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Abstract: The location of the grounding grid conductors is critical for performing corrosion diagnosis
and maintenance work. An improved magnetic field differential method to locate the unknown
grounding grid based on truncation errors and the round-off errors analysis is presented in this
paper. It was proven that a different order of the magnetic field derivative can be used to determine
the position of the grounding conductor according to the peak value of the derivative. Due to the
accumulative error of higher differentiation, the truncation error and rounding error were used to
analyze to accumulative error and to determine the optimal step size to measure and calculate the
higher differentiation. The possible range and probability distribution of the two kinds of errors at
each order are described, and the index of peak position error was derived, which can be used to
locate the grounding conductor in the power substation.

Keywords: magnetic field differential method; optimal step size; rounding error; truncation error

1. Introduction

The grounding grid is an important piece of equipment that provides a common
reference ground for various electrical equipment in the substation, quickly discharges the
fault current in the event of a ground fault in the system, improves the ground potential
distribution in the substation field, and ensures the safety of primary and secondary
equipment and personnel under fault conditions [1,2]. The material of the grounding grid
of the power system is mainly copper, which does not easily suffer from soil corrosion.
In recent years, in Europe and the United States, steel gradually began to replace copper
as the grounding grid material, but the steel grounding grid in operation for a relatively
short period of time has not suffered serious corrosion. However, in China, India and
other countries, since the conductors of the grounding grid are mostly made of steel, with
the increase of the operation period, corrosion is prone to occur due to improper welding
construction and the influence of geological conditions, and the conductors may become
thinner or even broken [3–5], resulting in the grounding performance becoming reduced
and the safety difficult to guarantee [6,7].

The grounding grid is buried in soil about 0.8 m deep underground, making it difficult
to excavate and replace [8]. Therefore, predicting corrosion defects of the grounding grid
based on information that can be obtained above the ground is important for guiding oper-
ation and maintenance [9–11] and has important engineering significance. In grounding
grid research, generally, the optimization design of the grounding grid and the grounding
performance of the grounding grid are studied [12,13]. In addition, many scholars have
carried out research on grounding grid fault diagnosis, mainly based on electrical network
theory [14–16] and electromagnetic field theory [17–29]. The method based on electrical
network theory equivalently treats the branches of the grounding grid as pure resistances,
injects current into the grounding grid, measures the conductor branch or node voltage
of the grounding grid, studies and establishes a fault prediction diagnosis model, and
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uses optimization algorithms for solving [30–33]. These methods are based on the known
topological structure of the grounding grid to perform grounding grid fault diagnosis.
However, when diagnosing the grounding grid of a substation with a long history, some-
times the grounding grid drawing is missing or the actual structure of the grounding grid
has a large error from the existing drawing due to reconstruction. In order to obtain the
structure of the grounding grid, the grounding grid topology detection methods based
on electromagnetic induction principle are widely used, mainly including the electrical
source detection method (magnetic field method) [18–26] and the magnetic source detection
method [27–29].

The magnetic source detection method uses a transmitting coil placed on the ground to
pass a certain frequency of current. The induced currents generated by underground metal
bodies under the excitation of the primary magnetic field produce changing magnetic fields
in the surrounding space, called secondary magnetic fields. The position and orientation of
underground metal conductors can be obtained by measuring the secondary magnetic field
information received by the surface receiving coils. Magnetic source detection methods
are divided into the frequency domain electromagnetic method and the time domain
electromagnetic method according to different excitation and response characteristics.
The time domain electromagnetic method is also called the transient electromagnetic
method [27]. However, detection methods based on magnetic sources are greatly affected
by metal structures.

The magnetic field method injects a sinusoidal current of a specific frequency into
the grounding grid through the two upper guide wires of the grounding grid, measures
the magnetic induction intensity generated by the current-carrying conductor of the
grounding grid on the earth’s surface, and analyzes the distribution characteristics and
laws of the magnetic induction intensity to determine the structure and fault states of
the grounding grid [25]. Knowing the distribution of the magnetic field generated by the
conductor of the current-carrying grounding grid on the surface, the inverse problem
equation of the magnetic field can be established to solve the topological structure of the
grounding grid. However, the inverse problem is usually ill-conditioned, it is difficult
to obtain a unique solution or a stable solution, and complex regularization is required.
The analysis method based on the magnetic field differential can avoid the solution
of the inverse problem [34–37], but the error introduced in the numerical differential
calculation may make the position of the grounding grid conductor deviate, and the
selection of an appropriate measurement step is of great importance for the accurate
determination of the conductor position.

In order to improve the reliability of the magnetic field differential method, this
paper analyzed the range and probability distribution of the truncation error and round-
ing error produced by the numerical differential of the magnetic field method, derived
the expressions of the mathematical expectation and variance of the differential main
peak position error, and finally used Monte Carlo simulation to calculate the local opti-
mal measurement step size under the second and fourth order differentials so that the
magnetic field differential method reduced the total error and improved the accuracy of
conductor positioning.

2. Error Analysis of Magnetic Field Differential Method
2.1. Magnetic Field Differentiation Method

The grounding grid is composed of regularly connected horizontal grounding con-
ductors. The branch position information can be obtained by analyzing the distribution
of the magnetic field generated by the current-carrying conductor branch. The rough
outline of the grounding grid topology can be obtained by measuring the magnetic flux
density distribution on the ground surface. However, due to the wide influence range of
the magnetic field and the influence of the superposition of the magnetic field, it is not
possible to accurately locate the conductor using the original magnetic field distribution
characteristics. The magnetic field differential method can enhance the peak characteristics
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of the magnetic field through high-order differential and can improve the positioning
accuracy of the grounding grid conductor. The magnetic field differentiation method is
described below using a single current-carrying conductor model.

The infinitely long conductor is placed on the x-axis through the coordinate origin, as
shown in Figure 1; the conductor is buried horizontally in a single layer of uniform soil
with a magnetic permeability µ; the buried depth is h; the current flowing through the
conductor is I; and the direction of the current is vertical outward in the y-z plane. For
point P on the ground surface, the vertical distance from the current-carrying conductor is
ρ, and the angle between the line segment OP and the z-axis is θ.
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Figure 1. Single conductor current-carrying model.

According to the principle of potential continuity, the potential on both sides of the
interface between the conductor and the soil is equal, and the resistivity of the conductor
is significantly smaller than that of the soil. Therefore, the current density in the soil is
significantly smaller than that inside the conductor, and the influence of the soil leakage
current is negligible. Neglecting the leakage current of the conductor in the soil, the
magnetic flux density generated by the current-carrying conductor at point P can be
expressed by Ampere’s loop theorem as follows:

B =
µI

2πρ
eφ. (1)

where eφ is the unit vector in the direction perpendicular to the unit vector eρ, and eρ is the
unit vector in the direction of the line OP.
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From the geometric relationship, it can be concluded that the magnetic flux density
By(y) parallel to the ground generated by the current-carrying conductor at point P is:

By(y) = −
µIh
2π

1
h2 + y02 . (2)

Equation (2) describes the distribution of magnetic flux density in the horizontal
direction generated by a single current-carrying conductor, which is called the shape
function. For a grid-shaped grounding grid, the magnetic flux density distribution in the
horizontal direction on the ground surface of the grounding grid can be equivalent to the
superposition of the shape functions of each current-carrying branch of the grounding grid.

The higher the differential order of the shape function, the more complex its expres-
sion. Considering that the even-order derivative has the main peak characteristic, this
paper calculated only the second-order differential and fourth-order differential of the
shape function.

B(2)
y (y) =

µIh
π

h2 − 3y2

(h2 + y2)
3 , (3)

B(4)
y (y) = −12µIh

π

h4 − 10h2y2 + 5y4

(h2 + y2)
5 . (4)

When I = 1 A, h = 1 m, the curves of the shape function By(y), the second-order

differential B(2)
y (y), and the fourth-order differential B(4)

y (y) of the shape function are shown
in Figure 2.
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Figure 2. Curves of three shape functions.

The main peak width in Table 1 is the width between the two zero points (or 1% of
the main peak value) of the main peak. The side peak width is the width between the
two zero points (or 1% of the main peak value) of the side peak adjacent to the main peak.
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The Widess resolution Rw is the ratio of the energy of the main peak maximum b2
M of the

function to the total energy of the function E:

Rw =
b2

M
E

, (5)

where bM is the maximum of the shape function

E =
∫ ∞

−∞
b2(y)dy. (6)

where b is the shape function.

Table 1. Comparison of function shape properties.

Function Main Peak Width (m) Side Peak Width (m) Widess Resolution

|By(y)| 19.90 - 0.6361
|B(2)

y (y)| 1.1552 3.3739 1.6849

|B(4)
y (y)| 0.6504 1.0516 2.2847

From the comparison of the data in Table 1, it can be seen that, with the second-order
and fourth-order derivatives of By(y), the width of the main peak and the width of the side
peaks gradually decrease, the total number of peaks and the Widess resolution gradually
increase, and the signal recognition ability enhances. According to Equations (4) and (5),
the positions of the main peaks of functions B(2)

y (y) and B(4)
y (y) are the same as those of

the current-carrying conductors and are both at y = 0. Therefore, the positions of the main
peaks of the second-order derivatives or fourth-order derivatives of the magnetic flux
density By(y) can be used to determine the locations of the grounding grid branches in the
measurement area and thus to map the grounding grid topology.

2.2. Simulation of Current-Carrying Grounding Gird

As shown in Figure 3, a 2 × 2 grid of flat steel (cross-sectional area of 4 cm × 3 mm)
was laid with a grid spacing of 5 m. The current of 1 A was injected from node 4 and flowed
out from node 3. A Cartesian coordinate system x-y-z was established with node 1 as the
origin of the coordinate axis, and the positive direction of the z-axis was perpendicular to
the x-y plane upward. Below the plane z = h, there was a single layer of homogeneous soil
with magnetic permeability µ. The magnetic permeability of the soil was approximated by
taking the permeability µ0 in a vacuum. The resistivity of the conductor was significantly
larger than that of the soil, and the soil leakage current had a negligible effect on the
simulation results of the magnetic flux density. Therefore, we set a typical value of 80 Ω·m
for the soil resistivity.

Through the shape function of a single current-carrying conductor, it can be known
that the peak values of the horizontal components Bx and By of the magnetic flux density
can reflect the conductor position in different directions; thus, the modulus of the
magnetic flux density is more important than its direction for the positioning of the
conductors. |Bx| + |By| can reflect all current-carrying conductors in the x-y direction.
In order to study the magnetic flux density generated by the current-carrying grounding
grid, the simulation was performed using MATLAB based on the finite element method.
The magnetic flux density |Bx(x,y)| + |By(x,y)| generated by the current-carrying grid
branch was detected in the horizontal plane at a distance of h = 0.5 m from the x-y plane,
while |By(y)| was detected on the survey line at the position x = 6 m, and the results are
shown in Figures 4 and 5.
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Figure 5. The curve of magnetic flux density differential at the survey line x = 6 m: (a) the absolute
value curve of magnetic flux density; (b) the second-order differential absolute value curve of
the magnetic flux density; (c) the fourth-order differential absolute value curve of the magnetic
flux density.

The results of the simulation are shown in Table 2. The grid spacing defined in
the simulation is 5 m, and the errors of the grid spacing according to functions |By(y)|,

|B(2)
y (y)|, and |B(4)

y (y)| are 2.18%, 0.75%, and 0.28%, respectively.

Table 2. Simulation results of grid size.

Function Calculated Grid Spacing (m) Side Peak Width (m)

|By(y)| 4.8912 2.18
|B(2)

y (y)| 4.9623 0.75

|B(4)
y (y)| 4.9861 0.28

2.3. Numerical Differential Error Analysis

When performing the position measurement of the grounding grid conductor, due
to the limitations of the measurement equipment size, measurement time consumption,
and other factors, it was not possible to measure a sufficient number of data points at the
substation; thus, the horizontal component of the magnetic flux density measured on a
certain survey line was a discrete sequence. When the differential method is used to locate
the grounding conductor, a numerical calculation method is required. However, since the
measured information did not contain the function expression and the noise introduced in
the measurement process was unavoidable, the calculation result obtained by the difference
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quotient did not have high reliability, and the accuracy of the difference quotient result
depends on the step size of the difference, i.e., the measurement interval. Sometimes, a
small difference step size may lead to a large calculation error [38]. Therefore, it is necessary
to analyze the sources of error in the process of numerical differentiation. In the following,
the error situation of the magnetic field differential is analyzed from the perspective of
truncation error and rounding error.

The formula for the central difference quotient commonly used In numerical differen-
tiation can be expressed as:

G(x) =
f (x + d)− f (x− d)

2d
. (7)

where d is the differential step size.
Substituting f (x0 ± d) into formula (7) after performing Taylor expansion at x = x0, the

truncation error is: ∣∣ f ′(x0)− G(x0)
∣∣ ≤ d2M/6, (8)

where M ≥ max
|x−a|≤d

∣∣∣ f (3)(x)
∣∣∣, and a is the center of the interval over which the maximum

value of f (3)(x) is taken.
From the perspective of truncation error, the smaller the step size d, the more accurate

the calculation result of numerical differentiation.
Considering the truncation error in the process of magnetic field differentiation, for the

current-carrying grid shown in Figure 3, the survey line x = x0 is selected, the coordinates of
the measurement starting point are (x0, y0), and the position of the k-th measurement point
along the survey line on the y-axis is noted as yk = y0 + kd, where d is the measurement
interval. The nth order difference quotient of the y-direction component of the magnetic
flux density By(y) can be expressed as:

Bt
(n)(yk) =

Bt
(n−1)(yk+1)− Bt

(n−1)(yk−1)

2d
, (9)

where the order n ≥ 1, when n = 1, Bt(yk) = B(yk).
The truncation error due to numerical differentiation can be expressed as the difference

between the difference quotient and the differential quotient:

E(n)
t (yk) = Bt

(n)(yk)− B(n)(yk). (10)

When performing numerical difference calculations, the difference of two approxi-
mately equal numbers can result in a significant loss of valid numbers. The input point
f (x + d) of the difference quotient is denoted as f̂ (x + d), and the error between the input
point f̂ (x + d) and the real value f (x + d) is denoted as ε.

G(x) =
f̂ (x + d)− f̂ (x− d)

2d
. (11)

The error between the real value of the nth-order derivative f (n)(x) of function f (x) and
its numerical calculation result can be expressed as:

δ( f ′(x)) = f ′(x)− G(x) =
ε2 − ε1

2d
+

h2

6
f (3)(a). (12)

where a ∈ (x− d, x + d). If εm = max{|ε1|, |ε2|} is defined, the upper bound Ermax of the
rounding error can be expressed as:

Ermax =
εm

d
. (13)
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Therefore, from the perspective of rounding error, a step size d that is too small will
result in a large rounding error.

2.4. Peak Position Error Analysis

In order to accurately locate the grounding grid conductor, it is necessary to determine
an optimal measurement interval d. The mathematical expectation M(d) and variance D(d)
of the peak deviation can be used to describe the degree of the conductor positioning error,
which is derived below.

First, consider the impact of the randomness of the measurement points on the po-
sition error of the main peak. The survey line x = x0 is selected, the coordinates of the
measurement starting point are (x0, y0), and the position of the k-th measurement point
along the survey line on the y-axis is noted as yk = y0 + kd, where d is the measurement
interval. The probability density function of the truncation error Et(yk) at yk is pt = 1/d;
thus, the randomness of E(yk) is determined by the rounding error.

Let the probability density of the rounding error Er at a measurement point be pr, and
pr under the same measurement step d and order n is not affected by the location of the
measurement point; thus, pr is a function of Er, where Er is a uniformly distributed random
variable on [−Ermax, Ermax]. Then:

pr(Er) =

{
1

2Ermax
, |Er| < Ermax

0, |Er| > E rmax
. (14)

At the n-th order, Er is obtained by accumulating the two rounding errors Er1 and Er2

of the n-1 order, and then p(n)r (Er =
Er1+Er2

2d ) can be expressed as:

p(n)r (Er) =
∫ ∞

−∞
2d · p(n−1)(Er1)p(n−1)(2dEr − Er1)dEr1 . (15)

When n = 1~4, the distribution of p(n) r with respect to Er is shown in Figure 6.
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The total error E(yk) is the sum of the truncation error and rounding error; thus, the
probability density function p(E(yk)) at yk can be expressed as:

p(E(yk)) = pt pr(Er(yk)) =
pr(E(yk)− Et(yk))

d
. (16)

The error at yk is E(yk) and is denoted as event k; each event k is independent of each
other, and the probability density function of events 1, 2, . . . , m being established at the

same time is
m
∏

k=1
p(E(yk)), where the value range of E(yk) is as follows:

Et(yk)− Ermax(yk) ≤ E(yk) ≤ Et(yk) + Ermax(yk). (17)

The peak position of the measured and calculated value BC(y) of the n-th order deriva-
tive of the magnetic flux density is denoted as ypC. Due to the presence of errors, there is a
deviation between ypC and the peak position ypR of the real value BR(y). The deviation ∆yp
is the difference between the calculated value and the real value, i.e., ∆yp = ypC − ypR. The

probability density function
m
∏

k=1
p(E(yk)) is used to derive the mathematical expectation of

the main peak position error.
First, consider the mathematical expectation of the offset caused by the error E1 at y1

when the errors of other points are constant. Assuming that E1 takes only s discrete values,
E10, E10 + ∆E1, E10 + 2∆E1, . . . , E10 + (s − 1)∆E1, it corresponds to the distribution of a total
of s function errors on y, and the cumulative expectation is:

s

∑
j=1

p(E10 + (j− 1)∆E1)∆yp1j∆E1. (18)

Extending E1 from the discrete distribution to the case of continuous distribution,
i.e., s→ ∞ , the above formula becomes:

lim
s→∞

s

∑
j=1

p(E10 + (j− 1)∆E1)∆yp1j∆E1 =
∫ Emax+(y1)

Emax−(y1)
p(E1(y1))∆yp1dE1 (19)

Equation (19) represents the mathematical expectation of the offset due to the error E1
at y1 when the error at other points is constant.

Yq = p(E(y1))∆yp1. ξ(y1) is the result of integrating
m
∏

q=1
p(E(yq))∆yp over E(yq), i.e.,

ξ(y1) =
∫ Emax+(ym)

Emax−(ym)
· · ·

∫ Emax+(y1)

Emax−(y1)
YqdE(y1) · · ·dE(ym) (20)

Equation (20) represents the expectation obtained by taking all possible cases of E(y1),
E(y2), . . . , E(ym) at y1.

Notice that ∆yp is affected by all yi; thus, the above equation cannot be expressed in

terms of
m
∏
i=1

∫ Emax+(y1)
Emax−(y1)

YqdE(y1).

Finally, consider that y1 can be varied within the first interval segment [ymin, ymin + d). In
summary, the mathematical expectation M(d) of the main peak deviation can be expressed as:

M(d) =
∫ ymin+d

ymin

ξ(y1)dy1 (21)
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At the same time, the degree of dispersion of Yq should also be considered; thus, the
variance D(d) of the main peak position error caused by d can be expressed as:

D(d) =
∫ ymin+d

ymin

∫ Emax+(ym)

Emax−(ym)
· · ·

∫ Emax+(y1)

Emax−(y1)
(Yq −M(d))2dy1 · · ·dymdx1 (22)

3. Experimental Analysis
3.1. Simulation Experiment

The time complexity of the algorithm used to calculate the main peak position error
expectation M(d) and the main peak position error variance D(d) is exponential time
complexity O(kn). It is difficult to obtain results quickly through computation, but the
constructed and described stochastic process and probability distribution are completely
accurate models; thus, the Monte Carlo simulation can be used to obtain approximate
results of the problem. The method of the Monte Carlo simulation increases the number
of trials, and if the test results converge when the number of trials is sufficient, the final
converged value is used as the simulation result.

First, the mean peak position error M(d) and the variance of the peak position error
D(d) were calculated at a given measurement step d. Taking the current-carrying grid in
Figure 3 as an example, the selected survey line was x = 6 m and the measurement step d was
0.05 m. The expectation M(d) and the variance D(d) of the main peak position error at the
second-order differential and the fourth-order differential for the three conductors (y = 0 m,
y = 5 m, y = 10 m) were calculated using Monte Carlo simulations, and the results are shown
in Figure 7.
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Figure 7. The expectation and variance of the main peak position error at the three conductors
(d = 0.05 m): (a) Expectation M(d) of the main peak position error at the second-order differential;
(b) Variance D(d) of the main peak position error at the second-order differential; (c) Expectation M(d)
of the main peak position error at the fourth-order differential; (d) Variance D(d) of the main peak
position error at the fourth-order differential.
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It can be seen from Figure 7 that the error expectation and variance of the main peak
position at the three conductor positions (y = 0 m, y = 5 m, y = 10 m) gradually tended to
converge as the number of simulation tests increased; thus, the convergence value can be
used as the expectation and variance of the main peak position error of the simulation.

Then, Monte Carlo simulations were used to calculate the expectation M(d) and
variance D(d) of the main peak position error at three conductor locations (y = 0 m, y = 5 m,
y = 10 m) with different measurement steps along the survey line x = 6 m, where the
measurement step d takes values from 0.01 m to 1 m. When the number of simulation
experiments was 104 times, the expectation and variance of the main peak position error
for the second-and fourth-order differentials of the magnetic field at each measurement
step d are shown in Figure 8.
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Figure 8. The expectation and variance of the main peak position error at the three conductors
(d = 0.01~1 m): (a) Expectation M(d) of the main peak position error at the second-order differential;
(b) Variance D(d) of the main peak position error at the second-order differential; (c) Expectation M(d)
of the main peak position error at the fourth-order differential; (d) Variance D(d) of the main peak
position error at the fourth-order differential.

According to Figure 8, the second-order differentiation, the main peak position error
expectation, and variance diverged when d was close to 0, and they reached the minimum
when d = 0.04 m and gradually increased with the increase of d. At this time, the local
optimum value of the measurement step was 0.04 m. Similarly, when the order was 4, the
local optimal value of the measurement step was 0.06 m.

Finally, to confirm the generalizability of the locally optimal step size derived from
the x = 6 m survey line, several survey lines were selected at different locations to calculate
the main peak position error expectation M(d) and variance D(d) using the Monte Carlo
simulation. The survey line x0 was taken in the range of [0 m, 10 m], and each time x0 was
increased by 2 m. The calculation results are shown in Table 3.
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Table 3. Local optimal step size at different survey line positions.

x0/m 0 2 4 6 8 10

Step size (2nd) 0.04 0.04 0.03 0.03 0.03 0.03
Step size (4th) 0.06 0.05 0.05 0.05 0.05 0.05

If the magnetic field differentiation method is used to locate the grounding grid
conductors at the power substation and it is desired to minimize the impact of the numerical
differential calculation error on the conductor location, an optimal measurement step needs
to be selected. According to the results in Table 3, the measurement step size d = 0.04 m or
d = 0.05 m can be selected as the optimal measurement step size.

3.2. Substation Field Experiment

In order to verify the effectiveness of the optimal step size selection, a field experiment
of substation grounding grid conductor positioning was carried out. In the experiment,
three different measurement steps were used to measure the magnetic flux density on
the surface along the survey line, and the differential method was used to calculate the
second-order and fourth-order differentials of the magnetic flux density at each step.

The schematic diagram of the conductor positioning experiment is shown in Figure 9a.
The current output of the excitation source was connected to grounding lead conductors at
the diagonal position in the test area. Eight PCB coils formed an array of magnetic field
sensors with adjustable spacing. The signal conditioning circuit filtered and amplified the
output signal of the magnetic field sensor. An 8-channel, 24-bit ADC (ADS1278) was used
to convert the analog signal from the signal conditioning circuit into a digital signal. The
ESP32 microcontroller communicated with the ADC through the SPI interface and sent the
converted digital signal to the laptop via Wi-Fi. A photo of the experimental site is shown
in Figure 9b.
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Figure 9. The 500 kV substation field experiments: (a) schematic diagram of conductor positioning
experiment; (b) field experiment photo.

Figure 10 shows a schematic diagram of survey lines and the topology of part of the
substation’s grounding grid. The spacing of the ground grid conductors in the experimental
area was unevenly distributed. The measurement area is shown in Figure 10, where the red
dotted lines indicate the survey lines. Ten survey lines were laid out with a line spacing
of 0.5 m. Each line was 20 m long, with a measurement point spacing of 0.02 m, 0.05 m,
and 0.10 m. The sensing array was measured along the survey lines to record data at all
locations. Two conductors, A and B, whose approximate positions were known, were
located below the survey line.
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Figure 10. Schematic diagram of survey lines and topology.

Figure 11a shows the normalized absolute value of the magnetic flux density mea-
sured along the survey line when the measurement step length d = 0.02 m. Figure 11b,c
shows the normalized absolute values of the second- and fourth-order differentials of
the magnetic flux density calculated from the measurement results, respectively. It can
be seen from the figure that the calculation result of the second-order differential can
improve the Widess resolution and maintain the peak characteristic of the conductor
position. However, due to the influence of numerical differential error and random noise
in the measurement process, the calculated value of the fourth-order differential did not
have good peak characteristics, and it is difficult to distinguish the position information
of the conductor from the result.

Figure 12a shows the normalized absolute value of the magnetic flux density measured
along the survey line when the measurement step length d = 0.05 m. Figure 12b,c shows the
normalized absolute values of the second- and fourth-order differentials of the magnetic flux
density calculated from the measurement results, respectively. It can be seen from the figure
that the calculation results of the second-order differential and fourth-order differential
can both improve the Widess resolution and maintain a good conductor position peak
characteristic, and the calculation results reflect the actual position of the conductor.

Combined with the conclusion in Section 3.1, the local optimal measurement step d
can be selected as 0.04 m or 0.05 m. Comparing Figures 11c and 12c, it was found that, due
to the influence of rounding errors, the fourth derivative of the magnetic flux density when
the measurement step d = 0.02 m, compared with d = 0.05 m, the peak characteristic was
completely lost, and the conductor was difficult to locate through the differential result.
Comparing Figures 11b and 12b, it was found that, due to the influence of rounding errors,
the peak characteristic fluctuation of the second derivative of the magnetic flux density was
more obvious when the measurement step length d = 0.02 m compared with d = 0.05 m,
and the impact of measurement errors on the calculation results was more significant. This
result is consistent with the conclusion stated in Section 3.1.
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The measurement and calculation results when the measurement step length d = 0.10 m
were close to the situation when d = 0.05 m, which can improve the Widess resolution while
maintaining the peak characteristics. The measurement and calculation results under this
condition are no longer listed separately.

In addition, the integer multiple decimation of the measurement data under the
condition of d = 0.05 m can obtain part of the original measurement data under the
condition of a larger measurement step. Numerical differential operation was performed
on the extracted data, and its peak characteristics and Widess resolution were close to the
case of d = 0.05 m. However, as the extraction multiple increased, the error between the
measured value and the actual value of the conductor peak position gradually increased.

In summary, the experimental results are in good agreement with the simulation
conclusions in Section 3.1; that is, there exists a local optimum value for the measure-
ment step, and the selection of a suitable measurement step can reduce the error of
conductor positioning.

4. Conclusions

An improved magnetic field method was proposed to locate unknown grounding grid
conductors. The influence of the truncation error and rounding error of the magnetic field
differential on the positioning of grounding grid conductors was studied, and the optimal
measurement step size under different differential orders was given. By selecting the
optimal measurement step size, the accuracy of the magnetic field differential method for
locating the conductor of the grounding grid was improved. Through theoretical analysis
and experimental verification, the following conclusions were drawn:

• A small measurement step causes a large rounding error in the numerical differentia-
tion. With the increase of the measurement step, the truncation error caused by the
numerical differentiation increases the error of the conductor positioning.

• The peak position deviation expectation and variance showed a trend of first de-
creasing and then increasing with the increase of the measurement step size. The
measurement step size under different differential orders had a local optimum value,
and the range of the local optimum value was given; this result is verified by simula-
tion and experimental results.

• Choosing a reasonable measurement step size for different differential orders helps to
improve the positioning accuracy of the grounding grid conductors.

The error analysis method in this paper expands the possibility of using the magnetic
field differential method to reduce the error of grounding grid conductor positioning. At the
same time, the results of this paper can provide a reference for the structural design of the
magnetic field measurement sensor array, and the grounding grid conductor positioning
instrument designed by the results of this study will have a higher conductor positioning
accuracy, which is beneficial to the fault diagnosis work of large-scale substations.
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