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Abstract: This paper presents the design and implementation of a spherical robot with an internal
mechanism based on a pendulum. The design is based on significant improvements made, including
an electronics upgrade, to a previous robot prototype developed in our laboratory. Such modifications
do not significantly impact its corresponding simulation model previously developed in CoppeliaSim,
so it can be used with minor modifications. The robot is incorporated into a real test platform
designed and built for this purpose. As part of the incorporation of the robot into the platform,
software codes are made to detect its position and orientation, using the system SwisTrack, to control
its position and speed. This implementation allows successful testing of control algorithms previously
developed by the authors for other robots such as Villela, the Integral Proportional Controller, and
Reinforcement Learning.
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1. Introduction

When talking about robotics, there is a wide spectrum in terms of design, so it is
very important to investigate the different types of structures that can bring a robot to life.
In the case of mobile robots, they can travel through their environment using different
mechanisms [1] such as wheels, legs, and caterpillars, among others, [2].

Spherical robots roll in order to move, just like a soccer ball. In particular, this type of
robot possesses an inherent complexity because of its internal components. Examples of
them can be found in the literature with wheel mechanisms, pendulums and omnidirec-
tional wheels [3,4].

Nowadays, it is possible to find some types of spherical robots, which have the advan-
tage of not being affected by overturning [5], since the interior adapts to the orientation that
the robot needs to move. They are normally used for the reconnaissance of places where the
terrain is not accessible [6]. On the other hand, they are used in the field of entertainment,
surveillance and exploration [7]. In addition, they have a wide variety of mechanisms that
allow for an effective displacement [8]. Among the uses that can be associated with this
type of robot is the reconnaissance of areas in military expeditions, allowing the generation
of safe spaces for soldiers [9]. Another application is extra-planetary exploration [7] since
this robot is less likely to get stuck in the terrain where it moves. It is also used to explore
sectors where the environment is toxic for humans and conventional robots [10]. They
can also be used in the field of learning since these robots are applied to learning related
to automatic control and programming. In essence, this type of robot serves as a good
observer or research robot.
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There are a number of mechanisms that can be used for their movement [8,11–15]
briefly explained below. The Hamster sphere imitates the movement of the sphere with a
hamster inside. It is a non-holonomic type of movement. It presents several problems in its
design. The internal drive unit (IDU), the internal components of this robot are in contact
with the sphere at all times. It is a low-cost robot, however at high speeds, the steering
control is complex. Notable enhancements, this type of robot is known for the adaptation
of the housing to the environment, in some cases, it has been modified to place a camera,
a hidden leg mechanism or even to allow jumping. Multiple-Mass-Shifting, the internal
mechanism is composed of three or four masses which allows changing the centre of
mass to cause movement. It is of holonomic type, its position and mechanical control
can become quite complex. A deformable body is based on the deformation of the casing
which produces a change in the centre of mass, causing the movement. It is an incipient
model, where the importance of the mechanism is in its cables since when passing current,
they retract and once they cool down they return to normal. This prevents short-distance
tests from being carried out. The Single ball is based on the principle of the ball mouse,
considering the inverted mechanism. It requires precision in the design. Currently, there
are no commercial robots of this type. Finally, there is the pendulum-driven robot, quite
popular in industry and academia. The internal system contains a pendulum which swings
away from the side the robot needs to go. Its speed will be determined by the weight of
the pendulum. Our robot is also based on a pendulum, but it only swings forward and
backward, and the orientation is achieved by rotating it. This differentiates the motion
by imposing an extra difficulty in controlling the robot, derived from the frictions. To the
best of our knowledge, our work represents the first time controlling an actual robot with
a rotating internal pendulum, being a difference with previous works with a swinging
pendulum [15,16].

This article presents the construction and testing of a real spherical robot whose motion
is based on an internal pendulum. The robot consists of a spherical-shaped cover that
protects the pendulum and the internal circuits that allows it to roll to move from one place
to another. This type of morphology has a fundamental advantage, namely, no tipping
over, which gives the robot a certain degree of stability in its movement. At the same time,
it presents certain disadvantages in terms of sliding on the surface and difficulties with the
presence of obstacles or irregularities in the terrain [4,17,18].

The benefits of performing tests or trials with robots built in laboratories under con-
trolled conditions include the ability to obtain accurate results of their motions, resulting
in a better comparison with simulations. Especially, since the simulations are close to
ideal, and effects such as frictions of the surface or the internal mechanism, and the type of
construction materials are not easily captured.

Our goal was to develop and test a simulation model of the spherical robot, as done in
previous investigations [19,20] with the Khepera IV robot in the CoppeliaSim simulator [21],
but implemented on a real spherical robot. For the construction, the preliminary develop-
ment of a laboratory model was taken into account [22]; which is built by improvements in
design and in the electronic circuit. This model was tested with various control strategies
in different scenarios.

The main contributions of this article are as follows:

• The construction of the robot. From the 3D printing of the parts to the electronic circuit.
It was optimized for greater durability in its operation.

• The development of the test platform. With its respective configuration to obtain the
detection and orientation of the robot in a controlled space, including its code for TCP/IP
communication, and for better sensing and performance (written in Python-Java).

• The realization of experimental tests. For this purpose, different scenarios were
established for the controllers. Further, a comparative analysis with simulation results,
to determine similarities or differences in all scenarios, is included. The simulator was
also used for controller design.
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This is a challenging task due to the complexity involved in the construction and
implementation of control algorithms on a spherical robot. The developed model [23]
is controlled in different scenarios with several control algorithms tested by the authors
in previous studies [24], including Villela [25], IPC (proportional integral controller) [26],
and reinforcement learning (RL) [27,28]. The conducted experiments for testing the mobility
of the real robot including the robot design, both electronic and 3D, adjusting the position
control, trajectory tracking and comparative analysis between the different scenarios. As a
result of this work, the model and some examples are available online for the mobile
robot community.

The article is organized as follows: Section 2 describes the construction of the spherical
robot. Section 3 shows the development of the test platform. Section 4 presents the control
laws used with the spherical robot. Section 5 includes a comparative analysis of the tests
performed on the position control with respect to the simulation. Section 6 shows the
tests performed on the position control with different targets. Finally, Section 7 presents
conclusions and discusses future work.

2. Robot Architecture
2.1. 3D Design

Considering factors such as cost, the feasibility of materials, low complexity in the
design, good motion control, and the possibility of construction in a short period of
time, the driven pendulum mechanism was chosen as the method to be used. Therefore,
the position control tests will be based on the controls carried out in article [24]. The model
simulated in the article is represented by Figure 1 and considers the robot as a whole,
consisting of 3 parts. The housing (a), the pendulum (b) and finally the mechanism for
the electronics (c). Inspired by this simulation design, the robot is built to perform the
respective tests.

Figure 1. Model of the spherical robot in the simulation: (a) Spherical robot. (b) Pendulum. (c) Elec-
tronic mechanism.

For the construction of the robot, the model was designed in thinkcard 3D. In the case
of the housing, 2 symmetrical pieces were printed, one red and one green. The diameter of
the circumference is 20 cm and to join both pieces a thread system was devised to allow
quick and easy access to the circuit.

The internal mechanism is composed of two pieces, one that holds the electronic
components and the other that shapes the pendulum. The pendulum houses 0.627 kg of
weight distributed evenly among its fins to generate the required moment for turning.
In the centre, it has a 3.7 cm column which is connected to a DC motor. As for the inner
support, this was designed to contain the servomotors, the DC motor, and the rest of the
components used. It is a symmetrical piece that is long enough to reach both ends of
the sphere. All parts were printed in PLA material on a Creality CR 10 max printer.
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2.2. Electronic Circuit

Regarding the circuit, the original microcontroller ESP8266 was upgraded to an ESP32.
The new microcontroller handles more memory, which allows for the management of more
data, considering future works. Further, it was found that the regulator was wasting energy
and increasing the temperature, so a step-down dc-dc module was added that allowed
working with 5 V in the motors and feeding the ESP 32 in a more efficient way, providing
more autonomy to the robot. The rest of the components used are two 360° servomotors,
an XL600e step-up DC-DC converter, a DC Driver Module, a 6050 MPU, 18,560, batteries
and cables. Figure 2 shows the connections of each of the components.

7.5 V 5 V 12 V

Figure 2. Electronic circuit used for the construction of the spherical robot.

The robot is composed of two servomotors connected horizontally to the spherical
shell allowing forward movement, and a DC motor connected to the pendulum to make
the clockwise or counterclockwise movement. The three motors are driven by PWM
signals to modify their speeds. For practical purposes masking tape was used to attach the
components to the base, as shown in Figure 3a, where the locations of the components are
specified. Finally, the Robot with its integrated parts can be seen in Figure 3b. It should be
noted that for better visual detection and tracking, the original holes were covered with
paper of the same colour as each semi-circumference.

Figure 3. (a) Component locations: (i) 360° Servomotors. (ii) Batteries 18560. (iii) ESP32 micro-
controller. (iv) Other components. (b) Spherical Robot.

3. Position and Orientation Detection System

The platform used in this work was designed for previous works. For example in
the work with the Khepera IV robots [29], where different position control tests were
performed under similar conditions. However, for this occasion, the base of the platform
was substituted for a better performance of the spherical robot, i.e., reducing the friction.
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Physically, the platform is composed of a USB camera fixed at the top, and a surface
of 1.6× 2.8 m, smooth enough to allow the robot to rotate with less friction. The platform
used can be seen in Figure 4. The camera is connected to the computer, which runs the
software Swistrack and the Easy Java Simulator program [30]. The router is connected to
the computer, which allows communication with the robot.

Figure 4. Test platform for the spherical robot.

The communication used was through TCP/IP between the microcontroller (Micro-
Python) and the PC Module (Java). The information obtained by the USB camera is
processed by Swistrack and sent to the EJS software. This in turn sorts out the data and
sends it via WIFI to the robot. The Robot receives and decodes the data and then implements
the position control. The computer vision-based tracking takes around 100 ms per frame
to process the position and orientation sent to the robot. This delay is far greater than any
delay in TCP/IP communication. On the other hand, the nature of the robot makes it a
slow one, with a maximum time constant estimated in the order of 1 s. This allows for
effective control despite the network and image processing delays. In Figure 5 it is possible
to observe the communication between the programs and the robot.

Swistrack

$FRAME
$PARTICLE

SERVER
TCP 30001

1

Spherical Robot

SERVER        SOCKET
CLIENT         TCP 8080 2 EJS

SWISTRACK
CLIENT

TCP 30001

Figure 5. Communication PC module and spherical Robot.
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In order for the Swistrack to send the robot’s position and orientation information, it
must first be configured for sensing. To do this, we start with the calibration of the platform, in-
dicating reference points spaced at 40 cm between the X and Y axes, [31]. Figure 6 shows what
is captured by the camera. Once the above has been done, we proceed to the configuration:

• Input from USB Camera: Recognizes the camera to be used, in this case, it is consid-
ered −1.

• Timer Trigger: This trigger component processes frames (in constant intervals) at a
given frame rate. Its value is 0.05 s.

• Convert to Color: This tool guarantees that the resulting image will be in colour
(3 channels). In the case of one colour input, nothing is done. In the case of another
input, the conversion is calculated.

• Adaptive Background: Removes the background of an image and replaces it with a
black colour. Indicate Subtraction (colour), Update 0, Truncate (I-B).

• Red- Green Marker Detection: Detects objects that have green and red colours. Char-
acteristics: Max 1 Blobs (Detect only 2), Max 100 pixels (of max. 100 pixels) Red
Blob Threshold 55, Min blob 5 pixels, max blob 1000 pixel. Green Blob Threshold 55,
Selection by area, Min blob 5 pixels, max blob 1000 pixel.

• Calibration with a linear Model: The calibration file of the platform must be attached,
in this case, PS3-640×480.xml.

• Output Particles: This component writes the particle positions (and other properties).

Figure 6. Switrack configuration: (a) Input from USB Camera. (b) Convert to colour. (c) Adaptive
Background. (d) Red- Green Marker Detection.

When the robot position and orientation (xc yc, θ) are obtained, Swistrack sends to the
PC Module via TCP/IP server using the default port 3001 the data. These are written in
NMEA (National Marine Electronics Association) [29], so it is necessary to decode them to
be sent to the robot.

Once in the PC Module, the EJS program obtains the values received by the Swistrack
and decodes them in order to obtain the values in integer format. In the case of the spherical
robot, the data will be sent as a single string, including the position X,Y and the orientation
θ of the robot. The latter is defined between −π to π. The Robot in turn will receive the
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information sent by the EJS converting the data to integers first and then floating numbers,
in order to perform the position control calculations.

4. Position Control

Position control is basically obtained by changing the orientation of the robot as a
reaction of the rotation of the internal pendulum actuated by a DC motor, and rolling the
outer spherical shell as a reaction of the rotation of the servos and the effect of gravity
over the pendulum. The control is then split to address lateral-directional dynamics and
longitudinal dynamics, separately. The two moving mechanical pieces, the spherical shell
and the pendulum are each subject to friction, so the rotation of the shell as a reaction to a
constant rotation of the pendulum tends to die out in a steady state. This is evident from
the dynamic model detailed in [24] where the motor torque and pendulum angular speed
cancel out leaving the angular speed dynamics as a low pass filter without any input.

As shown in Figure 7 (from [24]), the idea is to control the robot to approach a target
by rotating to point to the target while moving forward. This is done by reducing the
angle αe = α− θ while progressing towards the target and reducing the distance d. Due
to the nature of this robot, the lateral-directional dynamics mainly react to a change in
the pendulum’s angular speed. A proportional controller approach such as feedback of
the αe signal is not sufficient, and a new signal needs to be feedback, in this case, a slow
accumulation in time of the integral of αe called αeacc . All three controllers detailed below
were supplemented by the addition of this new variable in order to achieve controllability.

Figure 7. Position control geometry, from [24].

The control laws used in this work were designed and tested in simulation in a
previous work, and were preliminary adjusted in the robot simulator software CoppeliaSim.
The parameters were first adjusted by analyzing the robot’s movement in simulation. Then,
due to the differences between the simulator´s model and the actual robot, the controller
parameters were fine-tuned for the real experiments.

As explained, all controllers were expanded by adding the extra signal needed to
overcome the nature of the robot, namely αeacc . This signal is a slow accumulator version of
the angle αe given by:

αeacc(t) = kt

∫ t2

t1

αe(t)dt (1)

with kt =
1

1000 experimentally tuned.
Common to all controllers, for lateral-directional dynamics the angle αe and its time

integral are mapped to the commanded robot’s angular speed w, and for the longitudinal
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dynamics, the distance d is used to command the translational speed V. This is shown in
Figure 8.

Compute Control Law Motors

Position Sensor

𝑇𝑝
𝑉

𝑤

𝑥, 𝑦, 𝜃
𝑑

𝛼𝑒𝑎𝑐𝑐
𝛼𝑒

𝐶

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 𝑅𝑜𝑏𝑜𝑡

Figure 8. Control block diagram.

Due to the nature of the two types of actuators, the two control signals V and w are in
practice acting as virtual controls, directly setting each one the respective speeds without
any significant dynamics inherently of the actuators. As is explained below these quantities
are appropriately scaled and then converted onto PWM signals. The control signal w for
Villela and IPC controllers is implemented by Equation (2).

w(t) = −kαe αe(t)− kαeacc αeacc(t) (2)

A slight modification was done to the original formulations of the controllers Villela
and IPC ([24]) due to limitations in the size of the test bed. The sine function applied to αe
was not used allowing a faster correction by acting directly on the magnitude of the angle.
This was significant especially at larger values, thus reducing the space required for the
robot to orient itself towards the target.

4.1. Villela Algorithm

Considering the development of position control in article [25], it is implemented with
kαe = 2.18, and kαeacc = 238.74.

4.2. IPC Algorithm

Considering the development of position control in article [26], it is implemented with
kαe = 1.90, and kαeacc = 238.74.

4.3. Reinforcement Learning Algorithm

The control signals w for the Reinforcement Learning controller are implemented by:

w(t) = −k fRL fRL(αe(t))− kαeacc αeacc(t) (3)

with k fRL = 0.001, and kαeacc = 31.83, and fRL a function generated from the application
of the reinforcement learning approach Q-learning [32–34]. Reinforcement learning was
designed based on an explicit mathematical model detailed in the previous work [24],
where the considerations for the tuning process are presented.

The generation of the control signal V is implemented by the following logic:

V(t) =

{
Vmax(t) i f |d(t)| > kr

d(t)Vmax
kr

i f |d(t)| ≤ kr
(4)
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with Vmax around 30 cm/s and Kr = 10 cm. This logic allows for a fast approach to the
target while further away, and slowing it down in close proximity.

5. Comparative Analysis of the Real Robot v/s Simulation

Two variables are obtained from the controller, one related to the linear velocity of the
robot called V, and the other to the angular velocity called w. To convert the value of V or w
to a PWM signal it was necessary to perform a scaling from 0 to 1023. The movement of the
robot is produced by two servo motors which move at linear speed. For this, the controller
delivers a value of V, which is taken to a proportion of the PWM signal that works by
letting the signal pass between 2000 and 4500 nanoseconds. Specifically, in the case of the
servo, it worked a time of 2050 nanoseconds where the pulse is activated and thus the servo
motor is turned on. On the other hand, the DC motor generates an angular movement in
the robot, from the controller takes the value of w, which is taken to a proportion of the
PWM signal that works between 20 and 100 per cent of the duty cycle (205–1023) which
activates the pendulum at a certain speed. The direction of rotation is indicated by the sign
of the w value. The combination of these motors allows the robot to move forward and
turn to orient itself to the target point.

After performing the different tests per controller, a comparison was made with
the simulation in CoppeliaSim; working with the same considerations as the article [24].
The simulator was created for preliminary controller tuning and analysis of the robot´s
dynamics. The weights and physical and geometrical characteristics of the real robot were
added to the simulator for good fidelity. Each of the tests was compared with the behaviour
of the robot, verifying the path taken and the time took to reach the target.

5.1. Villela Algorithm Results

The first simulation tests were done with the Villela controller.

Target: Xp = −80 cm, Yp = 0 cm

In this case, the starting point of the robot is position Xc = 40 cm, Yc = 0 cm and its
target is at Xp = −80 cm, Yp = 0 cm. The arrow shows the initial orientation at 0 degrees.
Figure 9 shows the path of the robot, as well as the time it takes to reach the destination.

It can be observed in this case that both the simulation and the behaviour of the
robot, in reality, are similar in the path. However, in terms of time, the simulation takes
considerably less time, reaching the target approximately 6 s earlier.

This difference can be produced by both the surface and the geometrical considerations
that differ from the model built since it is based on the simulations performed in article [24]
and adapted for the robot built in this article.
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Figure 9. Position and distance to target Xp = −80 cm, Yp = 0 cm with the Villela controller.

Finally, observing the figure it is possible to determine that the robot maintains its
behaviour with respect to the path taken, in terms of time the real robot takes more time to
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reach the target. This can be directly related to the speed chosen for the servomotor and the
difference in dynamics between the simulated and the real robot.

5.2. IPC Algorithm Results

The following tests were performed with the IPC controller.

Target: Xp = −80 cm, Yp = 0 cm

In this case, the robot’s starting point is position Xc = 40 cm, Yc = 0 cm and its target is
at Xp = −80 cm Yp = 0 cm. The arrow shows the initial orientation at 0 degrees. Figure 10
shows the robot’s path and the time it takes to reach the destination.
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Figure 10. Position and distance to target Xp = −80 cm, Yp = 0 cm with the IPC controller.

In the simulation case, the trajectory used is much broader than in the real case.
Therefore, it could be said that the trajectory is not exactly the same as in the simulation.
However, in terms of time, the robot maintains a similar distance-time relationship, which
is held as it approaches the target. This difference in the path may be due to the same
reasons stated in the Villela control.

Finally, observing the graphs, it is possible to determine that there are differences in
behaviour both in the travel, since the real robot decreases its angular error faster than
in the simulation, travelling less distance. This may be due to the difference between
the mathematical model and reality, where both the considerations of surfaces and the
geometry of the robot may not be so similar.

5.3. Reinforcement Learning Algorithm Results

The last controller analyzed was RL.

Target: Xp = −80 cm, Yp = 0 cm

In this case, the robot’s starting point is position Xc = 40 cm, Yc = 0 cm and its target is
at Xp = −80 cm, Yp = 0 cm. The arrow shows the initial orientation at 0 degrees. Figure 11
shows the robot’s path and the time it takes to reach the destination.

As in the first test, the behaviour of the robot is similar to the simulation, since it
performs a very similar path, and in terms of the distance-time relationship, the graphs
maintain a considerable similarity.

Finally, observing the graph, in this controller it can be seen that the simulation does
maintain similarities compared to reality.



Sensors 2023, 23, 3895 11 of 16

-80 -60 -40 -20 0 20 40

X [cm]

-60

-50

-40

-30

-20

-10

0

10

20

30

Y
 [
c
m

]

Position - Target: Xp=-80 cm Yp=0 cm

Target

Real

Simulation

0 2 4 6 8 10 12 14 16 18

Time [s]

0

20

40

60

80

100

120

140

d
is

ta
n
c
e
 [
c
m

]

Distance v/s Time - Target: Xp=-80 cm Yp=0 cm

Real

Simulation

Figure 11. Position and distance to target Xp = −80 cm, Yp = 0 cm with the RL controller.

6. Experimental Results: 3 Tests For Each Controller

To check the operation of the robot driven by different controllers, tests were performed
in three different scenarios which will be explained below according to the location of
the target.

In the following three subsections, each figure will show the Villela controller in blue,
IPC in red and Reinforcement Learning in green. They will show on the left graph the path
taken by the robot to reach the endpoint, while on the right, the decrease in distance as a
function of time. The same considerations when managing PWM signals apply here.

6.1. Target: Xp = −80 cm, Yp = 40 cm

For the first case Xc = 0, Yc = −40 was used as the starting point and Xp = −80,
Yp = 40 as the target. The arrow shows the initial orientation at 0 degrees. Figure 12
shows the results. At a glance, it can be seen that the IPC controller is the fastest with an
approximate time of 9 s to reach the destination.
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Figure 12. Position and distance to target Xp = −80 cm, Yp = 40 cm.

On the other hand, the RL controller is the one that takes the longest time with 12 s,
this is due to the fact that when approaching the target it made a deviation that prevented
it from arriving in less time, having to correct the orientation and therefore taking almost
3 s more.

Furthermore, the quality of each control algorithm is evaluated using performance
metrics. These metrics use the error integral, which in our case is the distance to the target
point. The performance measures considered in this paper are (1) total quadratic error
(ISE), (2) total absolute error (IAE), (3) total time total quadratic error (ITSE) and (4) total
time absolute error (ITAE).
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In terms of performance indices shown in Table 1, the best values are in bold. It can
be observed that the indexes are smaller in the RL control, however, when observing the
graphs in Figure 12, the controller is the one that takes the longest time to reach the target.

Considering the above, it could be expected that the ITSE and ITAE indices would
be higher, however, the distance that the other controllers have generates compensation.
Finally obtaining a better RL index.

Although at the beginning of the path it is the first to reduce the angular error, dur-
ing the path close to the target it deviates, which produces this delay in comparison with
IPC, which is the most competitive after RL. In relation to Villela, it takes the longest and
consequently has the worst performance indexes.

Table 1. Performance indexes Xp = −80 cm, Yp = 40 cm.

Indexes Villela IPC RL

IAE 797 703 641
ISE 76,977 68,857 53,879

ITSE 275,800 219,640 150,900
ITAE 3307 2579 2517

6.2. Target: Xp = −80 cm, Yp = 0 cm

In the second case, the starting point was Xc = 40 cm, Yc = 0 cm and the target was
Xp = −80 cm, Yp = 0 cm. The arrow shows the initial orientation at 0 degrees.

Figure 13 shows the results. At a glance, it can be seen that the RL control is the fastest
with an approximate time of 8–9 s to reach the destination, followed by the IPC control
which takes 11–12 s since it must correct its orientation along the way increasing the arrival
time. While the Villela controller takes the longest time with 21–22 s since it is the longest
trajectory of the 3.
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Figure 13. Position and distance to target Xp = −80 cm, Yp = 0 cm.

In terms of performance indices shown in Table 2, the best values are in bold. It can
be observed that the indices are again lower in the RL control, by observing the graphs in
Figure 13, it is indeed the controller that takes the shortest time to reach the target.

On the other hand, and as in the previous case, the IPC controller is the most com-
petitive, both in the time it takes to reach the target and in the performance index values,
despite the fact that it must correct its orientation several times along the path to reach the
target, unlike RL, which generates a more direct trajectory.

In relation to Villela, it takes the longest and consequently has the worst perfor-
mance indexes.
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Table 2. Performance indexes Xp = −80 cm, Yp = 0 cm.

Indexes Villela IPC RL

IAE 1884 882 710
ISE 209,570 87,355 77,755

ITSE 1,470,200 311,500 228,790
ITAE 15318 3878 2408

6.3. Target: Xp = −40 cm, Yp = 0 cm

In the third case, Xc = 0 cm, Yc = −40 cm was used as the starting point and
Xp = −40 cm, Yp = 0 cm as the target. The arrow shows the initial orientation at 0 degrees.

Figure 14 shows the results. At a glance, it can be seen that the RL control is the fastest
as in the previous case with a time of approximately 7 s. Followed by the IPC controller,
which takes approximately 9 s to reach the destination. While the Villela controller is the
one that takes the longest time with 12 s, due to the distance travelled in time, as it can be
seen in Figure 14.
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Figure 14. Position and distance to target Xp = −40 cm, Yp = 0 cm.

In terms of performance indices shown in Table 3, the best values are in bold. It can be
seen that the indices in the other cases are lower in the RL control. Observing the graphs in
the previous figures, it can be seen that the RL controller takes the least time to reach the
target, followed by the IPC control. It can also be seen from the position graph that both
controllers must correct their orientation during the trajectory, which causes them to take
longer to reach the target. In relation to Villela, it takes the longest and consequently has
the worst performance indexes.

Table 3. Performance indexes Xp = −40 cm, Yp = 0 cm.

Indexes Villela IPC RL

IAE 693 477 475
ISE 51,437 32,462 39,758

ITSE 208,130 96,459 107,610
ITAE 3248 1696 1454

After analyzing the 3 cases, it can be affirmed that the RL control was the one that
obtained the best yield index. In spite of the fact that on one occasion it took longer to reach
the target point. The good results of the experiments can be attributed to their optimal
nature given the prior training that must be performed in order to make the best approach
decision to the target.

In the second place, the IPC control followed closely with very similar values. What
made the difference, however, was that on two occasions, this controller took approximately
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one second longer to reach the target. This resulted in slightly higher rates. Both controllers
had to correct their orientation along the way on several occasions during some tests, which
resulted in a long time to reach the target.

In all three tests, Villela was the controller with the worst results in terms of time and
performance indices. Although like the other controllers, it had to correct its orientation, it
still took much longer to reach the target point.

7. Conclusions

This paper presents the design, construction, and implementation of a spherical robot
model, whose method of motion is based on an internal pendulum. The 3D model design
was developed using Tinkercad 3D modelling and design software. While the electronics
were developed based on the ESP32 microcontroller, the position control strategy was
programmed in Python and Java programming languages.

In order to verify its performance, different position control experiments were carried
out. The results obtained with the different control laws and experiments showed that the
design and implementation of the robot model were satisfactory since its behaviour was
better than that obtained in the simulations.

The comparative analysis between the real robot and the simulation showed that
in certain scenarios the controllers maintained similar results to the simulation, while
in others, a significant difference was observed. This is mainly due to the fact that the
surface friction modelled in a mathematical model is not the same as the reality, even after
extensive fine-tuning. Other behavioural differences between simulation and reality are
the physical/geometric structure of the CoppeliaSim which is not exactly the same as that
of the robot, i.e., dimensions, mass distribution, inertias, etc.

On the other hand, the experimental tests indicated that when comparing the three
controls in the simulation platform, the RL control obtains a better response, since in
most of the situations it reached the target first, followed by the IPC control with very
similar values.

Future work will consist of improving the communication between the PC module
and the robot, which is currently done via TCP/IP, to incorporate ROS, an operating system
that is much easier to use and that the microcontroller supports without problems.
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