
Citation: Greenberg, O.; Ben-Moshe,

B. Real-Time Stereo-Based Ocean

Surface Mapping for Robotic Floating

Platforms: Concept and Methodology.

Sensors 2023, 23, 3857. https://

doi.org/10.3390/s23083857

Academic Editor: Carlo Alberto

Avizzano

Received: 4 February 2023

Revised: 5 April 2023

Accepted: 6 April 2023

Published: 10 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Real-Time Stereo-Based Ocean Surface Mapping for Robotic
Floating Platforms: Concept and Methodology
Or Greenberg † and Boaz Ben-Moshe *,†

Kinematics and Computational Geometry lab., School of Computer Science, Ariel University, Ariel 4070000, Israel
* Correspondence: benmo@g.ariel.ac.il
† These authors contributed equally to this work.

Abstract: Consider the case of a small, unmanned boat that is performing an autonomous mission.
Naturally, such a platform might need to approximate the ocean surface of its surroundings in
real-time. Much like obstacle mapping in autonomous (off-road) rovers, an approximation of the
ocean surface in a vessel’s surroundings in real-time can be used for improved control and optimized
route planning. Unfortunately, such an approximation seems to require either expensive and heavy
sensors or external logistics that are mostly not available for small or low-cost vessels. In this paper,
we present a real-time method for detecting and tracking ocean waves around a floating object
that is based on stereo vision sensors. Based on a large set of experiments, we conclude that the
presented method allows reliable, real-time, and cost-effective ocean surface mapping suitable for
small autonomous boats.

Keywords: ocean surface mapping; real-time stereo vision; autonomous boat; wave detection and
mapping

1. Introduction

This paper suggests a method for ocean surface mapping conducted from a floating
object, such as a vessel, in real-time. In order to detect the waves and track their progress
over time, experiments were performed with some spatial mapping sensors currently com-
mon in the autonomous tool industry, and from these sensors (i.e., Radar, LiDar, and stereo
camera), the stereoscopic imaging system was selected as the leading sensor. The wave-
mapping procedure determined through this study is intended for use in predicting the
6DoF (six degrees of freedom—location and orientation) state of the floating object in
the near future for various uses in the autonomous tools industry. Unfortunately, such a
prediction is extremely challenging due to the chaotic nature of the ocean surface, which is
explained below.

The fundamental book Chaos Theory Tamed, by Garnett P. Williams, defines chaotic
systems as ones that:

“... sustained and disorderly looking long term evolution that satisfies certain
special mathematical criteria and that occur in a deterministic non-linear sys-
tem.” [1]

Simplifying this definition would label chaotic systems as ones that are extremely
sensitive to minor and unpredictable, or unmodeled, changes in their initial parameters.
As a result, those systems may be predictable in the short term but exhibit an unpredictable
“random-like” behavior in the long term. This behavior is not due to actual random
components that affect the system, as it is a deterministic system by definition, but rather
from a high sensitivity to tiny changes in the initial conditions, which may develop a
significant effect on the final behavior as they accumulate [2]. The ocean’s dynamics are
a well-known example of a chaotic system [3]. Ocean surface movement is affected by
various factors such as wind gusts, underwater currents, local changes in seabed depth,
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and more, which are all characterized as non-predictable components. It is not surprising,
then, that predicting the spatial orientation (6DoF) of a floating object in the face of sea
waves has been found to be not a simple challenge at all.

The methodology suggested by this paper involves combining continuous measure-
ment of the vessel’s changing state over time using IMU components, with “look-ahead”
measurements of the coming waves in order to evaluate the wave’s impact on the vessel
and predict its 6DoF motion. Using the “look ahead” that detects and tracks the ocean
waves before hitting the vessel, the random-like component of the sea surface’s behavior is
reduced, and more reliable and accurate prediction of the vessel’s motion in the presence
of the waves hitting it is made possible.

1.1. Motivation

Due to the chaotic nature of waves, they perform a major, yet unpredictable, influence
on the deck’s immediate motion. The suggested methodology for ocean surface mapping
using a stereo-based sensing system is intended to be used for predicting the future 6DoF
state of a floating object in the near future, adjusted to autonomously controlled micro-size
vessels (in terms of weight and cost). Such an ability can be used in a wide range of
applications in the field of autonomous boats. One such research topic is optimized path
planning (for autonomous boats). Such optimization may include energy consumption,
modeling predictive control, minimizing tilt and turnover risks, or a combination of a few
such objective functions [4–7].

Another possible application of such an ability lies in the field of conducting au-
tonomous VTOL (Vertical Take-Off and Landing) missions on small floating objects [8].
The position and orientation of the vessel during the contact between it and the VTOL
have enormous significance for the landing process, which has direct consequences for the
success or failure of the operation. An error in the evaluation of the mutual orientation
between the VTOL and the vessel at the moment of contact may lead to drift of the VTOL
and an unplanned immersion in the cold ocean water. Moreover, even incorrectly estimat-
ing the rate of change of mutual orientation can cause fatal damage to both the VTOL and
the vessel.

1.2. Related Works

This study deals with the detection and tracking of sea wave motion around a dy-
namic floating object, with the entire process being performed from the object alone. This
prediction is intended to be used for predicting the 6DoF state of that object in the near
future. Such a process includes a number of elements related to the dynamics of sea waves,
wave-sensing technologies, and the deck’s state-prediction methods.

1.2.1. Ocean Dynamics

Generally speaking, waves are oscillations (or disturbances) of the water surface that
can be observed in any water basin, such as rivers, lakes, seas, and oceans [9]. The dynamics
of different types of waves are at the heart of the literature, and new studies in this
field are published daily. Although diving into the dynamics of the ocean is out of the
scope of this paper, a simple understanding of the basic phenomena is important. J.J.
Stoker 2011 analyzes the mathematical and physical theory for the formation of different
ocean waves [10]. Among other things, Stoker refers to the differences between deep-
sea waves and shore waves. Research has already been distinguishing between deep-
water waves and shallow-water waves for decades (see Morison et al., 1953 [11] and
others), where “deep water waves” waves are defined as ones that are unaffected by
the sea floor. In particular, when the depth is much larger than the wavelength (i.e.,
D
λ > 1/2, where D is the water depth and λ is the wavelength), the wave-induced water
particle motion weakens with depth and eventually vanishes at a depth approximately
equivalent to half the wavelength ([12,13]). On the other hand, if the water depth is
much smaller than the wavelength (i.e., D

λ < 1/20), the water column is insufficient to
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allow complete development of the wave motion, affecting the properties of the surface
oscillation. Waves are thus defined as shallow-water waves. For water depths between
these two conditions, waves are only partly affected by the bottom topography, and waves
are defined as intermediate-water waves. Figure 1 demonstrates the structural difference
between shallow-water waves and deep-water ones

Figure 1. Deep and shallow water waves.

As demonstrated in Figure 1, waves coming onto the beach increase in height and
steepness and eventually break [14]. The implication of this observation for our purpose is
that deep-water waves are usually lower and less “pronounced” than shallow-water waves.
Another significance of this observation, which is explicitly articulated by Stanislaw R.
Massel [15], is the fact that deep-ocean waves vary slowly. This observation is critical for the
present study that suggests using early detection of a sea wave to estimate the future motion
of a vessel expected to meet that very same wave in the near future. In addition, while it is
a matter of common observation that the ocean surface structure changes rapidly at the
Macro-Level, we have shown that rapid changes take place at the Micro-Level also, where
feature-points vanish rapidly (see Section 3 below), making the environment’s structure
extremely dynamic and amorphous.

1.2.2. Ocean Surface Mapping

A few wave-measuring methods have been developed over the years, from traditional
surface-following buoys [16] to innovative satellite-based measurements [17]. Mori, Ya-
sukuni et al. [18], and Westfeld, Patrick et al. [19] suggested LiDAR as the leading sensor
for ocean surface mapping, while Kusters, J.G. et al. [20], Cui Jian et al. [21], and others
suggested using different RADAR systems for that purpose. A third option, which is
discussed in detail below, is stereo vision. A few previous researchers tried to use stereo
vision in order to achieve a 3D ocean surface mapping and wave detector. Very good results
were achieved by Corgnati Lorenzo et al. [22] in near-shore wave detecting and tracking
using stereo vision. However, the proposed model was constructed for detecting nearshore
waves in the coastal environment, which differ substantially from deep-ocean waves in
both physical structure and dynamics.

One remarkable project in the field of ocean surface mapping using stereo is WASS
(Waves Acquisition Stereo System) [23]. This work provides high-quality 3D point-cloud
recovery from stereo frames of the ocean surface. Yet the whole process is not applied in real-
time (30 s per frame for 3MPixel images on a consumer i7 CPU according to documentation).
In addition, WASS provides high-quality results for stereo shots taken from a high angle
with respect to the water surface. Yet experimental production of point-clouds for stereo
shots taken from low angles showed massive degradation in the product’s quality compared
to the high-angle case.



Sensors 2023, 23, 3857 4 of 20

1.2.3. Deck’s 6DoF Estimation for VTOL Applications

As mentioned, one important motivation for this research lies in the field of VTOL on
vessels. Previous research intended to develop capability for VTOL applications on vessels.
One early product, published in 2016 [24], suggested a multispectral sensor-fusion system
that managed to estimate the deck’s state for UAV landing applications. This system
offers a Bayesian filter-based algorithm for estimating the current boat’s state based on an
electronic platform-model prediction unit (according to a predetermined platform motion
model) and measurements from a multispectral sensor-fusion system (including LiDAR,
RADAR, VSI, and IR) located on the aircraft. Another paper [25] uses an MSS hydro
toolbox to simulate a ship’s 6DoF motion, then the ship’s Heave, Pitch, and Roll motions are
predicted for 5 s after 100 s without measurements using the NARX network. In addition,
a few more researchers (such as Lim Edward [26], Elgersma Michael Ray et al. [27], and
others) have suggested different methods with the more general goal of landing an aircraft
on a vessel. The majority of these methods do not focus on the deck’s state computation or
prediction but on the landing process itself (autonomously or manually).

1.3. Our Contribution

Mapping the ocean surface is commonly performed using marine radar systems (e.g.,
in [28]; more examples are reviewed in [29]). Such systems are relatively expensive and
have considerable power consumption (required for RF chirp transmission). In this paper,
we present a real-time method for performing ocean surface mapping based on stereo vision
that is affordable, widely available (Commercial Off-The-Shelf—COTS), and suitable for
small and micro autonomous boats (often named Autonomous Surface Vehicles—ASVs).

Existing projects in the field of ocean surface mapping and wave detection (e.g.,
the ones presented above) lacked the combined ability to perform in real-time and from
relatively low shooting angles and to adequately detect deep-ocean waves rather than near-
shore ones. The marine environment has no “static features”. Therefore, computer vision
methods that are based on detecting “feature points” over time (such as structure-from-
motion, optical-flow, and SLAM) tend to perform poorly on such dynamic scenes. To the
best of our knowledge, this is the first real-time wave-mapping method using stereo-vision
and is applicable for very small (toy-graded) unmanned autonomous boats.

1.4. Paper Structure

This paper is organized as follows: Section 2 presents the preliminary properties
of ocean waves and available sensors for mapping such a surface (mainly focusing on
stereo vision sensors). Section 3 extends the stereo-mapping process to be a continuous
process in time. In Section 4, the presented framework is tested in field experiments both
in the open ocean and a controlled environment. Finally, in Section 6, we present several
generalizations and applications for the suggested wave-mapping method and conclude
the paper with suggestions for possible future work.

2. Wave Sensing

Our aim, therefore, is to describe a methodology for mapping the sea surface, with an
emphasis on wave detection.

The task of ocean surface mapping and wave detecting entails a variety of challenges.
First, both the mapped scene and the mapping system (i.e., the sea surface and the vessel,
respectively) are in continuous motion. That is, the geometry between the mapping system
and the world-space frequently changes. Moreover, not only does the ocean surface change
its position over time, but its shape also changes rapidly. i.e., the exact same wave may
appear completely different after a relatively minor amount of time. Therefore, we strive to
produce a system capable of sampling at a rate not less than 10 Hz.

The distinction between wave detection and obstacle detection should be noted. Ob-
stacle detection primarily involves identifying, tracking, and locating rigid objects that
exist either above or below the sea surface, such as rocks or swimmers. In contrast, waves
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are not considered rigid objects, and therefore a given pixel cannot be classified as “wave”
or “no-wave” on a binary scale, which is possible with rigid obstacles. The nature of waves
as a continuous, non-discrete phenomenon makes their detection substantially different
from that of rigid objects.

2.1. Sensor Review

For that task, we tried using spatial mapping sensors commonly in use in the au-
tonomous vehicle industry, in particular, multi-ray long-range LiDARs, mm-wave RADARs
(see Figures 2 and 3 respectively), and stereo vision. It should be noted that the focus of
this study is on relatively small vessels (up to several hundred kilograms), and therefore
cost considerations were a significant factor in choosing the preferred sensor.

Figure 2. Shore LiDAR setup: two minor shore waves are easily detectable—marked by red ovals.

Figure 3. The mm-wave radar setup during a shore experiment.

Due to a combination of considerations arising from the sensors’ performance in
preliminary experiments (detailed below), cost and weight considerations, as well as part
of the global trend of increasing the use of vision-based sensors in the autonomous tools
industry, it was decided to use a stereoscopic imaging system as a leading sensor for the
current study.

2.2. Failed Attempts

While LiDAR wave sensors perform relatively well inshore, for deep-ocean waves they
simply fail to detect the ocean surface. We attribute this failure to the natural penetration
property of water, combined with the low reflective nature of water. Even high-level
LiDAR (best in class: 240 m, 128 rays) simply failed to detect the reflected laser signals in
deep water.

While testing different RADAR systems, we ran into some different problems. Since
most of the existing products are meant to focus on rigid objects, the ever-changing water
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surface seemed to the system as noises to be filtered in order to avoid a noisy RADAR
image that interrupts the rigid components on which the system is tuned to focus.

2.3. Introduction to Stereo Vision

Stereo vision is a vision-based technique using multiple cameras (at least two) filming
the same scene from different views to extract 3D information, commonly used in the
robotics industry (e.g., [30–32] and others). The basics of this technique are pretty intuitive
and can be easily demonstrated by the “finger model” as follows. Place your finger
vertically right in front of your eyes, about 5 cm away from your nose, and look at it with
only one eye open. Now, switch eyes. If you repeat this process a few times rapidly, you
will surely see that the finger “changes position” between the two views (the use of quotes
is because the finger is clearly not changing its position, but the different point of view
causes this illusion). Now, repeat this process one more time, but now locate your finger
farther away (30 cm away from your nose for that matter). You may notice that even though
the finger is still “changing position” between the views, the changes are much more minor
than in the previous setting. This “position changing” of objects between two views (i.e.,
two images) is the heart of the stereo-vision technique. By comparing the locations of two
corresponding points in these two images, relative depth information can be obtained in
the form of a 3D point-cloud or a disparity map, encoding the difference in coordinates of
each two corresponding points to a three-dimensional coordinate.

For the purpose of this paper, we assume that the reader has at least a basic prior
knowledge of stereo vision, and in particular is familiar with the basic concepts in stereo
calculations and Epipolar Geometry such as Epipolar Lines, Fundamental and Essential
Matrices, and Disparity Calculation. The overall framework of 3D reconstruction from a
pair of images using stereo-vision (Dense) is described in Figure 4.

Figure 4. An overview of a Dense 3D reconstruction framework using stereo-vision.
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As presented in Figure 4, the very first step of the stereo calculation process is de-
tecting and matching corresponding points within the two given images. These points
are used to evaluate the relative geometry (also known as Epipolar Geometry) between
the two views [33]. Epipolar Geometry enables an efficient search of a matching pixel
from Image B for each pixel from Image A. Without getting too deep into details, Sparse
stereo matching finds many “feature points” in one image (using classic algorithms such as
Harris [34], SIFT [35], SURF [36], etc., or more-innovative methodologies such as R2D2 [37]
or DELF [38]), then uses the Epipolar Geometry to find the “best” corresponding points on
the other one, whereas Dense stereo matching goes over “all” the pixels in one image and
finds the “best” match for each one of them. Once we have pairs of corresponding pixels,
we can calculate the disparities for each pair and build a disparity map. This map can be
translated to a depth map or a 3D point-cloud using the system’s parameters—focal length
and baseline.

The term “best match” holds a significant hidden parameter characterizing each pair—
the confidence level. In order to define the confidence level parameter, a short introduction
to point matching should be given. In fact, we do not match a single pixel from one image
to another single pixel from the other one, but we match templates. A template is a patch
of n×m pixels from Image A, and the purpose of matching is to find a patch in Image B
that is the most similar to it. Epipolar Geometry allows reducing the region of interest from
finding the corresponding patch from the whole image to the Epipolar-line corresponding
to the point that defines the current patch.

The basic matching algorithm is simple—given two images with a known Epipolar
Geometry, apply the following:

(i) For the required pixel [i, j] in image A, define a template as an n×m patch con-
taining the pixel [i, j] (the patch will usually be defined such that [i, j] will be in
its middle).

(ii) Calculate the Epipolar line corresponding to [i, j] using the Fundamental Matrix.
(iii) For every n×m patch along the Epipolar line in Image B, evaluate the similarity

of that patch to the template.
(iv) Choose the middle pixel [i′, j′] of the most-similar patch as the “best match” and

repeat the process with the next required pixel.

Now, we may define a confidence value for each matched pair as the level of distinct-
ness of the “best” patch chosen, i.e., how much are we sure that the pixel we chose from
Image B is actually the one corresponding to the pixel from Image A.

2.4. Stereo Adjustment to Wave Detecting

Seemingly, stereo vision is not the ideal candidate for ocean surface mapping. On the
one hand, previous studies (such as the previously discussed WASS project) have shown
that a pair of cameras do have the needed sensitivity for the mission under some limitations.
On the other hand, these limitations may be critical for our needs. In order to perform
effective wave detection for the deck’s 6DoF state-evaluation application, the system has to
perform from the vessel only, i.e., from a relatively low shooting angle, and in real-time.

For this study, we mostly used stereo cameras from the ZED series (in particular ZED
2 and ZED 2i, SDK version: 3.4.2.) produced by StereoLABS, which are offered as off-the-
shelf products and are widely used in the autonomous tools industry. These cameras allow
stereoscopic mapping over an effective range of approximately 15–20 m (with a 12 cm
baseline) and a choice between different resolutions and frame rates. Activating the camera
using NVIDIA’s Jetson Xavier NX computing platform enabled real-time mapping of the
sea surface from a high angle in 1080p (full-HD) resolution at 30 fps (frame per second);
see Figure 5.

As described above, our goal is to show that effective sea wave detection can be
performed in real-time and from a low angle using stereo vision. Considering these goals,
this initial experiment drew two substantive observations. The first one is positive—it
seems that the computation time challenge can be solved relatively simply by using the
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appropriate hardware to obtain real-time estimation. However, the second observation
seems to pose a more significant challenge. A close look at Figure 5 shows that the farther
the mapped area is from the baseline, the more areas of uncertainty tend to appear. These
areas are expressed as a discontinuity in the 3D point-cloud or “black holes” in the disparity
map (see the far-right part of Figure 5). This observation is significant as it implies that
stereoscopic mapping becomes less effective the sharper the shooting angle is with respect
to the sea surface. Being aimed to perform from relatively small vessels, this observation is
of major significance.

Figure 5. Example 3D ocean surface stereo-based mapping using a ZED2 located on a pier 2.5 m
above the surface. The (top left) image, (bottom left) disparity map, and (right) 3D point-cloud
are presented.

An even closer look at this phenomenon provides an interesting diagnosis as to the
origin of the emergence of these areas of uncertainty. Comparison between the upper-right
part of the stereo product in Figure 5 and the upper-left part of it shows that these “holes”
do not appear as a direct derivative of the distance from the system’s origins, but rather, as
the angle between the base and the photographed object becomes sharper, the calculation
becomes more sensitive to occlusions. In fact, due to the direction in which the camera in
Figure 5 is pointed with respect to the direction of the sea surface’s motion, the far-left part
of the product is photographed with a side view perpendicular to the waves advancing.
That way, almost no occlusions are formed; so in this area, the product remains continuous
even at long distances. In contrast, on the far-right side of the product, the photographs
are taken with a frontal view relative to the direction of the advancing waves. As a result,
more occlusions are created, which cause areas of uncertainty over long distances (i.e.,
low angles). This diagnosis leads us to an interesting understanding—instead of focusing
on what the system is able to see, the occlusions can be used to try to emphasize what
the system is unable to see. Knowing that the cause of these occlusions is waves, early
detection of these areas of uncertainty can provide a reliable measure of the presence of a
wave in the distance making its way toward the boat.

Focusing on occlusion detection using the stereo product to evaluate the presence of
sea waves, we decided to examine two stereo setups: a horizontal mode and a vertical
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one. In the horizontal setup, the system is positioned so that the two cameras are displaced
in the horizontal direction (in a manner that maintains a right camera and a left camera
located at the same height above the water surface), while in the vertical setup, the cameras
are spaced apart in the vertical direction.

The most commonly used stereo system, the human eyes, are horizontally displaced
from each other, leading to the traditional use of horizontally displaced stereo photography
systems. The motivation for examining the vertical setting (as opposed to the trivial
horizontal setting) is twofold. First, the horizontal setting, similar to human vision, is
aimed at identifying vertical objects such as other people, trees, buildings, and so on. Since
the depth estimation method using stereo is based on detecting disparities, i.e., the object’s
displacement between the two views, vertical objects’ disparities are more easily detectable
along the horizontal axis. A good demonstration of this attribute can be observed using the
previously presented “finger model”. Repeating this demonstration while placing the finger
horizontally in front of the eyes, and not vertically as suggested in the first place, shows
that the differences between the views are more noticeable when setting the finger vertically
rather than horizontally. Conversely, in view of waves’ typically horizontally structured
elements, it can be assumed that a vertical setup of the system can make detection of
disparities more efficient. Second, focusing on occlusion detection, we assume that shifting
the cameras’ origins apart along the vertical axis may highlight the occlusions resulting
from areas visible to the higher camera but hidden from the lower one.

In addition, since we are aiming to find areas of uncertainty, we would like to recover
the confidence map and search for low-confidence areas that can hint at the presence of
the wave that created them. As described above, the confidence map is a description that
encodes the confidence level of the evaluated location of each pixel in the dense disparity
map, calculated using Epipolar Geometry. Since the wave heads “hide” wider areas from
the lower camera than from the upper one, we anticipated that wave detection could be
easily done using the confidence map, with an emphasis on placing the stereo in a vertical
setup. Finally, we would like to use the stereo product as an input for a real-time wave
detector. The Hough Transform is an algorithm patented by Paul V. C. Hough [39] then
perfected by Duda and Hart [40] to recognize complex lines in photographs. In view of the
waves’ typical line structure, we would like to suggest the Hough transform as a naive and
simple tool for wave detection from a stereo product.

3. Stereo-Based Wave Tracker

After establishing a stereo-based wave detector, we would like to extend the problem
in the time domain. In general, vision-based deep-water wave tracking is not a trivial
mission. The significant challenge of tracking wave motion using “traditional” feature-
based tracking tools lies in the amorphous and ever-changing nature of the sea surface.
While rigid objects (people, cats, vehicles, etc.) maintain an implicit assumption that the
shape changes they undergo between a pair of consecutive frames is small to negligible, this
assumption is not at all straightforward when it comes to sea waves. Sea waves unite, split,
and change their observed shape rapidly. The same wave can look completely different
in two frames where the time difference is only a small fraction of a second. As a result,
feature-based tracking has been proven to be completely unreliable, especially when using
relatively low filming rates. Figure 6 depicts attempts to match feature points between a
pair of consecutive frames of the same scene filmed at different filming rates.

It is noticeable that as the filming rate decreases, fewer and fewer matches are suc-
cessfully made between consecutive frames, and those that are made include increasing
matching errors. In particular, feature-matching at 60–120 fps was able to produce a large
number of matching pairs at different shooting ranges. However, feature-matching at
lower frame-rates resulted in a particularly small amount of matches and many matching
errors. Yet although feature-based wave motion tracking is a particularly challenging task,
it seems stereoscopic mapping can be harnessed to our aid here, too. Using the disparity
map allows changing the methodology from feature-based tracking to an object-based
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one. In addition, the transformation from RGB to a disparity or confidence map performs
a dimensionality reduction. While the RGB image preserves the detailed shape of the
wave with high precision, the stereo product preserves only a sub-sampled version of the
wave. That way, operating fairly standard object-tracking algorithms on the disparity map
(using the waves detected by the previously discussed Hough detector) allows for accurate
tracking of sea waves at a sampling rate not exceeding 10 fps and can be performed in
real-time. It can also be assumed that the trend of the progress of waves at sea depth is
relatively constant (i.e., does not change rapidly or sharply). This assumption allows for
refining the tracking using simple Bayesian tracking algorithms (such as LKF).

Figure 6. Matches between two consecutive frames of the very same scene at different rates: 120, 60,
30, 15, and 7.5 fps (from top to bottom). Originally recorded with a base filming rate of 120 fps in
1080p (full-HD) resolution.

Tracking wave motion in time should be used to estimate the average wave velocity,
and hence the time to impact. Unfortunately, it turns out that estimating the wave motion
by simply calculating the difference between its image coordinates in time t and time t + ∆t
does not do the job. Since the ship from which the mapping is performed may also possibly
be in rough motion throughout the mapping process, calculating the absolute differences
in the wave’s coordinates between two consecutive frames of the stereo product is not
sufficient to assess the wave’s progress. That is due to the fact that the displacement in
coordinates between the two frames may stem not only from the wave’s progress but also
from the ship’s changing orientation. Using an IMU device for measuring the ship’s motion,
a three-dimensional transformation of the system between any two consecutive frames
may be a solution to this problem. However, such a transformation requires significant
computational resources and may add error factors resulting from miscalculating the
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conversion parameters or due to numerical issues. We want to offer a simpler solution.
In fact, we want to isolate the displacement component resulting from the actual wave
progress from the total displacement in its coordinates between two consecutive frames.
For this purpose, we want to create a reference point whose location is not fixed in the
image-space, but moves in a way that embodies the ship’s movement. This way, the relative
distance between the detected wave and the reference point embodies the wave progress
only, with no side effects of the ship’s motion.

A good candidate to function as such a reference point is the horizon line. Being a fixed
static element in “world” coordinates, the horizon line’s motion in video photography (as a
good enough approximation) results from the ship’s motion alone. In addition, the horizon
is a prominent object in any frame and can be identified relatively easily from a single
camera shot. The suggested horizon line detection algorithm is relatively simple and is
demonstrated in Figure 7 below.

Figure 7. Horizon line detection algorithm. Image from https://www.youtube.com/watch?v=
ywHjs-sOBhY (accessed on 5 April 2023) “Horizon Line Detection Algorithm” by Dr. Roi Yozevitch.

This is a three-stage algorithm that receives video as input and returns n points
(default—four points) spanning the horizon line as output, as follows:

(i) For each frame in the input video, we first run a Canny algorithm to detect edges
within the image.

(ii) We “naively” look for the points that span the horizon. A suggested option to
perform this operation is to fix the width coordinate of n points in as w×i

n , where
i [0 → (n − 1)] denotes the point’s index, n the total amount of points, and w
the image’s total width in pixels. Now, we scan the vertical lines in the edge
image defined by the width coordinate of each point and look for the first height
coordinate where the line meets a pixel value that is not “black”. The working
assumption is that in the general case there are not likely to be extreme edges in
the part of the image indicating “sky”, certainly compared to the part of the image
indicating “water”. Since the horizon line is a continuous and most-prominent
edge in the image space, the algorithm is expected to detect it with high accuracy.

(iii) We now refine our assessment of the horizon line’s position. We perform one
local refining for the location of each point individually using a Bayesian filter
for a “random noise” motion model in time, and a second general refining for
filtering points inconsistent with the characteristic of the almost linear shape of the
horizon line.

The described algorithm provides accurate real-time detection and tracking of the
horizon line. A qualitative estimate of the wave’s progress can now be obtained by mea-
suring the change in distance between the wave’s position and the position of the horizon
line between consecutive frames. Combining this tool for time-to-impact estimation with

https://www.youtube.com/watch?v=ywHjs-sOBhY
https://www.youtube.com/watch?v=ywHjs-sOBhY
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the previously discussed tool for wave detection and estimation provides a high-quality
snapshot that can serve as a basis for predicting the ship’s future 6DoF state.

It should be noted that the proposed vision-based horizon-detection algorithm was
designed originally to allow the use of stereo cameras without an IMU. Yet after several
attempts we were able to properly synchronize the images from the stereo cameras with the
IMU sensor readings. Therefore, the suggested vision-based horizon detection was mainly
used to calibrate the stereo camera with the IMU and not as a continuous orientation sensor.

System Overview

This section presents a block diagram of the proposed approach and summarizes the
system’s overall framework. The block diagram is presented in Figure 8.

Figure 8. A block diagram of the suggested approach.

The system requires visual input provided by a stereoscopic imaging system. The imag-
ing system includes at least two cameras displaced from each other in either a vertical or a
horizontal manner. We showed that a vertically displaced system provides more-accurate
results over long ranges, while a horizontally displaced one is able to perform better for
short ranges. While over short ranges (i.e., high shooting angle with respect to the sea
surface) wave detection can be performed relatively trivially using the 3D point-cloud, over
long ranges (i.e., low angles), we use the confidence and the disparity map to detect occlu-
sions derived from the presence of waves. Finally, the previous wave map is compared to
the current one to estimate the wave’s progress in time and to evaluate the time-to-impact.

4. Experimental Results

During the research process, the system was tested under various conditions and
environments. As a vision-based technique that may suffer from occlusions, saturation,
glare, lens flare, and other environment-based interruptions, it was decided to establish the
experimental approach on field experiments over simulated ones to get actual representa-
tive data.

As mentioned, stereo-based mapping depends directly on the ability to match feature
points between two images. These feature points are used to understand the relative
geometry between the two image planes to produce a dense disparity map based on
the Epipolar Geometry (see Figure 4 above). In addition, the range of efficiency of the
stereoscopic system is directly related to the baseline length, i.e., the distance between the
two cameras’ origins. In fact, most stereoscopic systems currently offered for purchase as
off-the-shelf products have a relatively short baseline of about 7–10 cm and are therefore
limited to an effective sensing range of about 15–20 m at most. In order to use stereo-based
mapping with long-range capabilities, a wide-baseline system should be used. For this
purpose, we assembled a homemade stereoscopic photography system based on GoPro
cameras (Hero Black 7) separated from each other at a 1.1 m baseline. This system included
five cameras performing in two independent stereo systems installed on the front deck of
an Elan 40 RACER CRUIZER yacht (see Figure 9). As part of the experiment, synchronized
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stereo images of the deep-sea surface were captured 1–3 km off-shore in the Middle Sea
(the Mediterranean Sea). The recordings were taken at different resolutions (from 720p to
4K) and in low-wave conditions (up to 30 cm).

Figure 9. Multiple-camera wide-baseline stereo system located on an Elan 40 yacht during a field
experiment. The stereo system is based on Go Pro cameras (Hero Black 7) and consists of 2 camera
arrays: (CAM-A) two cameras, vertically displaced from each other. (CAM-B) 3 L-shaped cameras.
Additional sensors: FC and ultrasonic wind sensor for future applications.

In order to prove the feasibility of mapping the sea surface using a stereo system
with a wide baseline, we would like to show that detecting and matching of feature-points
on the sea surface between a pair of images taken from such a system is possible even
at long distances. For this task, several platforms were examined, and the Boo f CV [41]
library by Peter Abeles was selected for its relatively good performance compared to similar
platforms. Although the platform was able to find and match a relatively large number
of points between the two given images (see Figure 10), plenty of matching errors were
observed, making stereo-evaluation impossible over these matches.

Figure 10. Feature-point matches on the ocean surface from 1.1 m baseline stereo images.

Some of the “bad” matches can be pre-filtered according to an extreme criterion—
rough matching errors that are expressed in an extreme angle of the line connecting the
two points when placing the two images side-by-side (examples of such errors can be seen
in Figure 10). Yet this rough filtering process can not detect the “subtler” matching errors,
which require a more fine-filtering methodology. For this purpose, we considered the
basic linear pattern of the sea surface. In contrast to urban environments where buildings,
pillars, signs, etc., frequently interrupt the basic structure of the plain, on the sea surface
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the situation is different. Photographing the sea surface using a single camera, the plane
is deployed almost linearly in the sense that as a photographed object is farther in world
space, the distance is expressed by the “rise” of the feature point representing this object
along the vertical axis of the image plane. The stereo model teaches us that given a
pair of corresponding points matched between two views of the same scene, the parallax,
or disparity, between the two points is inversely related to the distance in the world between
the system’s baseline and the object they represent. If so, it can be expected that the ratio
between the position of the point in the height axis of the mono-image and the parallax of
that point from the corresponding point in the second image is linear or close to linear.

Figure 11 shows the product of the proposed filtering algorithm according to the two
suggested criteria—the extreme criterion (combined with filtering points above the horizon
line) and the linear criterion. It can be seen that, indeed, most of the matches maintained be-
havior close to the expected linear behavior, and those that did not do so could be effectively
identified and filtered. It seems that identifying and matching feature points between a
pair of sea surface images taken using a wide-baseline stereoscopic camera system does not
constitute an algorithmic challenge relative to existing short-baseline stereoscopic systems,
and that the challenge of producing such a stereo is primarily an engineering challenge
not discussed in this paper. This article discusses the use of stereoscopic mapping for
the purpose of detecting waves and predicting a deck’s orientation using existing stereo-
scopic systems with a short baseline, where the suggested methodology offers the future
possibility to expand the mapping range by increasing the system’s baseline.

Figure 11. Matches filtered by extreme criterion (blue) and linearity criterion (orange). Final matches
in green.

Although the homemade system has shown the feasibility of stereo production in
terms of feature-point matching, it turned out that it lacked some more technical support
in terms of stabilization, calibration, etc. In addition, the Middle Sea did not provide high
waves with respect to the ship’s height, which did not challenge the system in terms of
occlusions. As a result, it was decided to down-scale the scenario and use a short baseline
camera on a small motorboat.

The second test took place in an artificial wave flume (supported by https://www.
cameri-eng.com/ (accessed on 5 April 2023) CAMERI—Coastal and Marine Engineering
Research Institute, Haifa, Israel). The flume has a piston-type wavemaker with an electric
drive system and is equipped with an Active Wave Absorption Control System. We used a
ZED2i stereo camera by StereoLABS (12 cm baseline) in both vertical and horizontal setups
mounted on a 100 × 20 cm motorboat to record the artificial waves. The center of the stereo
system was located ∼20 cm above the average water surface to achieve a low shooting
angle. The artificial wave amplitude was set from 10 cm up to 20 cm, while the period was

https://www.cameri-eng.com/
https://www.cameri-eng.com/


Sensors 2023, 23, 3857 15 of 20

set from 3–7 s. Representative confidence maps, produced from vertical and from horizontal
setup recordings from the flume, are presented in Figure 12. Note: The illustrations are
presented on the basis of the confidence map since its high contrast makes it visually more
adjusted to the human eye compared to the disparity map. In practice, the wave detection
and tracking procedures were applied on the disparity map, whose “cleanliness” and
smoothness are well-fitted to the suggested perception tasks, as is discussed in detail below.

Figure 12. Low-angle confidence maps from an artificial wave flume. Left: horizontal setup. Right:
vertical setup.

Both the vertical and the horizontal setups did well isolating the occlusions caused
by waves using the low confidence value they created on the confidence map. Yet it was
visible that the vertical setup’s product ws sharper and cleaner than the horizontal setup’s
product (in particular at long range), confirming our assumption following the typical
horizontal structure of the waves. Another important outcome from this test is that using
the stereo product as input for wave detection “exposed” waves not visible to the human
eye using a mono RGB image (the farther ovals in both the vertical and horizontal setup;
the vertical setup did better isolating the farther waves). This observation supports using
stereo products over training DL model on mono RGB datasets for wave-detecting tasks.

Although the results from the flume experiment were encouraging, we wanted to test
our methodology over real-world non-artificial data. The artificial waves generated by
the mechanical wave generator in the flume did not contain any wind effects, which are
common and crucial in real ocean wave structures. This fact—amongst other factors such as
the artificial lighting in the flume that does not simulate real lighting conditions, the lack of
chaos in the movement of the water surface, the monotony of the wave motion, and more—
made us realize that a “real world” experiment was necessary. We equipped our motorboat
with a Flight Controller (pixhawk 2.1) including IMU (9DoF) three MEMS-Gyros, three
acceleration sensors, and three magnetic field sensors. Correlating the ship’s changing
orientation with the observed wave may be useful for self-evaluation, and we went back
to the open sea. All measurements, synchronizations, and computations were performed
using a Jetson Xaviar nx computing platform (by NVIDIA, jetpack version: 4.5) in real-
time and stored on a local hard drive. The visual products were transmitted to a remote
monitor over WiFi. All implementation was performed with the assistance of StereoLABS’s
dedicated Python API (pyzed.sl).

Figure 13 compares the performance of a real-time Hough line detector on an RGB
image of the sea surface, and on the corresponding confidence and disparity maps produced
in real-time. The difficulty the algorithm has in recognizing sea waves from the RGB image
is clearly noticeable. Operating on the RGB image, the algorithm is easily distracted and
was unable to detect the lines representing sea waves. The products of the algorithm
operating on the confidence map are a little surprising. On the one hand, there is significant
improvement in the product of the algorithm operating on the confidence map compared
to the one operating on the RGB image in terms of the detection of the waves over various
ranges. On the other hand, the confidence map seems to be too “noisy” in a way that
causes the algorithm to have many “False-Positive” errors—or false detection of lines that
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do not represent sea waves in reality. That is, it is difficult to extract the “real waves” out
of all the false waves stemming from operating the line detector on the noisy confidence
map. Operating the algorithm on the disparity map produced the desired results. Due
to the dense mapping, the majority of the sea surface environment is “flattened” in the
sense that reflections, refraction, and small waves do not get much expression in this map,
but “significant” waves create occlusions that are expressed through “black holes” in the
map. These “black holes” are very easily detected by the Hough algorithm, as shown
in Figure 13. It can also be observed that the direction of deployment of the waves in
a deep-water environment is approximately uniform. This observation can be used to
efficiently and immediately filter out detection errors.

Figure 13. Hough line detector for ocean-wave detection from stereoscopic products from a vertical
pair of ocean surface images.

Further comparison of Hough-based wave tracking between RGB and depth maps
are presented in Figures 14 and 15, where Figure 14 illustrates the progress of two waves
over 0.5 s of video-capture in the RGB domain, and Figure 15 compares the performance
of a simple off-the-shelf Hough-based wave detector and tracker in the RGB and depth
domains over three consecutive frames (same scene as Figure 14) with a time-gap of 0.25 s.

Figure 14. Two waves’ (marked with red and orange ovals) progress in 0.5 s. All time values are in s.
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Figure 15. Hough-based wave detection in RGB and depth domains. All time values are in s.

Once again, besides the success in wave detection, an important outcome stems
from comparing the algorithm’s performance to human performance. While the flume
experiment provided evidence that wave detection using a stereo product was better than
human-eye-based wave detection over RGB images, the open-sea experiment suggested
that wave characterization can be also improved using stereo products. As part of the
experiment, the boat’s orientation was measured in parallel with the stereo recording.
Hence, in addition to wave detection, we could also examine the boat’s movement in the
presence of these waves. Those additional data enabled us to estimate each wave’s impact
on the boat. Given that the wave’s occlusion causes a “black hole” in the stereo product,
comparing the “hole’s” size between different waves may indicate the relative size of each
wave with respect to other waves. In this way, the system can mark certain waves as “large”
ones. This classification can be verified using the orientation measurements under the
assumption that larger waves probably cause more significant impact to the boat. Figure 16
presents an example of two consecutive waves and their impact on the pitch channel of the
ship’s orientation (marked with blue and green ovals, respectively). The two waves were
detected at (approximately) the same distance from the boat. While the first wave (marked
blue) was a “normal” wave, the second one (marked green) was large. The different size of
the two waves is well-reflected in the pitch reaction.

Figure 16. Two consecutive waves detected using the stereo product, and the corresponding recorded
pitch motion. The second wave caused more significant pitch movement than the first one.
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Looking at the RGB images alone, it is difficult to determine which of the two waves
is bigger (with a slight tendency to choose the first one, in the author’s opinion). Yet a look
at the confidence maps shows unequivocally that the second wave caused a much larger
occlusion, and hence it was bigger than the first one. This observation can form the basis
for a future forecasting model of a ship’s 6DoF state in a wavy environment for various
applications as described above.

5. Conclusions

The presented results confirm that the suggested approach enables low-cost yet effi-
cient real-time ocean-wave detection and tracking independently performed by a small
floating object using the disparity and the confidence maps generated by a stereoscopic
imaging system rather than using the final 3D point-cloud only. It was also shown that
the use of the disparity map outperforms human visual ability both in terms of wave
detection and wave relative height classification according to their amplitude (e.g., “small”,
“medium”, or “high” waves).

6. Discussion and Future Work

Projecting from the world of autonomous (off-road) vehicles, it seems that sensing the
geometric surroundings of a robot seems to enable a large set of capabilities. Unfortunately,
classical commonly used algorithms such as optical-flow, structure-from-motion, and SLAM
have difficulty functioning in a marine environment. These algorithms count on a hidden
assumption that some objects and feature points keep a stable structure between consecutive
frames (in other words, at least a portion of the scene is static). As demonstrated in Figure 6,
this assumption does not hold in the marine environment, and therefore, we suggest
our model as a fundamental methodology for sensing the geometry surrounding a small
floating object in a marine environment. As future work, we would like to start by creating
a real-world benchmark of the ocean surface (in time); such a benchmark can serve as a
basis for a wide range of AI problems. Moreover, we would like to use this benchmark in
order to train a GAN (Generative Adversarial Network) framework in order to perform
a simulated ocean surface that is as realistic as possible (in terms of geometry). Finally,
there is a large space to improve the suggested stereo-based mapping method in terms of
transforming the concept into an actual well-engineered model. The use of multi-cameras
should have a more robust implementation (e.g., a rigid “L” shape with three cameras with
a one-meter baseline). The use of IR projectors may allow the suggested method to perform
well in low-light conditions. Finally, fusing (sensor fusion) wave radar with the suggested
stereo vision solution may allow robust mapping in low-visibility conditions.

Being able to map the ocean surface in real-time using cost-effective commercial
sensors (stereo vision) can lead to several new applications. Much like stereo sensors
on commercial drones, which allow obstacle avoidance, 3D mapping, and real-time path
planning, autonomous boats may be able to perform real-time control in order to minimize
the boat’s rotation or optimize its energy consumption with respect to some required route.
The computed ocean surface can be used as an input channel for a wide range of ML
(Machine Learning) problems. We conjecture that such geometric data are highly suitable
for a wide range of machine-learning problems, allowing a significantly faster (and better)
learning curve with respect to vision-based input.
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