonstrated in works that use
them to estimate the position of pedestrians and robotic vehicles inside buildings and to
estimate the attitude of a drone indoors. As shown by Ref. [4], gathering observations for
a magnetic field map by hand is time consuming and does not scale favorably for large
spaces. As such, we propose using an unmanned aerial vehicle to gather observations in the
target volume of the workspace, using Gaussian Process Regression (GPR) to interpolate
between these observations, then finally leveraging the map in future experiments within
the mapped volume.

(3) Utilization of GPR Map

Attitude 
Estimation

Position
Localization

Reduce Noise
Controller Gains

Reduce Variation
Distance Magnetometer 

from Electronics

Incorporate Variations
Compromise Map

Identify Discrepancies
Consistency Test

(2) Reduce, Incorporate, 
and Identify Variations

Magnetic Field Observations

Training and 
Validation of GPR 

(Gaussian Process Regression)

(1) Create and Validate 
GPR Map

Magnetic Noise From Vehicle

Main Conclusions
• Vehicle controller’s motor commands can add magnetic noise
• The quadrotor platform injects changing biases in measured magnetic field
• Our “compromise map” learns magnetic variations without increasing runtime
• Our “consistency test” compares agreement between map and new flight data

Iterate to Improve Map Accuracy

Figure 1. Methods to reduce, incorporate, and identify vehicle-induced magnetic field noise. The
proposed interventions can be progressively added until the user’s map is sufficiently accurate for
the application.

Unlike humans and wheeled robots, UAVs can easily gather observations of the
magnetic field at various altitudes to create three-dimensional magnetic field maps. These
maps can then be used to estimate position [8] and attitude [9] indoors. However, UAVs add
unwanted magnetic noise, reducing map accuracy and limiting pose estimation accuracy.
This paper, outlined in Figure 1, investigates the complexity of using a UAV to create and
validate indoor magnetic field maps. Using data from over 100 flights, we analyze how
UAV motor commands, distance from electronics, diversity of training points, and spatial
density of observations affect the accuracy of magnetic field maps. This work aims to
enable fast, accurate, and noise-resilient magnetic field mapping to improve indoor pose
estimation techniques.

The contributions of this work are as follows.

1. Zero-mean noise from the motors and electronic speed controllers (ESCs) can be
reduced by removing high-frequency commands from the flight controller.

2. A time-varying magnetic bias caused by the UAV’s electronics is discovered. Although
the root cause of this bias is still unknown, techniques are presented to reduce its
effect on the resultant map.

3. A novel "compromise map" is introduced that limits the number of observations
needed to estimate the magnetic field without sacrificing accuracy.

4. A new consistency test is introduced to assess the credibility of predictions from a mag-
netic field map. This metric can indicate when one should rely on their magnetometer
readings and when another sensing modality should be used instead.
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The remainder of this paper is structured as follows. Section 2 presents related work,
and Section 3 introduces the mathematical notation for magnetic field maps. Section 4
introduces the UAV and testing methodology for this work. Finally, Section 5 presents
results, while conclusions and future work appear in Section 6.

2. Related Work

A magnetic field map has an input dimension p and output dimension m, which we
will denote as a p→ m map. The choice of input dimension p often depends on the agent
making the map. For example, p = 2 for wheeled robots [10,11] and most pedestrian
localization [12] while p = 3 for UAVs [13,14], multi-floor pedestrian localization [3], or
especially outfitted ground robots [4,15]. The output m is set by how the map will be used.
Some use the orientation [16] or magnitude [17] of the magnetic field vector with m = 1
while others use all three vector components [18–20] of the magnetic field with m = 3.

Many studies use indoor magnetic field maps to improve pedestrian localization.
They often use foot-mounted [21] or calf-mounted sensor suites [22] that can leverage
zero-velocity updates. Some papers leverage the ubiquity of smartphones [23] and even
consider constructing maps by crowdsourcing magnetic field measurements from many
users [24]. Most magnetic field maps for pedestrian localization are 2→ m (or “2.5→ m”
maps [22]), which assume a constant (or near-constant) altitude. Kok et al. present a key
exception with a pedestrian-focused magnetic field SLAM (simultaneous localization and
mapping) solution tested in a stairwell [3].

Ground vehicles are another common platform for indoor magnetic field
mapping [20,25]. These vehicles benefit from wheel encoder odometry [18], but cannot
typically create p = 3 maps since they are confined to the ground. However, some
researchers outfit their wheeled robots with a vertical actuator [4] or vertically spaced
magnetometers [15] to make 3→ m maps. The latter is a recent work by Hanley et al. that
shows indoor magnetic fields are sensitive to altitude changes and emphasizes issues with
2 → m planar magnetic field maps [15]. In this paper, we use a UAV to quickly gather
observations in p = 3 spatial dimensions to make 3→ m magnetic field maps. However,
the UAV adds electromagnetic noise that must be mitigated.

UAVs are more frequently used for outdoor magnetic field surveys than for indoor
mapping. A recent review by Zhang et al. [26] compiled papers on outdoor magnetic
field surveillance and suppression of UAV-induced magnetic noise. For example, ref. [27]
mounted a Geometrics G823A cesium magnetometer on a gas-powered helicopter and
measured 800 nT of magnetic variation caused by components on the vehicle. This reduced
to 80 nT and 40 nT when the magnetometer was attached to a boom of 0.5 m and 1.2 m,
respectively. Similarly, Koyama et al. suspend their magnetometer at the end of a 4.5 m-long
cable in [28]. The researchers in [27] considered flight vehicles that cost $2 K–$45 K USD
and weigh 7 lbs–51 lbs. Thus, the vehicle size and project budget of outdoor magnetic
surveys enable noise-mitigation techniques that are not applicable to the smaller, cheaper
UAVs used for indoor mapping.

Some papers use UAVs to leverage indoor magnetic fields without making maps.
Brzozowski et al. described methods to support the use of indoor magnetic fields on
UAVs but only focus on sampling and visualization techniques [13,14]. The authors in [29]
performed 3D position localization of a UAV near power lines but did not attempt to map
the magnetic field for their application. Li et al. estimated the 6DOF pose of a UAV indoors
using magnetometers (among other sensors), but only used the magnetometer for heading
estimates and achieved this without a magnetic field map [30]. Zahran et al. leveraged hall
effect sensors in a clever way to estimate the velocity of a quadrotor and improve the dead
reckoning of such flight vehicles (again, without magnetic field maps) [31].

Alternatively, some use UAVs to map signals, such as ultra-wideband (UWB) radio [32]
and visual light communication (VLC) [33]. However, such papers need not address vehicle-
based interference, since UAVs do not add noise to UWB or visual light measurements.
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This paper focuses on accurate indoor magnetic field mapping in the presence of
UAV-induced noise. UAVs can gather magnetic field observations faster than by hand [4].
Additionally, they can easily obtain observations at various altitudes while ground vehicles
require special modifications to do the same [4,15]. The tradeoff is that UAVs add unwanted
noise to magnetic field measurements. Similar papers on UAV noise mitigation for indoor
magnetic fields use a 40 cm boom to reduce noise and then carefully characterize any
remaining noise sources [6,7]. Here, we analyze measured magnetic variation against
separation distances of 2cm–8cm and show that adjustments to motor commands can
reduce UAV-induced magnetic noise.

The map then incorporates any remaining noise using observations from several flight
tests. However, increasing the number of observations used to predict the ambient field
increases computation time. Solin et al. leverage Maxwell’s equations for the Gaussian
process priors of their 2→ 3 map [5]. Their model is more accurate and computationally
efficient than three independent Gaussian processes and gives real-time predictions using
thousands of observations. In this paper, we use three independent Gaussian processes to
simplify the modeling and focus on UAV noise mitigation. To address the computational
cost of having a larger observation set, we propose a compromise mapping technique which
effectively limits the number of points used to predict the ambient magnetic field. The
proposed compromise map method proved effective for our workspace, but more clever
modeling techniques (like in [5]) may be needed to accurately map larger volumes. Addi-
tionally, we analyze how the spatial density of observations affects the compromise map’s
accuracy with a quantitative version of the analysis performed in [4].

3. Mathematical Preliminaries and Methodology

This section introduces Gaussian Process Regression and its use in interpolating a set
of magnetic field observations in a workspace. Special notation is used to distinguish a
set of n2 observations used to train hyperparameters and a separate set of n1 observations
used to perform inference. Additionally, we introduce performance metrics used later in
the analysis of the magnetic field maps.

We first introduce some notation. A single measurement of the magnetic field at
an unspecified location is ỹ ∈ R3 with the x, y, and z components of this measurement
denoted as ỹx, ỹy, ỹz ∈ R, respectively. In general, a subscript of x, y, or z denotes a
respective component of the magnetic field while an overhead tilde ˜ denotes a measured
value. Ỹn ∈ R3×n is a set of n magnetic field measurements while Ỹn

z ∈ Rn denotes the
z component of each magnetic field measurement in the set. Similarly, Xn ∈ R3×n is a
collection of n spatial locations in the workspace. The predicted or estimated magnetic field
m̂ at some location r ∈ R3 is denoted as m̂(r) ∈ R3 and the x component of this prediction
is m̂x(r) ∈ R. Thus, a collection of n magnetic field estimates is M̂n(Xn) ∈ R3×n. Similarly,
M̂n is a set of predictions of the magnetic field where the location of these predictions
is arbitrary and M̂n

y ∈ Rn gives the predictions from GPy. Generally, an overhead hat
ˆ denotes a prediction/estimate, while a superscript integer n denotes the number of
measurements/predictions/locations of the respective matrix.

3.1. Gaussian Process Regression

GPR is an interpolation tool used to estimate a signal given a set of noisy measurements.
Here, we use GPR as the backbone of the magnetic field map leveraging methods from
Rasmussen et al. [34]. The goal is to have a magnetic field map of the flight workspace to
provide an estimated magnetic field vector at any location in the working volume.

Because GPR is a single output regression method, this work uses GPR to create three
separate 3→ 1 maps, each responsible for the x, y, and z components of the magnetic field.
To create the GPR-based map, we first gather n observations of the magnetic field through-
out the workspace. Observation sets give the three components of the measured magnetic
field Ỹn

x , Ỹn
y , Ỹn

z ∈ Rn at each 3D position in the design matrix Xn ∈ R3×n. Together, these
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quantities define the training sets Dx = (X, Ỹx), Dy = (X, Ỹy), and Dz = (X, Ỹz) for the x,
y, and z GPRs, respectively.

In [34], Rasmussen and Williams define a Gaussian process as a distribution over
functions written as

f (r) ∼ GP
(
0, k(r, r′)

)
(1)

where 0 is the zero-mean function, k is the covariance function (or kernel) and r, r′ ∈ R3

are 3D positions. This work uses the squared exponential covariance function

k(r, r′) = σ2
f exp

(
− 1

2l2 (r− r′)>(r− r′)
)

(2)

with σf as the signal variance and l as the length scale. A final term σn is used with
Equation (2) to model the sensor noise. Together, these three terms define the hyperparam-
eters Θ = {σf , l, σn} for this kernel. In essence, the squared exponential kernel is a measure
of similarity between two 3D locations r and r′ (scaled by the hyperparameters). It will
serve as a weighting term in the inference of the magnetic field at unobserved locations.

Recall that we use three Gaussian processes GP x, GPy, and GP z to represent the full
magnetic field anywhere in the workspace. As such, we need three sets of hyperparam-
eters (Θx, Θy, Θz), each computed using the Gaussian Processes for Machine Learning
gpml-matlab toolbox by minimizing the negative log marginal likelihood of the respective
training sets Dx, Dy, and Dz. We define hyperparameters optimized over the observations
in training set Dx as Θ∗x(Dx). (gpml-matlab was created by Carl Edward Rasmussen and
Hannes Nickisch http://www.gaussianprocess.org/gpml/code/matlab/doc/ (accessed
on 1 September 2021)).

To estimate the magnetic field at some location r∗, we need a training set D and a set
of hyperparameters Θ corresponding to a selected kernel k. A squared exponential kernel
k using optimal hyperparameters Θ∗(D) is denoted as kΘ∗(D)(r, r∗).

This is the extent of our notation, but an example is helpful. Say we want to esti-
mate the z component of the magnetic field m̂z(r∗) at some location r∗. For this, GP z
requires a kernel k to compare the target location r∗ against locations Xn1 in its training
set Dn1

z = (Xn1 , Ỹn1
z ). Additionally, its hyperparameters Θ∗(Dn2

z ) are optimized over a
separate set of observations Dn2

z = (Xn2 , Ỹn2
z ). Mathematically, we express this as

m̂z(r∗) = E[ fz|Xn1 , Ỹz, r∗]

= K
Θ∗z (Dn2

z )
(r∗, Xn1)[K

Θ∗z (Dn2
z )

(Xn1 , Xn1) + σ2
n I]−1Ỹz

(3)

where m̂z(r∗) ∈ R and matrix K(X, r∗) has scalar elements k
(

X{i}, r∗
)

with each X{i} ∈ R3

a column of X ∈ R3×n.
The verbosity in Equation (3) specifies an observation set for optimizing hyperpa-

rameters Dn2
z = (Xn2 , Ỹn2

z ) and a separate “inference set” Dn1
z = (Xn1 , Ỹn1

z ) for computing
similarity weights when predicting the magnetic field at r∗. This is important because
hyperparameter optimization, typically accomplished offline, scales with O

(
n2

3) while
inference scales with O

(
n1

2). With this formulation, the map encodes information from a
large set of observations offline, then uses a subset of these observations for inference. We
leverage this idea in Section 4.4 to create and query the magnetic field map.

3.2. Magnetometer Calibration

To calibrate the vehicle’s magnetometer, we use the model and iterative least squares
solver from [35] along with the two-step calibration procedure from [36]. The magnetometer
model from [35] is repeated here

http://www.gaussianprocess.org/gpml/code/matlab/doc/
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B̃x = θaBx + θx0 + ηx (4)

B̃y = θb(B̃y cos(θρ) + Bx sin(θρ)) + θy0 + ηy (5)

B̃z = θc(Bx sin(θλ) + By sin(θφ) cos(θλ)

+ Bz cos(θφ) cos(θλ)) + θz0 + ηz
(6)

where (B̃x, B̃y, B̃z) are measured magnetic field values, (Bx, By, Bz) are the true magnetic
field, η is sensor noise, and the parameters to solve for are bias (θx0 , θy0 , θz0), scale factor
(θa, θb, θc), and non-orthogonality terms (θρ, θλ, θφ).

Ultimately, we aim to find parameters θ = [θa, θb, θc, θx0 , θy0 , θz0 , θρ, θλ, θφ]> by mini-
mizing the following cost function via an iterative non-linear least squares solver

∆B = B2
R − B2

= B2
R − (B2

x + B2
y + B2

z)

= B2
R − g(B̃x, B̃y, B̃z, α)

(7)

where BR is the reference magnetic field strength (taken from the World Magnetic Model [1])
and g() is obtained by solving Equations (4)–(6) for (Bx, By, Bz).

The key difference in Springmann’s method [35] is to estimate the nine θ parameters
in two separate minimization steps, as Wu et al. demonstrated in [36]. We found that this
two-step approach gave more consistent results for another magnetometer (not used in this
work) on our UAV. As such, we adopted the two-step calibration technique for the primary
magnetometer as well.

We start by setting all scaling terms to 1 and non-orthogonalities to 0, leaving the bias
terms (θx0 , θy0 , θz0) in Equations (4)–(6). The first minimization computes an optimal set
of bias terms (θ∗x0

, θ∗y0
, θ∗z0

) which are used as initial conditions for the second optimization
where θ0 = [1, 1, 1, θ∗x0

, θ∗y0
, θ∗z0

, 0, 0, 0]>. The nine optimal parameters from this second
optimization are used as the calibration terms for the magnetometer.

3.3. Performance Metrics

We use the root mean squared error (RMSE) of each GPR’s prediction m̂x against the
corresponding component of the measured field ỹx across a validation set. With this, the
RMSE for GP x over some validation set Dnv

x = (Xnv , Ỹnv
x ) is defined as

RMSEx =

√
1

nv

nv

∑
i=1

(m̂{i}x − ỹ{i}x )2 (8)

where M̂nv
x is the x component of the predicted magnetic vector, m̂{i}x is the ith prediction

in M̂nv
x , and ỹ{i}x is the corresponding ith measurement in Ỹnv

x .
Although we have three GPRs, it is often convenient to summarize the accuracy of

their composite estimate as

RMSEnorm =
√

RMSEx
2 + RMSEy

2 + RMSEz
2. (9)

4. Experimental Procedure

This section introduces our unmanned aerial vehicle, testing locations, and flight
trajectories used to construct and validate the magnetic field maps.

4.1. Equipment, Facilities, and Setup

All tests were conducted at the Robot Fly Lab in the University of Michigan Ford Motor
Company Robotics Building. This indoor flight arena is equipped with eight OptiTrack
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motion capture cameras with a working volume of 4 m × 3 m × 2.25 m as shown in
Figure 2. A ground station computer connected to the OptiTrack system provides ground-
truth position and attitude estimates of the vehicle at 120 Hz. The communication setup
for the ground station, pilot transmitter, and flight vehicle is the same as that depicted in
Figure 3 of [9], but with one less BeagleBone Blue on the UAV.

Figure 2. Flight vehicle Q1 in the Robot Fly Lab within the Ford Motor Company Robotics Building
at the University of Michigan.

The motion capture pose estimate is streamed to the flight vehicle in real time but with
a communication latency of about 40 ms. For this, the vehicle’s onboard estimate of roll
and pitch is used for control while the remaining states (position and heading) are taken
from the 40 ms-delayed motion capture packets.

Time synchronization is important to properly associate each onboard magnetometer
measurement with a ground-truth pose when creating and validating the magnetic field
maps. During flights, our UAV’s BeagleBone Blue is synchronized with the ground station
laptop and ground station BeagleBone Green using a Linux tool called chrony, which
was created by the Red Hat Software company (https://chrony.tuxfamily.org/ (accessed
on 1 February 2022)). In post-processing, this synchronization allows us to associate the
non-delayed motion capture data with the drone’s magnetometer readings. Additionally,
we use motion capture pose (position and attitude) estimates to rotate the magnetometer
data into the world frame and determine the location of each magnetic field measurement.

This work uses time-invariant magnetometer calibration combining techniques
from [35,36] (see Section 3.2). Magnetometer calibration is performed outdoors, just South
of the University of Michigan’s outdoor netted flight facility, M-Air. This location is far
enough away from any buildings that the magnetic field strength is constant over a few
meters and should be accurately reflected by the World Magnetic Model (WMM) [1]. For
the data gathered on 1 September 2022 (test series t6), the ambient magnetic field reference
term used for calibration is BR = 53.1351 µT as taken from a WMM online calculator for
M-Air’s location at 42.294431◦ N, 83.710442◦ W, and 270 m above sea level.

Our flight vehicle “Q1” (Quadrotor one) is shown in Figure 3 and has an RM3100
magnetometer sampled at 200 Hz and an MPU9250 IMU (gyroscope, accelerometer, and
magnetometer) sampled at 200 Hz. This work made no use of the magnetometer on
the MPU9250, relying solely on the RM3100 for all magnetic field measurements. The
BeagleBone Blue (BBB) microprocessor handles communication with the ground station
via Xbee radio, logs all sensor data locally, and commands the four motors to achieve
the desired flight trajectory. A Turnigy 4S 2650 mAh 20C LiPo battery provides the main
power on Q1, while a Turnigy 2S 300 mAh LiPo battery keeps the BBB powered on when
swapping 4S batteries between flights.

https://chrony.tuxfamily.org/
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(a) (b)
Figure 3. Q1: The flight vehicle used for experiments in this work. (a) Main components of Q1.
S2 = 2 cm. (b) Definition of S1 and S2. S2 = 8 cm.

Figure 3b shows Q1 with different distances from the magnetometer to the rest of the
vehicle’s electronics. S1 is defined as the distance from the top of the battery mounting
plate to the top of the BBB. This distance is S1 = 4.79 cm on Q1 and will not change in any
experiments through this paper. S2 is an adjustable distance defined from the top of the
BBB to the bottom of the magnetometer’s mounting plate that allows us to investigate how
the magnetometer’s proximity to other electronics affects the consistency of magnetic field
measurements on a quadrotor.

Finally, we placed a stationary RM3100 magnetometer in the corner of the flight lab that
gathers data every 10 s (0.1 Hz). This stationary sensor is on the ground at approximately
(−3.5 m, +2.5 m) in the (XW , YW) frame defined in Figure 2 and was used to confirm that
the ambient magnetic field remained constant during experiments (Section 5.2.3).

4.2. Flight Profiles

Our flight tests are designed around single-altitude scanning patterns that gather
observations at a planar slice of the working volume. Figure 4 shows the desired trajectory
(solid blue line) has 4 m x-axis strides separated by 0.25 m y-axis strides. Since all flights
begin at the origin (0 m, 0 m), the trajectory in Figure 4 includes diagonal strides to leave
and return to the origin at the start and end of each flight test. Finally, some trajectories
gather observations at multiple altitudes in a single flight and include z-axis strides between
each planar trajectory. For multi-altitude tests, the drone traverses a single diagonal stride
from the origin to the corner at the first altitude and another diagonal stride from the corner
to the origin at the final altitude.

All linear strides are created from quintic spline trajectories that are hand-tuned to
enforce a 1.9 m/s speed limit. This is a compromise between minimizing flight time and
the limitations of our flight controller.

The 0.25 m y-axis spacing is selected to enable a study on how the spatial density of
observations affects the accuracy of the resultant map (Section 5.4). A similar study was
performed in [4], where magnetic field observations in a 3 m × 3 m × 2.2 m volume are
hand-gathered at 0.2 m increments in all axes. For this work, using 0.2 m y-axis and 0.2 m
z-axis spacing throughout the working volume created excessively long flights. Thus, a
0.25 m minimum separation distance is used instead.

Flight Profile Nomenclature

Throughout this paper, we refer to flights with ID tags, such as “tY_XX”, where Y
refers to the flight test series and XX is the two-digit ID of the flight test in that series. This
allows the reader to reference our raw experimental data to facilitate the reproducibility of
results. Appendix A has more details.
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Figure 4. Single-altitude lawnmower trajectory used in all trajectories in this work.

4.3. Pre-Processing Magnetic Observations

When creating hyperparameter (Dn2 ) and inference sets (Dn1 ), we first pre-process the
magnetic field data gathered by the RM3100.

Figure 5 shows data from the UAV’s RM3100 for a segment of time when the drone is
not moving, and the motors are not spinning. The black dots are raw magnetometer mea-
surements with many spurious measurements that vary by±3 µT for each axis, respectively.
We have seen such spurious measurements from three different RM3100 sensors, even one
mounted on a platform with no motors or ESCs (electronic speed controllers). Other works
using RM3100s did not report such spurious readings [15,37]. Thus, we believe this could
be a result of the 200 Hz sampling rate (600 Hz for the whole device to achieve 200 Hz per
axis) or something to do with the RM3100’s firmware. Alternatively, this may stem from
poor voltage regulation on the BeagleBone Blue. We have not tried sampling from other
microprocessors to see if the BeagleBone is the root cause.

Nonetheless, we apply a median filter with a window size of 5 to all RM3100 data in
this work. The resultant observations from the median filter are shown in red in Figure 5.
Clearly, there are still some outliers in red, but increasing the window size of the median
filter delays the signal enough to cause problems for state estimation. Since we want to
construct and validate maps with the same pre-processing steps used when performing
state estimation, we fix a window size of 5 and work with the remaining outliers.

In addition to a median filter, we downsample the 200 Hz data gathered during the
flight test. Since the UAV does not move much in 1/200th of a second, many observations
are spatially redundant. As such, we temporally downsample observations to 2 Hz, 4 Hz,
or 10 Hz when creating or validating the maps. Figure 4 shows the spatial distribution of
2 Hz and 10 Hz downsampling during a flight test.
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Figure 5. Data from a stationary RM3100 placed at the origin of the flight arena and sampled at
200 Hz. Spurious measurements are reduced with a moving median filter with a window size of 5.

Since motion capture data are used to rotate the magnetometer data from the body
frame to the world frame, we perform one final check to ensure a timely ground-truth pose
estimate. Any temporally downsampled observation with a motion capture pose older
than 50 ms is considered “stale” and replaced with the nearest (in time) observation with
a timlier motion capture pose. If the “fresh” replacement is already in the downsampled
observation set, the redundant observation is removed, leaving one instance in the final set.

4.4. Creating and Querying the “Compromise” Map

As mentioned in Section 3.1, a magnetic field map requires each Gaussian process
{GP x, GPy, GP z} to have a set of hyperparameters optimized by an observation set
{Θ∗x(Dn2

x ), Θ∗y(Dn2
y ), Θ∗z (Dn2

z )} and an inference set {Dn1
x , Dn1

y , Dn1
z } to compare the target

locations. This section explains how we use flight data to create the hyperparameter obser-
vation sets (with n2 observations) and then use inference from an intermediate magnetic
field map to make “compromise” inference sets (with n1 observations) where n1 < n2. The
goal of the compromise map is to leverage the flight-by-flight variation in magnetic field
measurements (Section 5.2) by training hyperparameters on n2 observations from many
flights without incurring the computational cost of having a large inference set size n1.

The “hyperparameter observation set” for the y component Gaussian process GPy is
Dn2

y = (Xn2 , Ỹn2
y ) and similar for Dn2

x and Dn2
z . All three hyperparameter observation sets

share the same observed locations Xn2 ∈ R3×n2 taken from downsampled observations
from any number of training flights.

These observations are used to compute {Θ∗x(Dn2
x ), Θ∗y(Dn2

y ), Θ∗z (Dn2
z )} by minimiz-

ing the negative log marginal likelihood of the observations over the hyperparameters of
each respective Gaussian process. The optimal hyperparameters, along with their corre-
sponding observation sets of size n2, will serve as an “intermediate” magnetic field map.

From here, we query the intermediate map at n1 user-selected locations Xn1 ∈ R3×n1

to generate magnetic field observations for the compromise map. The magnetic field
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“measurements” that complete the inference set Dn1
x = (Xn1 , M̂n1

x ) come from the estimated
magnetic field values at each location in Xn1 where

M̂n1
x = E[ fx|Xn2 , Ỹx, Xn1 ] ∈ Rn1

= K
Θ∗x(Dn2

x )
(Xn1 , Xn2)[K

Θ∗x(Dn2
x )

(Xn2 , Xn2) + σ2
n I]−1Ỹx

(10)

and similarly for the magnetic field “measurements” M̂n1
y and M̂n1

z for inference sets Dn1
y

and Dn1
z , respectively. Here, the intermediate map estimates the magnetic field at Xn1

by computing their similarity to locations Xn2 . The notation used in Equation (10) was
introduced in Section 3.1.

At last, we have what we call “compromise inference sets” (Dn1
x , Dn1

y , Dn1
z ) (or simply

“inference sets”) made of magnetic field estimates from the intermediate map at.
Our compromise map avoids overfitting to a single training flight by incorporating

observations from several flights. Additionally, it performs inference in O(n1
2nq) rather

than O(n2
2nq) where nq is the number of points queried.

5. Results and Discussion

This section presents results on identifying and reducing UAV-induced magnetic field
noise. Section 5.1 shows that the autopilot’s PID controller creates measurable magnetic
field noise that we reduce with targetted adjustments to the gains. Next, Section 5.2 intro-
duces the unusual magnetic biases our UAV injects into the measurements. Here, we show
that distancing the magnetometer from the electronics improves the consistency of mea-
surements. We then show that the compromise map (which uses n1 = 511 observations for
inference) yields estimates within 0.013 µT of the intermediate map (which uses n2 = 2001
observations for inference) in Section 5.3.

Section 5.4 introduces our spatial density analysis and shows that observations spaced
up to 0.55 m apart will yield an accurate indoor magnetic field map. Section 5.5 shows that
it is equivalent to either create a specialized map on the norm of the field or simply take the
norm of estimates from a vector-valued magnetic field map. Finally, Section 5.6 presents
our consistency metric, which aims to identify when a user can rely on predictions from
their GPR-based magnetic field map.

5.1. Flight Controller Creating Magnetic Field Noise

Our vehicles use the rc_pilot_a2sys autopilot originally forked from the open-
source rc_pilot repository by James Strawson and Librobotcontrol (https://github.com/
StrawsonDesign/rc_pilot (accessed on 7 May 2019)).

rc_pilot_a2sys uses a four-stage cascaded PID controller as explained in Section
IV.B.1 of [38]. The controller in this work started with the gains used in [38]. We then
adjusted the gains to reduce noise from the motors and ESCs.

Figure 6 shows magnetometer data from a flight where the UAV (not Q1, but another
vehicle of the same construction) flew a single-altitude scanning pattern (Figure 4) at 1.5 m.
The data in Figure 6 is in the world frame.

Figure 6a (t5_00) is the magnetometer data with the gains inherited from ref. [38].
Here, the drone moves along the x axis (4m stride) of the flight space from 21 s tp 26 s, and
again from about 34 s to 40 s. During these time segments, there is a large variance in the
measured magnetic field due to the flight controller’s motor commands.

Figure 6b (t5_01) shows another instance of the same trajectory, but with new controller
gains. The plots are temporally aligned to easily compare corresponding flight segments.
At a glance, it is clear that the variance in the magnetic field measurements is much lower
in Figure 6b than in Figure 6a, but not completely gone. This is most evident in the “Mag
Y–World” plot of Figure 6b, where the drone moves along the x axis (4 m stride) of the
flight space from 21 s to 26 s and again from 34 s to 40 s.

https://github.com/StrawsonDesign/rc_pilot
https://github.com/StrawsonDesign/rc_pilot
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As explained in Section IV.B.1 of ref. [38], we use a four-stage cascaded PID controller
with an outer loop that operates on position error and an inner-most loop controlling
angular rate error. The math for the inner loop is shown below in Equation (11)

τφ = KP
4,φ (φ̇d − ω̃x)

+ K I
4,φ

∫ t

0
(φ̇d − ω̃x) ds

+ KD
4,φ

d
dt
(φ̇d − ω̃x)

, (11)

where τφ is the desired torque for roll (φ), {KP
4,φ, K I

4,φ, KD
4,φ} are the P, I, and D gains for the

fourth-stage controller along the roll axis, φ̇d is the desired roll rate, and ω̃x is the measured
roll rate from the gyroscope. There are similar fourth-stage PID loops for pitch (θ̇) and yaw
(ψ̇) rates, respectively.
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Figure 6. Vehicle “Maggie” flying two instances of the same flight trajectory, showing how the flight
controller can inadvertently create noise in the measured magnetic field. (a) Test t5_00: Flight with
“noisy” gains. (b) Test t5_01: Flight with “quiet” gains.

The ‘noisy’ gains, inherited from [38], used KD
4,φ = KD

4,θ = KD
4,ψ = 0.01 while the

modified ‘quiet’ gains set all three of these values to 0. This change alone is responsible for
reducing motor-induced noise in Figure 6.

The derivative term of the attitude rate controllers (e.g., Equation (11) for roll rate) uses
numerical derivatives of gyroscope measurements (Figure 7) as part of their computation.
As the quadrotor flies, the propellers induce vibrations that make the gyroscope (and
accelerometer) measurements rather noisy. Taking numerical derivatives of these noisy
gyroscope measurements causes the motors to be commanded with high-frequency inputs
that induce measurable electromagnetic noise. We believe this problem is amplified as
the total amount of current pulled from the 4S batteries increases. This would explain
why the magnetometer variance is larger during the 4 m, x-axis stride (with a max com-
manded velocity of 0.75 m/s for this set of tests) than during the 0.25 m, y-axis stride (max
commanded velocity of 0.47 m/s).

Aside from changing controller gains, other possible solutions include commanding
less-aggressive maneuvers during flight tests, moving the magnetometer further from the
motors and ESCs (Section 5.2), or time-varying magnetometer calibration [35]. In addition,
from some preliminary data gathered when trying to understand this problem, we believe
that differences in motors and ESCs (even those of the same make and model) may create
different magnitudes of measurable magnetic noise.
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The remainder of this paper uses only the ‘quiet’ controller gains. Please note that the
analysis for this section used S2 = 2 cm (Figure 3b).
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Figure 7. Raw gyroscope data from t5_00 . Vibrations from UAV propellers create noisy gyroscope
data. Differentiating this noisy data creates the high-frequency magnetic noise seen in Figure 6a.

5.2. Identifying and Mitigating Flight-by-Flight Variation

The flight controller generates high-frequency magnetic field noise from the motors,
but another magnetic anomaly causes variation in the measured magnetic field from flight to
flight. Variance refers to the spread of points around a mean. In the last section, we reduced
the variance of motor-induced magnetic noise by removing derivative gains from a PID
loop in the flight controller. To avoid confusion, we use "variation" to describe differences
in the magnetic field between subsequent flights of the same trajectory. These differences
are not uniformly spread around an average signal, as we will explain in this section.

Section 5.2.1 explains our testing procedure for investigating the flight-by-flight varia-
tions, while examples are given in Section 5.2.2. Next, we investigate two sources of the
variations in Sections 5.2.3 and 5.2.4. Finally, we show how distancing the magnetometer
from the other electronics reduces the variation in Section 5.2.5.

5.2.1. Testing Methodology

To measure variation across pairs of flights, Q1 flew several repetitions of the 1.5 m
single-altitude scanning trajectory (Figure 4). Initially, we believed that each 4S LiPo battery
provided a different amount of “resting current” to achieve the same flight maneuver as
another 4S battery. For this, each battery started at full charge, and Q1 flew the same 1.5 m
scanning trajectory several times in a row. This lets us test whether the flight-by-flight
variations were due to the battery’s voltage during a flight. After a few repetitions with the
first 4S battery, a new (fully charged) 4S battery was used to power Q1.

Three Turnigy 4S 2650 mAh 20C batteries (denoted as #02, #04, and #14) were used
for this analysis. The charge/discharge and storage history of these batteries is largely
unknown, as they have been used for several projects since their purchase in May 2021.
The only thing we could rigorously control is fully charging each battery to 16.8 V just
before a series of flight tests.

For this analysis, each flight was downsampled to 10 Hz or 2 Hz to reduce spatially
redundant observations resulting in∼900 or∼180 observations, respectively, for each flight.
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Figure 4 shows the observation set from one flight with 10 Hz and 2 Hz downsampling.
Although 10 Hz clearly shows better coverage of the flight space, the RMSE values for
this analysis changed by at most 0.03 µT on the S2 = 8 cm dataset when training on 10 Hz
vs. 2 Hz downsampling sets. Thus, we sometimes use 10 Hz downsampling to illustrate
specific points, but typically use 2 Hz downsampling for faster training and validation of
the magnetic field maps.

The goal is to test the consistency of magnetic field measurements across pairs of flights.
The ambient magnetic field is not likely to change over the course of a few hours. Thus,
any variation between pairs of flights can be attributed to UAV-generated magnetic noise.

5.2.2. Examples of Flight-by-Flight Variations

By training the map on a single repetition and validating on another, we get data
similar to that in Figure 8, which has two types of plots.

For the first type (e.g., Figure 8a), each magnetometer measurement from the validation
dataset is shown as a red cross. The blue line is the GPR’s predicted mean at the drone’s
position. The blue shading around the solid blue line depicts the two standard deviations
(2σ) of the GPR’s uncertainty with its prediction.
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(a) S2 = 2 cm. Trained on t1_09 (#04). Validated
on t1_05 (#14). Same data as subfigure b.
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(b) S2 = 2 cm. Trained on t1_09(#04). Validated
on t1_05(#14). Same data as subfigure a.
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(c) S2 = 2 cm. Trained on t1_09(#04). Validated
on t1_04(#14).
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(d) S2 = 2 cm. Trained on t1_09(#04). Validated
on t1_15(#02).

Figure 8. Flight -by-flight variations shown through three validation tests.

Figure 8b depicts a black dot as the error between the red cross and blue line while
the GPR’s 2σ uncertainty is the gray shading. Here, we plot the absolute value of the error
since the sign of the error does not indicate anything of interest. The percentage in the
grayscale plots depicts how often the black dots (GPR error) are within the gray shading
(GPR’s 2σ uncertainty).
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In Figure 8, the map is trained on 2 Hz-downsampled observations from flight t1_09
and validated against 10 Hz-downsampled observations from three flight tests of the same
t1 series. These three validation examples are generally representative of the different
flight-by-flight magnetic field anomalies we have seen. Figure 8b shows a relatively large
steady-state prediction error throughout, Figure 8c has a steady-state error that changes
partway through the flight, while Figure 8d is an ideal case where the mapping and
validation flights have agreeable measurements.

We refer to this anomaly as “flight-by-flight variation” because the error between pairs
of flights is not distributed around some mean bias value. For example, flight t1_09 had
similar magnetic observations as t1_15 (Figure 8d) yet starkly different observations than
t1_05 (Figure 8b). Further complicating the matter are cases such as t1_04 (Figure 8c) with a
time-varying bias.

There is evidence in Figure 8 that suggests these magnetic anomalies are caused by
the ESCs and motors. The initial black dots in Figures 8b,c have low error before the
anomalous bias takes effect. These beginning points are observations gathered when the
drone rests on the ground. This suggests that before the motors and propellers are spinning,
the observations from t1_05 and t1_04 are similar to those from t1_09.

This discussion would benefit from an experiment we could not conduct safely. The
idea is to constrain the UAV and compare magnetometer data across two cases. One case
with the motors off and another where they are spinning. We attempted this without the
propellers and found no appreciable change in the bias of the measured magnetic field.
Adding propellers increases the current draw required for the motors to maintain a certain
angular velocity and more accurately emulates actual flight conditions. However, given
our test equipment, we could not safely constrain a UAV whose propellers are spinning.

5.2.3. Changes in Ambient Magnetic Field

This section presents evidence that the magnetic field variation in Figure 8 is not caused
by changes in the ambient magnetic field. To measure changes in the ambient magnetic
field, we placed a stationary RM3100 magnetometer under a workbench at approximately
(−3.5 m, +2.5 m) as defined by Figure 2. This stationary magnetometer was sampled every
10 s (0.1 Hz) by a BeagleBone Blue from July 2022 through February 2023. The BeagleBone
is powered by a portable power bank charged at a wall outlet. The power bank allows for
continuous measurements through brief power outages in the workspace.

Figure 9 shows approximately 3 h of data gathered during the t6 series of flight tests
on 1 September 2022. Raw data are depicted as black dots while median-filtered data (with
a window size of five) is shown as a red line. As in Figure 5, there are several spurious
measurements that span ±3 µT. In Figure 9, the outliers are cropped to emphasize the
average signal.

Figure 9 shows that the mean signal of each axis drifts by no more than 0.2 µT. For
reference, the variance of the raw data (including cropped outliers) is 0.13 µT2, 0.09 µT2,
and 0.10 µT2 for each respective axis. By contrast, the variations in Figure 8b exceed 1.8 µT
for the z component of the field. This paper assumes the ambient field is constant over
any given day. In practice, it only needs to remain constant over a single flight test series
(several hours), supported by the data in Figure 9. With this, we conclude the flight-by-
flight variations depicted in Figure 8 are caused by UAV-induced magnetic noise and not
by changes in the ambient magnetic field.

The data from Figure 9 was gathered on 1 September 2022, while the data in Figure 8b
was gathered on 17 June 2022. We do not have stationary magnetometer data from 17th
June (the t1 flight test series) to directly compare with the variation in Figure 8. However,
the stationary magnetometer data from September 1st in Figure 5 is generally representative
of the ambient magnetic field measurements at that location. Further analysis of the eight
months of stationary magnetometer data is presented in Appendix B.
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Figure 9. Data from 1 September 2022, during the t6_XX flight series.

5.2.4. LiPo Batteries and Magnetic Variation

Initially, the data from the t1_XX flight tests (Section 5.2.2) led us to conclude that the
flight-by-flight variations were due to differences in batteries. The motors and electronic
speed controllers (ESCs) use the most power on the UAV. When electrical current moves
through wires, it induces a magnetic field quantified by the Biot–Savart law. In addition, a
battery with lower voltage must provide higher current to achieve the same power output.
In addition, if we fix the power required throughout a flight test, a battery with lower
voltage should source more current than a battery with higher voltage. Together, these
properties imply that the induced magnetic field from the UAV’s motors and ESCs should
increase as battery voltage decreases. We designed experiments (Section 5.2.1) to investigate
this idea. However, the data did not clearly prove or disprove our hypothesis.

During the t1_XX flight tests, each of the three batteries (#02, #04, and #14) flew five
consecutive repetitions of the same trajectory (Figure 4). The voltage on battery #04’s first
flight ranged from 16.4V to 15.4V while the last repetition ranged from 15.4 V to 14.6 V.
There are similar voltage ranges across the five repetitions for batteries #02 and #14. From
voltage data alone, we expected all three batteries to behave similarly.

The results show that battery #14 had over 1 µT of variation between its five repetitions,
seeming to indicate our hypothesis had merit. Perhaps the gradually decreasing voltage
changed the magnitude of the induced magnetic field. However, batteries #04 and #02 had
nearly 0.1 µT of variation between their five respective repetitions despite having a similar
change in voltage over the five repetitions.

We then thought that battery #14 was less “healthy” than the others. Perhaps its
capacitance, impedance, or another property differed noticeably from batteries #04 and
#02. If this were true, battery #14 should induce larger variations than the other batteries.
However, future tests with battery #14 give pairwise variations of about 0.1 µT as we see
with batteries #04 and #02.

Overall, we could not decisively prove or disprove our hypothesis on the relationship
between the flight-by-flight variations and battery voltage. Additionally, we did not find a
consistent trend between each individual battery and the resultant magnetic variation. For
this, we chose to reduce the impact of magnetic variation by moving the magnetometer
further from the sources of magnetic noise.

5.2.5. Varying S2: Distance from Magnetometer to Electronics

Many works, such as [27,28], demonstrated that creating distance between a mag-
netometer and onboard electronics can reduce noise. In this section, we show how the
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magnitude of the flight-by-flight variations decrease as S2 increases. Recall that S2 is the
distance between the magnetometer and the other electronics on the UAV (Figure 3b).

We flew 60 repetitions of the 1.5m-scanning trajectory from Figure 4 over four test
sessions (t1_XX, t2_XX, t3_XX, and t4_XX). Each corresponds to a different value of S2
(2 cm, 4 cm, 6 cm, and 8 cm). For each test session, we trained the map on the first battery
#04 flight and validated the map on all flights of the same test session.

Figure 10 summarizes the data of this 60-flight analysis. The horizontal position of
each point is the value of S2 as 2 cm, 4 cm, 6 cm, or 8 cm. Any horizontal deviations from
these discrete values are only for visual clarity and do not reflect any deviation in the actual
value of S2. The vertical axis is the vector RMSE of all three GPRs (Equation (9)). Finally,
the colors and symbols identify which battery was used for each repetition with a green +
for battery #04, an orange4 for #02, and a purple � for #14.

At S2 = {2, 4, 6, 8} cm, each battery flew N = {5, 4, 3, 8} repetitions of the 1.5 m scanning
trajectory. For S2 = 8 cm, each battery started at full charge, flew four consecutive reps, was
re-charged, then flew four more repetitions. We depict the second charge of each battery in
the S2 = 8 cm dataset with a rotated +,4, and �, respectively.

Figure 10 shows that increasing S2 makes the observations of each flight more consis-
tent with one another. Since the GPR-based map (for each S2) is trained on a battery #04
flight, the scatter plot shows us the magnitude of the flight-by-flight variations relative to
an arbitrary battery #04 flight. As we increase S2, the variations tend towards a difference
of about 0.3 µT to 0.5 µT.

2 4 6 8

S2 (cm)

0

0.5

1

1.5

2

2.5

3

R
M

S
E

 o
f G

P
R

-B
as

ed
 M

ap
 (

T
)

#04
#04(B)
#02
#02(B)
#14
#14(B)

Figure 10. S2 versus vector GPR RMSE. At each S2, the map is trained on one flight from battery #04
(green +). For S2 = {2,4,6,8} cm there are N = {5,4,3,8} reps per battery.

Please note that for each value S2, there is a single green + that is validated by the
same observations used to train the map. Even so, there are no RMSE values below 0.3 µT.
This may be a limit to how accurate maps can be with our testing platform, which would
include inaccuracies due to sensor noise (a function of the 200 Hz sampling rate) and any
electromagnetic noise the quadrotor generates.

We take a moment to point out a flawed conclusion we stated in our previous work.
In Figure 10b of [9], observations from a rectangular trajectory (the first ∼500 points) are
validated on a GPR-based map. In that figure, there is about 2 µT of an error on each of the
x and z GPR validation sets except before takeoff and after landing. In [9], we hypothesized
that this error was caused by a pitch misalignment in the magnetometer for that single
flight (relative to the pitch angle for all the other flights). However, if this were the case,
there likely would not be the brief moments of agreement before takeoff and after landing
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as shown in Figure 10b of [9]. With what we have learned in this work, we believe that was
an example of flight-by-flight variation.

Our work in [9] used a different M330 quadrotor whose parts may have produced less
magnetic variation between flights. Alternatively, it could be that the nature of attitude
estimation (the focus of [9]) is robust to 2–3 µT variations between flights if such anomalies
do not significantly change the angle of the ambient magnetic field (which has a magnitude
of 40–70 µT in our workspace). Thus, it is likely that these variations were simply less
salient in [9] given the previous application of attitude estimation.

Although increasing S2 decreased measured variation, we are still left with ∼0.3 µT of
variation between pairs of flights. We believe time-varying magnetometer calibration could
further reduce flight-by-flight variation. In [35], they use measurements of the electric
current near high-powered devices to estimate and offset vehicle-induced magnetic fields
from their measurements. However, our vehicle does not have any electric current sensors,
so such a solution is out of reach for our platform. Instead, we use the “compromise map”
to reduce the influence of these variations on the resultant magnetic field map.

5.3. Accuracy of Compromise Map

In this section, we propose a solution to the flight-by-flight variations that incorporates
data from several training flights into a single magnetic field map. Since each flight has
a chance of giving a different bias in the measured magnetic field, the GPR-based map
will overfit if trained on a single flight test. Thus, we instead, use n2 observations from
many flights that span the working volume to create an “intermediate map” that optimizes
hyperparameters {Θ∗x(Dn2

x ), Θ∗y(Dn2
y ), Θ∗z (Dn2

z )} and predicts with the n2 observations.
The compromise map then uses the intermediate map’s estimates at n1 user-selected
locations to predict the magnetic field using only n1 points. The goal of this section is to see
how the accuracy of the compromise map varies as a function of n1.

5.3.1. Multi-Altitude Trajectories

This section uses data from eight different flight tests listed in Table 1 where the first
four flights are typically used for training the map while the remaining four are used for
validation. The trajectories listed in Table 1 are all multi-altitude tests where each single-
altitude slice is the same trajectory from Figure 4. “Lower Four alts.” flies at altitudes
Z = [−0.5, −0.75, −1.0, −1.25] m, “Upper Four alts.” at Z = [−1.5, −1.75, −2.0, −2.25] m,
“Scan-γ” at Z = [−0.5, −1.375, −2.25] m, while “Scan-ε” and “Scan-ε⊥” fly at Z = [−0.75,
−1.5, −2.0] m. The idea is to gather redundant observations throughout the working
volume that allow the map to learn the flight-by-flight variations.

Additionally, Table 1 lists the number of 2 Hz-downsampled observations from each
flight. The number of 4 Hz and 10 Hz observations are approximately 2× and 5× the
values listed in Table 1.

Table 1. Separate flights are used for training and validation. All magnetic field observations were
downsampled to 2 Hz for training and validation. The number of observations each training flight
contributes to the map is listed.

Flight Flight Training [2 Hz] Validation [2 Hz]
Number Description (# Observations) (# Observations)

t6_00 Lower Four Alts. 571 –
t6_01 Upper Four Alts. 580 –
t6_03 Scan-γ 442 –
t6_21 Scan-ε⊥ 408 –

t6_04 Lower Four Alts. – 573
t6_05 Upper Four Alts. – 573
t6_06 Scan-γ – 441
t6_20 Scan-ε – 384
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5.3.2. Intermediate Map Accuracy

To start, we demonstrate the value of adding observations from many flights to a
GPR-based map. We call maps that are trained on observations from multiple flights an
intermediate map.

Table 2 gives the performance of a multi-altitude magnetic field map trained on
n2 = 408 (2 Hz downsampling) observations from flight test t6_21 and validated on
observations from four different flight tests. The second major column lists the vector
RMSE (µT) of all three GPRs along with the RMSE of each x, y, and z GPR, respectively. The
third major column quantifies how often (as a percentage) an error data point lies within
the 2σ uncertainty of the respective GPR. The performance metrics from the second and
third major columns are the same as those listed in the grayscale plots of Figure 8.

Table 2. Multi-altitude map error. Trained on n2 = 408 observations from flight test t6_21 (Scan-ε⊥).

Flight ID and GPR RMSE (µT) Error within 2σ (%)
Description Norm|X|Y|Z X|Y|Z

t6_04 (Lower Alts.) 0.595 0.256 0.284 0.456 74.69 87.09 52.88
t6_05 (Upper Alts.) 0.998 0.633 0.541 0.551 6.81 19.72 32.11
t6_06 (Scan-γ) 0.642 0.362 0.318 0.424 56.01 86.62 68.25
t6_20 (Scan-ε) 0.556 0.229 0.293 0.413 56.25 47.40 39.06

The map from Table 2 has overfit to observations from flight t6_21. In Section 5.2,
we showed that there are flight-by-flight variations in the measured magnetic field. By
training on a single flight, we prevent the map from learning to account for these flight-
by-flight variations. Please note that training the map on n2 = 2038 observations (10 Hz
downsampling) from t6_21 gives norm RMSE values of 0.629 µT, 1.034 µT, 0.751 µT, and
0.552 µT when validating on t6_04, t6_05, t6_06, and t6_20, respectively. Thus, simply
increasing the number of training samples from a single flight test does not improve the
map’s performance.

By comparison, Table 3 uses n2 = 2001 observations (2 Hz downsampling) from four
different flight tests: t6_00, t6_01, t6_03, and t6_21. Please note, in Table 1, that we are
now training and validating on one instance each of all four types of flights conducted for
this analysis: lower four altitudes, upper four altitudes, scan-γ, and scan-ε. By comparing
Tables 2 and 3, we see that adding observations from a variety of flights uniformly reduces
RMSE and increases the frequency that error falls within each GPR’s 2σ error (usually
caused by an increase in each GPR’s uncertainty).

Table 3. GPR error for multi-altitude intermediate map trained on n2 = 2001 observations from tests
t6_00, t6_01, t6_03, and t6_21.

Flight ID and GPR RMSE (µT) Error within 2σ (%)
Description Norm|X|Y|Z X|Y|Z

t6_04 (Lower Alts.) 0.466 0.144 0.145 0.419 98.43 98.08 85.17
t6_05 (Upper Alts.) 0.713 0.403 0.447 0.382 45.55 23.73 90.05
t6_06 (Scan-γ) 0.378 0.184 0.155 0.292 97.96 96.83 96.83
t6_20 (Scan-ε) 0.406 0.111 0.222 0.321 99.48 92.97 93.75

Additionally, training on n2 = 9999 observations (10 Hz downsampling) from the four
training flights gives norm RMSE values of 0.497 µT, 0.686 µT, 0.406 µT, and 0.408 µT when
validating on t6_04, t6_05, t6_06, and t6_20, respectively. Again, and surprising in this
second case, adding more observations from the same ensemble of training flights does not
necessarily improve the map’s performance. However, it is clear that training on multiple
flights (Table 3) is better than training on a single flight (Table 2).
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Aside from the 2 Hz vs. 10 Hz comparisons performed in this section, we do not aim
to directly address ways to reduce the cost of training hyperparameters. Instead, we focus
on the inference cost O

(
n2

2) with what we call a compromise map.
The idea is to query the intermediate map at n1 user-selected locations Xn1 ∈ R3×n1 in

the working volume. The intermediate map’s estimates give us a set of “measurements”
M̂n1 ∈ R3×n1 which (together with Xn1 ) form the “observations” used by the compromise
map to perform inference. Please note that the compromise map will use the same hyper-
parameters from the intermediate map for its inference. Section 4.4 gives a more detailed
explanation of the process of creating a compromise map from an intermediate map.

5.3.3. Intermediate Map vs. Compromise Map

We now compare the accuracy of the intermediate map, which uses n2 = 2001 observa-
tions (2 Hz downsampling) to perform inference, to that of the “compromise” map, which
uses only n1 = 511 inference points. Recall that both use the same sets of hyperparameters
optimized over n2 = 2001 observations.

The n1 = 511 user-selected locations for this analysis are chosen as follows. Points
are distributed evenly through the [−2, 2] m x axis span, [−1.5, 1.5] m y axis span, and
[−2.25, −0.5] m z axis span of the working volume. A compromise map location is selected
every 0.5 m, 0.5 m, and 0.25 m for the x, y, and z axes, respectively. In total, this gives 504 lo-
cations within the working volume. The remaining seven points are evenly spaced from the
ground to an altitude of 0.5 m, so the compromise map has some observations during the
takeoff and landing sequence above the origin. The number n1 = 511 is an important con-
straint for another toolbox we used for position localization. Thus, this spatial discretization
(0.5 m × 0.5 m × 0.25 m) became a common test state in our work.

Figure 11 is similar in style to the grayscale plots from Figure 8, but with the subplots
as three columns rather than as three rows. This format fits more figures on a single page
to more easily compare the intermediate and compromise maps.

Figure 11 shows data for the intermediate map on the left column and the compro-
mise map on the right. Here, we see the compromise map has both quantitatively and
qualitatively similar performance to the intermediate map despite using nearly a fourth
of the points for inference. By comparing the norm RMSE values (in the titles) across
the two columns of Figure 11, we see the two maps are never off by more than 0.013 µT
(13 nanoTesla) in norm RMSE. This difference is within the noise of the magnetic field
measurements of our platform.

For reference, training a map on 408 observations (2 Hz downsample) from t6_21 and
validating this map on the same 408 observations gives RMSE values of (0.196 µT, 0.089 µT,
0.108 µT, 0.136 µT) for norm, x, y, and z RMSE values, respectively. This means that the map
cannot discern differences of 0.013 µT even when it has overfit for the exact observations it
will be validated on.

Thus, we take the differences between the intermediate map (n2 = 2001) and the
compromise map (n1 = 511) in Figure 11 to be negligible and assert that their RMSE
performance is effectively identical.

Of course, a lot of valuable information can be lost by simply comparing RMSE values.
However, visual comparison across the two columns of Figure 11 further emphasizes that
both the intermediate and compromise maps yield very similar prediction results. The key
difference is in the uncertainty of the two maps.

It is easiest to see this in row three (Figure 11d vs. Figure 11e) where the compromise
map (right) has spikier gray shading (2σ uncertainty) than the intermediate map (left).
The compromise map’s increased uncertainty is primarily due to the choice of prediction
locations Xn1 ∈ R3×n1 which have 504 points selected from a (0.5 m × 0.5 m × 0.25 m)
spatial discretization of the working volume. Recall that each altitude of our validation
trajectories traverses lanes separated by 0.25 m (Figure 4). Thus, anytime the compromise
map is queried at a location between the (0.5 m × 0.5 m) x–y points, it will report a higher
uncertainty in its predicted magnetic field estimate.
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The overall increased uncertainty of the compromise map also explains why the re-
spective GPR errors more frequently fall within two standard deviations of their respective
uncertainties. In other words, the plots on the right column of Figure 11 will almost al-
ways have higher red percentages than the comparative GPR on the left column given the
selected spatial discretization of (0.5 m × 0.5 m × 0.25 m).

This section showed how to avoid overfitting by training a map on data from many
flights. It then introduced the compromise map to fix the number of prediction points at
n1 = 511. We find that the compromise map maintains comparable performance to the
intermediate map yet has faster runtime from the fixed number of prediction points. The
next section will further investigate how the spatial density of the points Xn1 affects the
performance of the compromise map.
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(c) n2 for t6_05. Outliers {[2.89], [], [2.42]}µT.
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(e) n2 for t6_06. Outliers {[2.41],[],[]}µT.
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Figure 11. Performance of the intermediate map (left column) and compromise map (right column).
Outliers larger than 2 µT are listed for { [GPRx], [GPRy], [GPRz] } in each subplot.
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5.4. Compromise Map—Spatial Density Analysis

This section seeks to understand how the accuracy of the compromise map changes
as a function of the spatial density of the locations used in X1. Generally, we expect GPR
error to increase, the number of error points captured by 2σ uncertainty to increase, and the
computation time to decrease as the training set points become more sparse. This section
analyzes the first two trends.

In the last section, the n1 = 511 compromise training points came from a custom
spatial density of (0.5 m × 0.5 m × 0.25 m) which gave 504 locations, plus an additional
seven locations to have observations along the takeoff and landing segment for each flight.
In this section, we work with a uniform spatial density in all directions (S × S × S). To
simplify matters a bit, we use a naive linear spacing of [min : S : max] for the locations
along each respective spatial axis of the lab. This means that different spatial densities S
can yield the same number of points n1 but at different locations. Recall that our working
volume has spatial limits of [−2, 2] m in x, [−1.5, 1.5] m in y, and [−2.25, −0.5] m in z.

We vary S from 0.2 m to 1 m to emulate a study performed in [4]. However, our study
quantifies the RMSE of the magnetic field map rather than relying exclusively on visual
comparisons of the map. For the 17 values of S tested (in increasing order), n1 = [3031, 1775,
931, 655, 447, 259, 259, 199, 133, 112, 97, 97, 79, 67, 47, 47, 47]. Recall, seven of the n1 values
listed here are for the takeoff and landing sequence.

Figure 12 shows norm RMSE of the compromise map (validated on t6_04, t6_05, t6_06,
t6_20) as a function of the spatial density term S. A zoomed-in version of the initial data
segment is embedded in the same figure. Here we see that the norm RMSE is nearly
constant for values S ≤ 0.5m with a small spike in norm RMSE at S = 0.45 m. This spike
is caused by the naive linear spacing, which occasionally causes poor sampling along
altitudes. At S = 0.45 m, we get altitudes of z = [−2.25, −1.8, −1.35, −0.9] m. Recall
from Section 5.3.1 that some validation flights have measurements as low as z = −0.5m.
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Figure 12. GPR norm RMSE nearly constant for S ≤ 0.55 m. Flights t6_04 (red �) and t6_06 (black ×)
have observations at z = −0.5 m causing higher errors for certain values S.

Combining these sources of information, we can see that the black-× (t6_06; Scan-γ)
and red-� (t6_04; Lower four alts) suffer the worst increases at S = 0.45 m. Since the
compromise map’s observations only go as low as z = −0.9 m, both these trajectories have
higher GPR RMSE when validated at their z = −0.5 m observations. Meanwhile, blue-◦
(t6_20; Scan-ε) shows little change at S = 0.45 m since all its observations are away from the
extremes of the working volume. The other transient spikes in Figure 12 (e.g., S = 0.6 m)
are caused by similar z-axis sampling from the naive linear spacing. t6_04 and t6_06
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continue to be the most sensitive to certain values S when the map has no observations
near z = −0.5 m.

Despite these transient spikes, there are two clear trends we can see in Figure 12. First,
for values of S ≤ 0.55 m (with S = 0.45 m as an exception), the norm RMSE is relatively
insensitive to changes in S. This agrees with ref. [4] where they show (visually) that their
magnetic field map is qualitatively similar for values of S = [0.2, 0.4, 0.6] m. In [4],, their
analysis led them to use 0.6m as a standard distance between observations in a subsequent
experiment.

For comparison, we briefly summarize the spatial density of observations used by
other indoor magnetic field mapping papers. Haverinen et al. map along a single axis
(p = 1) and separate observations by 0.04m and 0.1m on a ground robot and chest-mounted
pedestrian setup, respectively, [17]. Additionally, [16] makes a p = 1 map with 0.2 m
between each observation, and [20] make a p = 1 map with 0.1 m between observations.

For p = 2, [19] create a constant-altitude planar map using S = 0.305 m separation in x
and y for their coarse grid and S = 0.005 m for fine grid spacing. This mapping is performed
in a 2.1 m×2.1 m room. Ref. [10] uses an occupancy grid for their p = 2 magnetic field
SLAM solution with grid size 0.05 m×0.05 m. The solution ignores all previous magnetic
field measurements further than 0.5m from the vehicle’s current position. Wu et al. made a
p = 2 map with lanes separated by 0.38 m [11]. Hanley et al. created p = 2 maps at different
heights along hallways in three separate buildings [15]. The authors used a longitudinal
separation distance of about 0.4 m (varies per building) and a vertical separation of 0.08 m
between their observations.

Finally, Ref. [13] made a p = 3 “map” of a hallway (no explicit interpolation of
observations) with (0.33 m × 0.45 m × S?) where the vertical spacing S? is not explicitly
listed in their work, and [6] made p = 3 maps with S = 0.5 m uniform spacing in all axes.
Our previous work used planar lawnmower patterns, as in Figure 4, but with 0.5 m spacing
in the y axis (instead of the 0.25 m spacing used in this work) [9]. Furthermore, we used a
vertical spacing of 0.75 m in the training sets to investigate the accuracy of p = 3 magnetic
field maps when interpolating between and extrapolating outside pre-mapped altitudes.

In short, for 1D, 2D, or 3D indoor magnetic field maps, we have not seen any pa-
pers using separation distances S larger than 0.6 m. The exceptions are [4], where the
authors explicitly study a reasonable upper limit on S, and our work [9], which studied the
interpolative and extrapolative limits of p = 3 maps.

We believe the empirical upper bound of S = 0.6 m may be driven by proximity to
walls and the floor. If this is the case, S ≤ 0.6 m might only be the upper bound for indoor
regions that are within a couple of meters from some wall or the floor. We acknowledge
that this includes nearly every room or hallway in most buildings, but a large, multi-story
atrium might be an exception. Portions of such an open, yet indoor, volume may have
lower spatial variation and can be accurately mapped with values S > 0.6 m.

It is also possible that the floor, and not walls, are the dominating factor for spatial
variation in indoor magnetic fields. In [15], Hanley et al. showed that the magnetic field
near the floor (within 0.5 m from the ground) of three university buildings is most distinct
from the field at other altitudes up to 2 m. This might explain why the other works in the
spatial density summary, which mostly use ground robots and pedestrians that remain
“near” the floor, have S ≤ 0.6 m.

The second conclusion, the complement of the first, is that values of S ≥ 0.6 m start
to show steady increases in norm RMSE. It is not clear what trends hold for S > 1 m, but
such separation distances are somewhat degenerate given the size of our working volume.
Furthermore, it is unlikely for the norm RMSE values to return to their S = 0.2 m for values
of S > 1m.

This analysis led us to use S = 0.5 m for the x–y compromise map separation distance.
We chose S = 0.25 m for z because we found (empirically) that the GPR’s performance is
most sensitive to omissions in observed altitudes. Recent works on indoor magnetic field
mapping have shown similar trends: that indoor magnetic fields change noticeably as a
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function of altitude [9,15]. For our analysis, similarly for [9,15], it is not clear how much
this altitude-based sensitivity is driven by the fact that all flights are comprised of many
single-altitude slices.

This section showed that magnetic field map accuracy is similar if observations are
within S = 0.55 m in all directions. We have not seen any other papers on indoor magnetic
field mapping using separation distances larger than S = 0.6 m. This upper bound helps to
choose locations Xn1 for a compromise map and informs the design of trajectories when
sampling the magnetic field.

5.5. Creating a 3→ 1 Map from Estimates of a 3→ 3 Map

This section compares two ways of estimating the norm of the magnetic field in a
workspace. Some papers create maps on special components of the ambient magnetic
field, such as a 2→ 2 map on the horizontal and vertical components of the field [39,40],
or a 1 → 1 map on the heading (declination) [16]. Alternatively, the norm or heading of
the magnetic field can be computed using the components of a p → 3 vector map. Here,
we see if a specialized 3 → 1 map provides better magnetic field norm estimates than a

composition of the estimates
√

m̂2
x + m̂2

y + m̂2
z from a 3→ 3 map.

Here, we use a fourth Gaussian process GPnrm whose measurements are ỹnrm =√
ỹ2

x + ỹ2
y + ỹ2

z ∈ R and provides estimates m̂nrm. Otherwise, the procedure for training
hyperparameters and creating the compromise map for GPnrm is the same as described in
Section 4.4.

We define two error terms to compare the two methods of estimating magnetic field
norm. One is for the norm composed from the 3→ 3 vector map (vec) while the other is for
the 3→ 1 norm map (nrm)

evec_nrm =
√

m̂2
x + m̂2

y + m̂2
z − ỹnrm

enrm_nrm = m̂nrm − ỹnrm.
(12)

Table 4 lists the RMSE (Equation (8)) of terms from Equation (12) across four validation
flights. Here, we see both norm estimation methods are equivalent. The difference between
the two RMSE values is always less than 1 nT, which falls within the noise floor of the PNI
RM3100 on our platform.

Table 4. Norm (nrm) GPR versus vector (vec) GPR on estimating norm of magnetic field.

Flight ID and Description RMSE (µT)
evec_nrm ehrz_nrm

t6_04 (Lower Four Alts.) 0.391 0.390
t6_05 (Upper Four Alts.) 0.256 0.257
t6_06 (Scan-γ) 0.245 0.246
t6_20 (Scan-ε) 0.301 0.301

This result is reassuring in that there is no need to train a fourth Gaussian process
if a user wants the three vector components and the norm of the magnetic field. It is not
immediately clear if this result extends to angle-based compositions of the magnetic field,
such as declination [16] or inclination.

5.6. Consistency Check

Previous sections showed how to reduce (Sections 5.1 and 5.2.5), identify (Section 5.2.2)
and incorporate (Section 5.3) otherwise unmodeled noise from the UAV. However, there
may still be unmodeled errors in a magnetic field map from the movement of furniture or
if different platforms with their own unique noise sources are used (e.g., a map trained
on UAV data but used for pedestrian localization). This section introduces a method to
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assess the credibility of predictions from a magnetic field map. The goal is to indicate when
predictions from a magnetic field map are reliable and when it may be advantageous to
leverage a different sensing modality.

Here, we introduce the concept of “consistency” between a Gaussian process map and
a validation flight. Given a p → m magnetic field map, we say that a validation flight is
consistent with the map if all m GPRs, respectively, capture 96% of their error within two
standard deviations (2σ) of their uncertainty.

The 96% threshold is inspired by the expected number of points that fall within two
standard deviations of a univariate normal (Gaussian) distribution. Additionally, the 96%
threshold worked well for our test platform, our choice of GPR kernel (squared expo-
nential), the way we optimize hyperparameters (minimization of log marginal likelihood;
Section 3.1), and our target application of position localization. Although these kernel and
optimization methods are common, we have not investigated how different kernels or
hyperparameters influence our definition of consistency.

To demonstrate, we create a n1 = 511 compromise map of 2 Hz-downsampled ob-
servations from the following seven flight tests: t6_0, t6_1, t6_3, t6_4, t6_5, t6_6, t6_16.
We validate this compromise map on 10 Hz samples from four flight tests (t6_09, t6_11,
t6_15, t6_18) to illustrate how we use the consistency metric. Here, we train and validate
on different t6_XX tests, comparing them to the previous sections. We frequently use
this particular compromise map for studying position localization accuracy. The selected
validation flights serve as examples that aid in understanding the consistency check.

Figure 13 shows the map’s performance on the four selected validation flights. We
start with a case that easily passes the consistency test (Figure 13a). Test t6_11 fails the
consistency test since the GP z does not capture enough of its error within its 2σ uncertainty.
Please note that even though GP x and GPy have an accurate understanding of their error,
the poor performance of the GP z alone makes test t6_11 inconsistent with this 3→ 3 map.
If the GP z estimates are not needed (e.g., localization using magnetic field heading [16]),
then the inaccuracies of GP z may be irrelevant, and the map could still be useful.

Figure 13c shows an example of the flight-by-flight variation changing partway
through a validation flight. In this case, the first 1220 validation points easily pass the
consistency metric for all three GPRs. From 1220 to 1335, things worsen, and GP x barely
fails the consistency test. After data point 1335, all three GPRs fail the consistency check.

Since most of test t6_15 (up to point 1220) is consistent with the compromise map,
computing the 2σ percentage across the entire validation set gives (97%, 95%, 95%) for
each GPR, respectively. Working with these numbers alone (without having Figure 13c
for context), it is tempting to say all of t6_15 is consistent with the map (although barely).
However, since flight-by-flight variations can change bias values partway through a flight
test, it may be necessary to apply the consistency check to portions of a flight.

Finally, validating on t6_18 gives Figure 13d where the first 1242 validation points
undoubtedly pass the consistency test but GP z fails on the remaining points. Please note
that in Figure 13d, GPy also changes its behavior near index 1380, but we focus on GP z
since it fails first.

Ninety-six percent should be taken as a “rule of thumb” rather than a magic threshold
where something fundamentally changes. It is important to consider how the map will be
used when deciding whether a validation test should be rejected based on the consistency
check alone. Here, for t6_18 in Figure 13d, we also include the RMSE values (in blue) for all
points before and after 1242 to illustrate the accuracy of the compromise map before and
after the mid-flight bias shift.

For the analysis in ref. [9], though we did not realize it at the time, these flight-by-flight
variations were still present. Yet, we used magnetic field maps to improve attitude estimates
on a UAV. This may be due to the nature of attitude estimation, which compares the angle
of a measured vector against its corresponding reference vector. In [9], the flight-by-flight
variations did not significantly change the angle of the magnetic field reference vectors, so
they were less of an issue.
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Our preliminary results on magnetic field position localization show that the errors in
t6_15 (Figure 13c) and t6_18 (Figure 13d) are enough to confuse a particle filter and cause
noticeably larger estimation errors. The use of GPR-based magnetic field maps for position
localization (via a particle filter) drove the methods throughout this paper and influenced
our consistency check threshold. However, if the intended application is more robust to
“small” inaccuracies of the map, then a more lenient threshold may work.
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Figure 13. Consistency metric (red percentage) across four validation flights. Some error points are
larger than 2 µT and are cut off in the graphs. Such outliers are listed for { [GP x], [GPy], [GP z] } in
the respective subplot caption. Empty brackets indicate no hidden outliers for the respective GP .

6. Conclusions and Future Work

This paper presented a comprehensive approach to creating maps of local magnetic
field anomalies that are robust to noise from a UAV. Our study demonstrated how UAV
motor commands, distance from electronics, diversity of training points, and spatial density
of observations affect the accuracy of magnetic field maps. First, we showed that certain
portions of a vehicle’s PID controller can increase the measurable magnetic noise when
commanding the motors and ESCs on a flight vehicle.

Next, we characterized flight-by-flight magnetic field variations and presented two
ways to address them. The first entails moving the magnetometer further from the electron-
ics on the vehicle, while the second aims to inform the GPR-based map about flight-by-flight
variations through a “compromise” map. Our findings revealed that the compromise map
had similar accuracy to the “intermediate” map, which used four times as many reference
points to estimate the magnetic field. Additionally, compromise maps trained on observa-
tions spaced S = 0.20 m to S = 0.55 m apart yield similar accuracy. This finding should
inform coverage patterns used to gather observations for magnetic field maps.
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Finally, we emphasized that our proposed methods do not encompass all potential
mapping errors. Thus, we introduced a “consistency check” as a rule of thumb to assess
whether magnetic field observations from a given dataset are consistent with their magnetic
field map.

The goal of this work is to make magnetic fields a more accessible sensing modality
by creating robust magnetic field maps. We accomplish this using affordable components,
relying on real data, and focusing on the accuracy and consistency of the map itself. Our
methods and data should reduce the entry cost of learning to use and improving upon
magnetic-field-based navigation for indoor systems. In the future, we aim to use these new
magnetic mapping techniques for 3D position localization. In line with Section 5.5, we aim
to conduct studies similar to [17,39,40] that compare position localization accuracy against
the map’s output dimension m. We may also revisit the UAV attitude estimation work
in [9] with the new mapping methods. Finally, a component-wise causal analysis of the
flight-by-flight variations may better help us understand and mitigate the time-varying bias.
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Appendix A. Flight Test Name Reference

The, rather obtuse, naming convention for flight tests in this paper is meant to serve
the reader in associating results with the relevant data in the dataset. Recall that each flight
test is denoted as “tY_XX” where Y refers to the flight test series and XX is the two-digit ID
of the flight test in that series. Table A1 associates each series numbers Y used in this paper
with their respective directories in the dataset.

Table A1. Data used in this paper.

Test Dataset Use in
Series (tY) Directory This Paper

t1 20220617_batteryAndMagTesting S2 = 2 cm
t2 20220622_batteryAndMagPartTwo S2 = 4 cm
t3 20220627_verifyingSufficientMagDist S2 = 6 cm
t4 20220707_8cm_magAndBatt S2 = 8 cm
t5 20220503_maggieAndEstibonFlights ‘noisy’ versus ‘quiet’ PID controller gains
t6 20220901_researchData Intermediate and compromise maps. Consistency metric.

https://doi.org/10.5281/zenodo.7814818
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Appendix B. Stationary Magnetometer Data

Figure A1 shows four months of stationary magnetometer data. These data are from
a RM3100 magnetometer placed under a workbench at approximately (−3.5 m, +2.5 m)
as defined by Figure 2. The stationary magnetometer was sampled every 10 s (0.1 Hz)
by a BeagleBone Blue from July 2022 through February 2023. The stationary data are
partitioned at the start of each flight test series to make data correlation easier. However,
this made it cumbersome to plot all eight months of data. The final flight test for this paper
was in October 2022. The four months of stationary magnetometer data since then are
plotted in Figure A1.

Figure A1. Stationary magnetometer data from 27 October 2022 to 10 February 2023.

Raw data are depicted as black dots while median-filtered data (with a window size of
five) is shown as a red line. As with Figure 5, there are several spurious measurements that
span ±3 µT. In Figure A1, the outliers are cropped out to emphasize the average signal.

Figure A1 depicts a mean signal drift within 0.4 µT (for each axis) separated by
irregular jumps in the measured signal. From November 2022 through 9 February 2023,
there are seven distinct jumps in ỹz and fewer obvious jumps for ỹx and ỹy, respectively.
These jumps are likely cased by small movements of the magnetometer (or the workbench
above it) by others who use the workspace.

There was a tour of our lab on 10 February 2023 and an uncharacteristically large
jump recorded on the same date. We are confident this jump on 10 February is caused
by movement of a workbench during the tour so we omit data from 10 February onward.
The data in Figure A1 appears visually noisier than Figure 9, but both datasets have
quantitatively similar variance over ∼3-h segments.

If the jumps in Figure A1 are representative of a change in the ambient magnetic field,
this lends value to time-varying magnetic field mapping methods. Such methods become
very important if an indoor magnetic field map is only accurate for short periods of time.
However, although we cannot account for each one, we are confident the irregular jumps
in Figure A1 are caused by movement of nearby equipment in our shared workspace.
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