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Abstract: Multi-Objective Multi-Camera Tracking (MOMCT) is aimed at locating and identifying
multiple objects from video captured by multiple cameras. With the advancement of technology
in recent years, it has received a lot of attention from researchers in applications such as intelligent
transportation, public safety and self-driving driving technology. As a result, a large number of
excellent research results have emerged in the field of MOMCT. To facilitate the rapid development
of intelligent transportation, researchers need to keep abreast of the latest research and current
challenges in related field. Therefore, this paper provide a comprehensive review of multi-object
multi-camera tracking based on deep learning for intelligent transportation. Specifically, we first
introduce the main object detectors for MOMCT in detail. Secondly, we give an in-depth analysis of
deep learning based MOMCT and evaluate advanced methods through visualisation. Thirdly, we
summarize the popular benchmark data sets and metrics to provide quantitative and comprehensive
comparisons. Finally, we point out the challenges faced by MOMCT in intelligent transportation and
present practical suggestions for the future direction.

Keywords: multi-object multi-camera tracking; deep neural network; object detector; intelligent
transportation

1. Introduction

MOMCT is a crucial problem in computer vision, and it is very useful in public safety.
MOMCT aims to track multiple vehicles or other objects in traffic scenes through multiple
cameras, which is different from MOT (MOT) in a single camera [1]. A camera network
consisting of several cameras has a wider field of view than a single camera and offers
more practical application prospects. The main application scenarios include vehicle cross-
regional tracking on smart highway, traffic management in smart cities [2], autonomous
driving [3], and crowd analysis [4]. Especially in the process of vehicle cross-regional track-
ing on the highway, the MOMCT task can be used to track multiple vehicles simultaneously,
which plays a key role in traffic management and analysis. Therefore, most algorithms used
in MOMCT are based on the MOT algorithm, such as feature extraction algorithm, object
modeling, and motion detection. The MOMCT system consists of two components: firstly,
all the objects in each video frame are tracked and located by a single camera, and the
detection output results are connected into a continuous trajectory across time; secondly,
the network composed of different cameras matches the accurate vehicle trajectory de-
tected across different cameras through the correlation module. The vehicle cross-regional
tracking process of MOMCT system is shown in Figure 1.
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Figure 1. Cross-area tracking of vehicles with multiple objects and cameras.

In the real scenes, besides background confusion [5], posture change [6] and occlu-
sion [7], there are still many difficulties in tracking and detecting objects because of the
different video quality, lighting and viewing angle of each camera. In addition, multiple
cameras will not share the overlapping area. It means that the appearance features of the
same object will be very different in cameras with different perspectives. In the stage of
vehicle tracking, there are often problems such as large intra-class variability and inter-class
similarity [8]. To solve these problems, most MOMCT methods follow the detection and
tracking paradigm: firstly, a set of detection is generated independently for each video
frame shot by the camera; secondly, these detections are linked together by similarity
measurement to generate a continuous trajectory. Usually, this similarity measure considers
the location information and visual characteristics of the object. Visual features are very
important for keeping the side of the tracking object.

The vehicle tracking problem in multi-camera system is an extension of the problem
in single-camera system. Therefore, the algorithms used in multi-camera tracking are
mostly based on the well-known algorithms in single-camera tracking, such as motion
detection [9], object modeling [10], and feature extraction [11]. Using multiple cameras
has many advantages over using a single camera. It can mainly reduce errors caused by
occlusion or other sensors. However, vehicle tracking in multi-camera systems is very
challenging, because the tracking process must ensure the integration of information from
different sensors. The system designed to deal with MOMCT tasks usually consists of five
sub-modules, namely, object detection [12], multi-object single-camera tracking [13], vehicle
re-identification (re-ID) [14], and multi-object multi-camera tracking [15,16]. The general
process can be summarized as follows: Firstly, the vehicle detection module outputs vehicle
coordinates and categories in units of frames. Then, based on the vehicle position and the
learned features, the single-camera tracking and detection module generates candidate
trajectories for every single camera. Finally, these candidate trajectories are matched on
different cameras by associating the object with the global identity.

In the existing reviews [17–20], their work is more focused on reviewing multi-object
multi-camera tracking methods using a coarse classification, involving a wide range of
application scenarios lacking relevance. In addition, the current reviews lack references
to advanced results from the last three years, thus failing to provide a comprehensive
overview of the latest developments in MOMCT. Therefore, as shown in Figure 2, this
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paper provides an overview of recent advances in MOMCT-related technologies from
different aspects for intelligent transportation applications, including four major issues
such as object detection, object tracking, vehicle re-identification, and multi-target cross-
camera. In addition, this paper further details their technical challenges and compares
different solutions. Last but not least, we examine the performance of relevant MOMCT
algorithms on various datasets by focusing on data comparisons and explore the potential
value of these methods in smart cities. The main contributions of this paper are as follows:

• We provide a comprehensive overview of the application based on deep learning technol-
ogy in multi-object multi-camera tracking tasks. We have classified and summarised the
different stages of deep learning-based MOMCT algorithms, including object detection,
object tracking, vehicle re-identification and multi-object cross-camera tracking.

• We have aggregated the most commonly benchmark datasets and standard metrics
for MOMCT. We have combined various data for experimental visualisation and
comprehensive metrics evaluation of the main algorithms in MOMCT.

• We discuss the challenges MOMCT has faced in recent years from several perspectives,
as well as the main application scenarios in practice, and explore potential future
directions for MOMCT.
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Figure 2. Hierarchical structure of the MOMCT based on deep learning.
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Section 2 presents a typical baseline of MOMCT; Section 3 describes the classification of
MOMCT-related algorithms based on deep learning; Section 4 describes the main datasets
based on the MOMCT task; Section 5 describes in detail the evaluation criteria for MOMCT
tasks; Section 6 shows typical algorithms and visualisation results for MOMCT; Section 7
details future challenges, practical application scenarios and future directions for MOMCT
tasks; Finally, Section 8 concludes our work.

2. Overview of Object Detector

Object detection consists of two sub-tasks: localisation and classification. Localisation
aims to determine the position of the object object in the video or image, while classification
refers to the assignment of categories to the detected object objects (e.g., “vehicle”, “pedestrian”,
“house ”, etc.). Figure 3 illustrates a detailed classification of deep learning-based object detectors.
The classification and role of these object detectors will be discussed in this section.

Figure 3. Classification of object detectors.

2.1. Two-Stage vs. Single-Stage Object Detectors

In the field of object detection, the secondary object detector, such as R-CNN [21], Fast
R-CNN [22] and Faster R-CNN [23], consists of two processes: candidate regions and object
classification. In the stage of candidate region, the object detector selects regions of interest
(ROIs) in input image contained object objects. In the stage of object classification, the most
possible ROI is selected, other ROI is discarded, and the selected object is classified [24].
In contrast to two-stage detectors, single-stage object detectors create bounding boxes
during object detection and perform classification operations on the detected objects. The
advantage of single-stage detectors is that they are faster than two-stage detectors, but the
disadvantage is that they are less accurate in comparison. Popular single-stage detectors
include YOLO, SSD, and RetinaNet.

Figure 4 illustrates the differences between the two types of object detectors. The
evaluation metrics for both object detectors are generally evaluated using IoU and mAP.
Among them, R-CNN is one of the first object detectors based on deep learning, and
ROI is obtained by efficient and simple selective search algorithm. Fast R-CNN is an
improvement of R-CNN, which solves the problems of low detection accuracy and slow
network reasoning. Fast R-CNN uses convolution during training neural networks to
detect the input image and generate ROI projections on feature maps. The ROI is then
combined with the feature map for prediction. Fast R-CNN differs from R-CNN in that
Fast R-CNN processes the feature map directly with the input image during the detection
stage [25]. Faster R-CNN uses a separate detection network, an approach similar to Fast
R-CNN, which combines the ROI directly with the ROI pooling layer and feature maps in
combination with prediction [26].
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Figure 4. Two-stage vs. Single-stage object detector diagram.

Single-stage object detectors are faster than two-stage object detectors because they predict
the input object once. YOLOv1 [27] was the first YOLO variant that learned the salient features
of objects and could detect them at a faster speed. In 2016, YOLOv2 [28] creates bounding boxes
by anchoring them and adds a high-resolution classifier as well as batch normalization. In
2018, Redmon et al. [29] proposed YOLOv3, which consists of a 53-layer backbone network, an
independent logical classifier and cross entropy loss to predict bounding boxes and smaller ob-
jects. Single-detector SSD model [30] has good inference performance for real-time applications,
because it builds object grids in images to generate feature maps. SSD shares features when
performing localization and classification tasks on input images. The YOLO model is superior
to the SSD in terms of speed but inferior to the SSD in terms of accuracy. Although the SSD and
YOLO models have decent inference speeds, there is a class imbalance problem in detecting
small objects. To solve this problem, RetinaNet [31] focuses on loss function using a separate
network to solve bounding box regression and classification. The performance of each model is
summarised in Table 1.

2.2. 2D vs. 3D Object Detectors

For object detection, 2D image data is usually obtained by a 2D object detector. In [32],
data from radar and camera are fused by learning sensor detection methods. The depth
information of objects can play a key role in predicting the position, size and shape of the
objects, while 2D object detection can only obtain information in the 2D plane.

Data from radar or laser can be applied to 3D object detectors [33]. These object
detectors can use methods such as frustum pointnets [34] and point clouds [35] to predict
objects in real-time. In compensating for the loss of object information, some networks
often use 2D to 3D augmentation, as it is very expensive and complex to calculate directly
using 3D data. The 2D bounding boxes in the dot network are obtained in 2D images and
these boxes work well in generating ROIs for 3D object detection, effectively reducing the
search effort [36].
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With the booming development of deep learning, researchers are increasingly interested
in 3D object detection. Complex-YOLO [37] uses the Euler Region Proposal Network (E-
RPN) based on YOLOv2 to obtain 3D candidate regions. It achieved 3D object detection and
background semantic segmentation by random finite sets (RFS). Wen et al. [38] proposed a
lightweight 3D object detection model, which consists of three modules: (1) a point transfor-
mation module, which extracts point features from RGB images achieved by the original point
cloud; (2) voxelization, which combines the acquired voxel grid with the 3D point cloud to
generate a many-to-one mapping; (3) point fusion module, which fuses extracted features for
output detection. The performance of these models is summarised in Table 1.

Table 1. 2D and 3D object detector models and their performance.

Name Year Type Dataset mAP Inference Rate (FPS)

YOLOv1 [27] 2016

2D

Pascal VOC 63.4% 45
YOLOv2 [28] 2016 Pascal VOC 78.6% 67
YOLOv3 [29] 2018 COCO 44.3% 95.2
YOLOv4 [39] 2020 COCO 65.7% 62
YOLOv5 [40] 2021 COCO 56.4% 140
YOLOX [41] 2021 COCO 51.2% 57.8
YOLOR [42] 2021 COCO 74.3% 30
R-CNN [21] 2014 Pascal VOC 66% 0.02

Fast R-CNN [22] 2015 Pascal VOC 68.8% 0.5
Faster R-CNN [23] 2016 COCO 78.9% 7

SSD [30] 2016 Pascal VOC 74.3% 59
RetinaNet [31] 2018 COCO 61.1% 90

Complex-YOLO [37] 2018
3D

KITTI 64% 50.4
Complexer-YOLO [37] 2019 KITTI 49.44% 100

Wen et al. [38] 2021 KITTI 73.76% 17.8

3. State-of-Art Methods for MOMCT

Unlike MOT, the camera network consisting of multiple cameras has a much broader
view and application prospect than a single camera. This technology specifically con-
tains four key technologies, including object detection, single-camera MOT, vehicle re-
identification and multi-camera object tracking association. This section reviews the current
state of development in detail and analyses the problems and shortcomings.

3.1. Deep Learning Based Object Detection

Object detection is the key part of MOMCT task. The object detector mentioned in
Section 2 can be combined with scene classifier, which can learn rich semantic information
in images and mine more advanced and deeper features. Frameworks for object detection
methods fall into two main types: One is the traditional object detection pipeline, which
first generates regional suggestions in the image, and then it classifies each suggestion
into different object categories. The other is to treat object detection as a classification or
regression problem and then use a unified detection framework to directly derive the final
result (location and category). In this section, the object detection task is discussed in terms
of the above two types.

3.1.1. Region Proposal Based Framework

The region-proposal based framework has two-step stage, similar to the now prevalent
attention mechanism, which first scans the entire image and then focuses on the region of
interest. The most prominent of the prior related work [43–45] is Overfeat [43]. This model
uses CNNs in a sliding window approach to obtain confidence in the underlying object
class, then predicts the bounding box from the location of the topmost feature map.
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(1) R-CNN

R-CNN achieved an average accuracy of 53.3% on Pascal VOC 2012. It can generate
high-quality candidate bounding boxes and then use depth architecture to extract advanced
features from images. The main process can be divided into the following three stages.

Region proposal generation. The R-CNN combines saliency cues and bottom-up group-
ing with selective search methods [46]. It is able to generate candidate frames of arbitrary size
accurately and quickly, thus reducing the search space in object detection [47,48]. On each
image, the R-CNN can provide approximately 2000 region suggestions using the selective
search method. Combined with R-CNN, Xie et al. [49] proposed region-oriented proposal
networks to generate good region-oriented proposals for identifying them in a cost-free manner.
Hong et al. [50] proposed a sparse R-CNN incorporating the Hungarian algorithm to assign
learning suggestion frames one-to-one for each positive sample. It generates better features and
initial suggestion frames for the training phase.

CNN based deep feature extraction. Using the CNN framework, each region is proposed
to be tuned to a fixed resolution as the final representation [51]. Due to the remarkable hierar-
chical structure and expressive power of the neural network, a semantic, robust and high-level
feature representation of each region proposal can be obtained. Wang et al. [52] proposed a
two-stage detection method for dynamic R-CNNs, using a self-calibrating convolutional module
in a convolutional network to extract rich object features. Alsharekh et al. [53] used a deep
R-CNN architecture to extract features from the data.

Classification and localization. In multiple category pre-training, a multi-category
specific linear SVM [54] is used to score different region proposals on a set of negative
background regions and positive regions, respectively. Then, within the labelled area,
adjustments are made using bounding box regression and filtered using greedy non-
maximum suppression (NMS) to produce a final bounding box containing the object
location. Zhang et al. [55] proposed a point-to-point regression grouping R-CNN to predict
a reasonable bounding box for each point annotation in the image.

(2) R-FCN

Although the Faster R-CNN is an order of magnitude faster than the Fast R-CNN, the
computation after the RoI merge layer cannot be shared. Therefore, Dai et al. [56] presented
a fully convolutional R-FCN detector to build a shared RoI subnet. However, this simple
design has poor detection accuracy, presumably because the deeper network is more sensitive
to category semantics. Based on this phenomenon, Vijaya Kumar et al. [57] used the R-FCN
ensemble layer to extract predicted scores for each region in the image. This method facilitates
the computation of shared regions of interest and improves the detection accuracy of the
network. Zhang et al. [58] constructed a region-based full convolution network (R-FCN) model.
The model realizes the accurate classification of targets, and improves the recognition accuracy
of the model by extracting fine-grained features from images.

3.1.2. Regression/Classification Based Framework

The region-proposal based framework consists of several interrelated phases such
as region proposal generation, CNN feature extraction, classification and bounding box
regression, which are usually trained separately. Even in R-CNNs with faster end-to-end
modules, alternative training is required to obtain the convolution parameters between the
detection network and the RPN. In this section, we present two important applications of
the framework: YOLO [27] and SSD [30].

(1) YOLO

Redmon et al. [27] proposed YOLO, a method for predicting confidence in bounding
boxes and object classes from the topmost feature map. Based on this, Roy et al. [59]
proposed a deep learning-based detection model, WilDect-YOLO, in which a residual block
was added to the depth space feature extraction. Karaman et al. [60] proposed an artificial
bee colony (ABC) optimisation algorithm based on the YOLOv5, which improves the
sensitivity of the system for real-time detection by pairing hyperparameters and optimal
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activation functions. Xue et al. [61] presented an improved YOLOv5, which improves
the feature extraction capability by adding self-attentive convolution and convolutional
block-attentive modules. Mittal et al. [62] proposed a hybrid model combined YOLO and
Fast R-CNN. It employs migration learning methods to reduce class imbalance problems
and enhances the image quality through a sharpening process.

(2) SSD

Due to the strong spatial constraints of bounding boxes, YOLO lacks robustness in
detecting multiple small objects. It also generates relatively coarse object features during
the downsampling operation. To address these issues, Liu et al. [30] proposed SSD based
on anchor points employed in RPN [63] and multiscale representation [64]. Contrasted to
the fixed grid used in YOLO, SSD can use anchor boxes of different scales to discretize the
bounding boxes of a given feature map. The network handles objects with different sizes
by fusing the predictions of feature maps in various resolutions. On this basis, Jia et al. [65]
used the positive and negative functions of SSD network to solve the shortcoming of
insufficient sensitivity for small object detection. Chen et al. [66] enhanced the SSD using
MobileNetv2 and the attention mechanism to improve the performance of the algorithm.
Gao et al. [67] proposed the R-SSD which based on SSD and ResNet to improve the feature
extraction quality of the algorithm. Ma et al. [68] proposed the anchorless 3D object
detection model CG-SSD, which mines deeper features through a convolutional backbone
network consisting of sparse convolutional layers and residual layers. Cheng et al. [69]
used a hybrid attention mechanism in SSD to improve the accuracy of object detection and
further combined it with a focal loss function to improve robustness.

3.2. Deep Learning Based MOT

MOT needs to be completed after object detection. In this section, we will roughly
classify deep learning-based MOT approaches into three categories based on the different
tracking framework: (i) MOT using deep network feature enhancement. Deep neural
networks are used to extract semantic features for the task of interest and replace the
previous traditional manual features. (ii) MOT with deep network embedding. Deep
neural networks can classify the different object trajectories acquired and construct deep
classifiers to detect whether they belong to the same object. (iii) MOT with end-to-end deep
neural network learning. In the general case, there will be intertwined modules in motion
object tracking and the MOT results can be obtained directly using deep networks.

3.2.1. MOT Enhancement Using Deep Features

Deep features extracted by deep neural networks are rich in semantic information and
are clearly differentiated between different classes. These deep features not only improve
the performance of MOT, but are also effective for tasks such as image segmentation and
object detection [70].

Similar to object detection using CNN to extract object features [71], AlexNet [72] is
mainly used to extract depth features in the multiple hypothesis tracking (MHT) frame-
work. The MHT tracking framework creates a hypothesis tree and uses different associated
hypotheses. Kim et al. [73] improved the MHT method with appearance features using reg-
ularized least squares. This method reduces the dimensionality of the extracted appearance
depth features. Wang et al. [74] proposed a circular tracking unit to model the object by
acquiring long-term information. Wojke et al. [75] used the wide residual network (WRN)
to extract the depth features in the image to increase the discrimination ability. These
features were also used to calculate the minimum cosine distance between tracking and
detection. As shown in Figure 5, the whole tracking framework utilizes a cascade matching
process. The tracking method has depth features from the WRN that improve the real-time
speed of the model while maintaining competitive performance.



Sensors 2023, 23, 3852 9 of 28

Figure 5. The framework of depth SORT [75].

The goal of MOT feature learning is to evaluate the similarity between tracking target
features, and the CNN structure with two branches is well suited for extracting matching
features of moving objects. Leal-Taixé et al. [76] used gradient advancing algorithm to
fuse motion and depth features, so that the tracking problem was transformed into linear
programming. Zhang et al. [77] proposed a framework that combines filtered tracking and
conjoined object tracking. The framework combines artificial features with depth features
to improve the performance and robustness of the tracker. Su et al. [78] used anchor-less
networks to predict the position of objects in the search element domain, improving the
correlation between search frames and template frames.

3.2.2. MOT with Deep Network Embedding

Compared to the enhanced tracking method of depth feature, it is more effective to
combine deep neural networks and embedded designs as key components of the tracking
framework, where samples of tracking data are used in the training process. Based on the
task of network learning, we broadly classify MOT methods for deep network embedding
into three types: discriminative deep network learning (DN-MOT), deep measurement
learning (DM-MOT), and generative deep network learning (GN-MOT).

DN-MOT: In the DN-MOT method, object trackers optimise discriminative models and
search the best locations in the next frames according to the models. Due to deep networks
are widely used for discriminative tasks, it is easy to extend discriminative deep network
models for tracking tasks. For example, Chen et al. [79] proposed an object particle filtering
framework, specifically constructing models of VGG-16 [80] and Faster R-CNN [23] as
object classifiers to track each object. Similar to [79], Chu et al. [81] used an object-specific
tracker to construct the MOT framework and used an updated classifier to find the best
candidate to complete the tracking, as shown in Figure 6. Firstly, the captured video frames
are fed into a shared CNN layer to generate feature maps, which are subsequently fed into a
RoI pool to generate candidate features. At the same time, positive, negative and historical
samples are selected from the tracked samples. These samples are used to calculate the
classification score and weight loss of candidate features. Secondly, the features in the RoI
pool are passed through a fully-connected convolutional layer to generate a visibility map,
and then spatial attention is extracted from the visibility map. Finally, the state of candidate
features is extracted for object tracking. In addition, Liu et al. [82] provided a multivariate
polynomial kinematic forward solution algorithm that effectively improves the accuracy
and real-time performance of the model.
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Figure 6. Framework of STAM-MOT [81]. In this framework, (a) a deep neural network-based spatial
attention and object-specific classifier, and (b) a sampling-based best candidate classifier.

DM-MOT: It involves extracting image features and mapping them to a high-dimensional
space. This method aims to calculate the similarity between different objects based on the feature
information. It can be regarded as an image block verification problem [83]. Similar to pedestrian
re-identification [84] and face recognition [85], it is important to learn accurate distance metrics
and similarity models in such problems. Therefore, it is desirable to use suitable depth metric
learning networks [86] for DM-MOT. Son et al. [87] used multiple image blocks as Siamese
network inputs to achieve precise localisation by extracting appearance and motion features.
Xiang et al. [88] designed a CNN network based on triadic loss to acquire the appearance
features of the object and through, which the distance metric between the detector and the
tracker was learned and calculated. Unlike [87], Cheng et al. [89] employed the appearance and
motion features of the object as input for DM-MOT and used triple loss to optimize the model.
In general, it usually applies the Hungarian algorithm [90] to solve the distance metric cost
incurred by the detectors and trackers during the tracking process.

GN-MOT: It aims to generate the object model by learning its shape, motion and other
characteristics and then using this model to track its trajectory. Some works have used
deep generative learning to improve the performance of MOT. Fang et al. [91] presented a
recursive auto-regressive network (RAN) model to improve the performance by modeling
the motion features. Fernando et al. [92] predicted object trajectories by using an LSTM-
based generative model. It associates the object tracker with the GAN model in the
prediction module to enable the tracking of new objects.

3.2.3. MOT with End-to-End Deep Network Learning

It is difficult to apply a single model for learning multiple key modules in an MOT
task such as target detection, target matching, trajectory tracking etc. Recently, researchers
have presented many end-to-end learning methods to achieve this goal. Inspired by Posner
and Ondruska [93], Milan et al. [94] modeled these procedures on the basis of RNNs. As
shown in Figure 7, the inputs to the network are the matching matrix, state, and presence
probability of the object, while the updated result, predicted state, and new presence
probability are used as outputs, which determine whether the object should be terminated.
In addition, an LSTM-based network was designed for computing the matching matrix,
while modeling the matching process between the current observation and the object state
to train the RNN in an end-to-end manner. On this basis, Sadeghian et al. [95] employed
a hierarchical RNN structured network to obtain interaction, appearance and motion
features of objects. The network uses an end-to-end approach to train matching classifiers,
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which improves the probability of matching between objects and trackers. With a time-
synchronous stability mechanism, Li et al. [96] enabled all parts of the controller’s agent
states to reach consensus simultaneously, effectively improving the performance of the
model. Moreover, Kim et al. [97] proposed an end-to-end training method to improve the
performance by using bilinear LSTM module.

Figure 7. Framework of RNN-LSTM tracking [94]. An LSTM-based network is constructed in this
framework for deriving the best association between object and detection, and an RNN-based network
for updating states, learning predictions and termination probabilities.

3.3. Deep -Learning-Based Vehicle Re-Identification

Following single camera multi-objective tracking, a deep learning based re-identification
method is used to extract embedded features of each trajectory for vehicle re-identification.
This section will focus on unsupervised learning-based methods, attention mechanism-based
methods and local feature-based methods.

3.3.1. Vehicle Re-Identification Based on Unsupervised Learning

Compared to supervised techniques, unsupervised learning aims to make inferences
directly from unlabeled input data, which addresses the limited generalisation capability of
the model and the high cost of manually labelled data [98]. This technology has been widely
used in vehicle re-ID task. Deng et al. [99] presented a cross-domain adaptive unsupervised
method from image to image. This method maintains similarity by combining neural
network and improves the recognition accuracy of the model. Wang et al. [100] used
an identity-based joint attribute learning method to improves the efficiency by the key
attributes and semantic information.

In recent years, unsupervised methods have been widely used in vehicle re-identification.
Shen et al. [101] used clustering features to simulate global and local features for improving
the accuracy of unsupervised vehicle re-ID. Zhu et al. [102] trained convolutional neural
networks with a deep feature learning module to improve the model’s ability in feature
differentiation. Wang et al. [103] proposed a new contrast learning framework that uses
reliable discrete sample clustering to build a memory dictionary for object re-identification.
Gao et al. [104] used an unsupervised framework based on data synthesis. By adjusting the
target and source domain to adapt to the pre-training model, the domain generalization
ability of the re-recognition model was improved.
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Generated Antagonistic Network (GAN) [105] is widely used in unsupervised learning.
A simulation of the GAN framework is shown in Figure 8. The framework consists of
a data discriminator and a generator. The generator obtains the synthetic data through
transformation after obtaining the random variables. The discriminator receives the data
from the generator and judges the data, and finally reaches a balanced state. Zhou et al. [106]
presented a GAN-siame network to solve the unsupervised V-reID cross-domain problem.
The algorithm learns the distance measurement between two domains by connecting the
network, which improves the performance of model matching.

Figure 8. GAN architecture simulation diagram.

3.3.2. Vehicle Re-Identification Based on Attention Mechanism

Attention mechanism mainly focuses on selective actions/things related to tasks
and ignores other irrelevant actions/things. Researchers are working on designing an
effective attention-based neural network for vision-related applications such as fine-grained
image recognition [107,108], image classification [109,110], image captioning [111,112], and
vehicle re-identification [113]. The process of vehicle re-identification based on spatio-
temporal attention is shown in Figure 9. Trajectory features are extracted for re-ID by the
spatial attention mechanism, then the features are weight ranked by the temporal attention
mechanism, and finally the key features of objects are output according to the ranking.

Figure 9. Vehicle Re-identification Based on Spatio-temporal Attention.

These approaches typically follow a strategy of integrating hard partial selection
subnets or soft mask branches into deep networks. For example, Zhu et al. [113] added
self-attentive models to each branch of the CNN network for fine-grained recognition of
vehicles. To reduce the influence of noise in the image, Lian et al. [114] used the attention
network based on transformer to extract the global features of vehicle re-ID. Jiang et al. [115]
studied a global reference attention network. By mining distinguishing features, the
difficulty of distinguishing vehicles with similar appearance is solved. Tian et al. [116]
proposed an adaptive attention network. The network captures the global structural
information of the vehicle through a global relational attention module to improve the
accuracy of re-ID. Li et al. [117] investigated a CAM network with a contrast attention
module. It enhanced the recognition ability of the re-ID model by refining the local
features. Song et al. [118] introduced the global attention mechanism based on two-branch
network. It trains the network by combining global and local features to improve the
performance of vehicle recognition. Li et al. [119] presented a model with region attention
and orthogonal view generation. The process of re-identification is simplified by extracting
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distinguishable regional features to differentiate vehicles. Tang et al. [120] studied an
attention network for extracting multi-scale features, which reduced the difficulty of vehicle
re-ID task. Liu et al. [121] used a multiple soft attention network to extract robust features.
Shen et al. [122] presented a graphical interaction converter to extract differentiated local
features for the robustness of re-ID model.

3.3.3. Vehicle Re-Identification Based on Local Feature

Early research on vehicle re-ID focused on the global features of images. After encoun-
tering the bottleneck of accuracy, many studies began to pay attention to local features,
because the differences between similar vehicles are mainly reflected in local areas. At
present, it is common to extract local features by means of key point localisation and region
segmentation. Wang et al. [123] segmented the image vertically and horizontally to extract
features, which improves the accuracy of vehicle re-recognition. Rong et al. [124] fuse
local-global features to obtain more vehicle information and enhance the learning ability of
vehicle recognition. Yang et al. [125] studied the two-branch network based on pyramid
feature learning. It solves the problem of learning and recognising model information by
learning local and global features of the vehicle. Fu et al. [126] utilized local attention to fa-
cilitate the learning of local attentional features for vehicle re-ID. Liu et al. [127] designed a
vehicle information module. The module improves the ability to recognize similar vehicles
under the same camera.

3.4. Deep Learning Based Multi-Object Multi-Camera Tracking

Re-ID is carried out through the information of cameras, and the cross-regional track-
ing of moving objects is completed through the temporal and spatial correlation of multi-
camera trajectories. The MOMCT with trajectory to object method is as shown in Figure 10.
Input the object information detected in different cameras into the camera network, and
then accurately match the object trajectories, and create a complete global cross-camera
trajectory for each object.

Figure 10. Schematic diagram of algorithm from trajectory to object.

Vehicle trajectory matching is the key part of MOMCT. Due to variations in lighting
and viewing angles, it is susceptible to disruptions in vehicle tracking trajectories while
vehicles are obscured and hence continuous vehicle tracking cannot be accomplished. For
such problems, Hsu et al. [128] proposed a camera linkage model based on trajectory. By
extracting the appearance and topological features of different cameras, the accuracy of
vehicle trajectory matching is improved. Hsu et al. [129] provided a reliable framework
for vehicle MOMCT using a hierarchical clustering algorithm. Li et al. [130] simplified
the process of object trajectory matching in overlapping space by dynamically coding
visual features. Liu et al. [131] used Markov decision to model the vehicle trajectory,
which improves the accuracy of trajectory matching. Zhao et al. [132] presented a channel
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estimation method which uses sensing, communication and control technologies to obtain
the information needed for trajectory generation.

During tracking, it is easy to mistake tracks generated by different vehicles as the same
ID. To solve this problem, Yang et al. [133] designed the trajectory re-connection technology.
By reconnecting the segmented trajectories, an accurate vehicle trajectory is generated.
Li et al. [134] developed a MOMCT vehicle tracking system which eliminates unreliable
trajectories by assessing cross-view matching of vehicle trajectories. Liang et al. [135] used
Kalman filter to predict the motion of the object, which improved the analysis and matching
ability of the model. To match the local trajectory of the same object in different cameras,
He et al. [136] employed the spatio-temporal attention mechanism to generate the vehicle
trajectory representation, which improves the matching success rate of the object allocation
algorithm. Tran et al. [137] presented a spatially constrained framework to improve the
robustness of the model by using cross-awareness of the tracker.

4. Datasets

Datasets play an important role in the MOMCT task, not only to strategise and compare
the performance of various algorithms, but also to help solve complex and challenging
problems in the field. This section describes the main datasets in the MOMCT task.

4.1. Analysis of Public MOMCT Datasets
4.1.1. BDD100K Dataset

The BDD100K [138] dataset contains 100,000 videos with IMU/GPS information
captured by mobile phones, each video lasts approximately 40 s at 30 frames per second
and keyframes are extracted and annotated at the 10th second, mainly in terms of road object
boundaries, driveable areas, and lane markings. The dataset annotates the boundary boxes
for common objects on the road in 100,000 keyframe images to understand the location and
distribution of the objects. The different traffic scenes included in the BDD100K dataset are
shown in Figure 11.

(a) (b) (c) (d)

Figure 11. Traffic scene images of BDD100K data set, where (a–d) are images of traffic captured in
different street scenes.

4.1.2. VehicleX Dataset

The VehicleX dataset [139] is a dataset synthesized from 3D models of various vehicles.
It is taken from real-world scenes and used to synthesize images with a total of 1362 vehicles
and 192,150 images. In addition, colour and type labels were also annotated. The traffic
scene images of vehiclex dataset is shown in Figure 12.
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(a) (b) (c) (d)

Figure 12. Traffic scene images of UA-DETRAC data set, where (a–d) are images of different vehicles
in a traffic scene.

4.1.3. UA-DETRAC Dataset

The UA-DETRAC data set [140] contains 10 h of video from 24 different locations,
including more than 140,000 frames of data. Up to 8250 vehicle objects in the scene are
manually marked with more than 1.21 million object bounding boxes containing labels. The
vehicle categories in the data set are cars, buses and trucks, and there are also four weather
types: cloudy, night, sunny and rainy. As shown in Figure 13, UA-DETRAC dataset images
with different congestion situations in traffic scenes.

(a) (b) (c) (d)

Figure 13. Traffic scene images of UA-DETRAC data set. (a,b,d) show the traffic scenes in daytime
conditions. (c) shows the traffic scenes on the viaduct under night conditions.

4.1.4. KITTI Dataset

The KITTI dataset [141] was used to evaluate the performance of computer vision
techniques such as stereo imagery, optical flow, visual ranging, 3D object detection, and 3D
tracking in an in-vehicle environment. It contains real image data collected from urban,
and rural and motorway scenes with up to 15 vehicles and 30 pedestrians per image, as
well as various levels of occlusion and truncation. The traffic scene images of KITTI dataset
is shown in Figure 14.
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(a) (b) (c) (d)

Figure 14. Traffic scene images of KITTI data set, where (a–d) are images of different urban and rural
roads.

4.1.5. Nuscenes Dataset

The nuScenes dataset [142] is a shared large dataset for autonomous driving. The dataset
has 1000 driving scenarios, each with 20 s of video, for a total of approximately 15 h of driving
data. The scenarios were selected with due consideration for diverse driving maneuvers, traffic
conditions, and accidents. The traffic scene images of nuscenes dataset is shown in Figure 15.

(a) (b) (c) (d)

Figure 15. Traffic scene images of nuscenes data set, where (a–d) are images of intersections, office
buildings and residences on different streets.

4.2. Summary of Typical Datasets

With the detailed description of the data related to the MOMCT dataset above, this
paper summarises and tabulates the vehicle dataset in recent years, as shown in Table 2.

Table 2. Popular dataset for MOMCT.

Dataset Year Total Images Categories Image Size Objects of Image Size Highlights

OpenData 2017 10,000 10 400 × 424 Varied 16 G A great variety.
Stanford Cars 2013 16,185 5 720 × 540 3 10 G Automobile model verification.

CompCars 2015 136,726 5 540 × 540 4 18 G Fine-grained classification.

ImageNet 2009 14,197,122 21,841 500 × 400 1.5 138 G
Image classification,

detection and location.

PASCAL VOC 2009 11,540 20 470 × 380 2.4 8 G
One of the mainstream

data sets of computer vision.

MS COCO 2015 328,000+ 91 640 × 480 7.3 18 G
Very high industry

status and huge data set.
Open image 2020 9 million+ 6000+ Varied 8.3 500 G Very diverse.
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Table 2. Cont.

Dataset Year Total Images Categories Image Size Objects of Image Size Highlights

KITTI 2012 500+ 5 1240 × 376 1.7 180 G Evaluate vehicle performance.

BD100K 2018 100,000 10 1280 × 720 2.4 7 G
One of the largest
driving data sets.

UA-DETRAC 2020 140,000 8 960 × 540 2.3 14.5 G Challenging data set.

ILSVRC 2012 170,000+ 1000 1280 × 720 Varied 16 G
The most popular

machine vision competition.
vehiclex 2020 192,150 10 960 × 540 Varied 16 G Accurate data.
CityFlow 2019 229,680 6 1080 × 540 Varied 8 G Large-scale.
VehicleID 2019 221,763 11 840 × 840 Varied 7 G Large-scale.

5. Evaluation Metrics

Certain evaluation metrics can measure the performance of cross-camera MOT tasks.
It plays a key role in the evaluation analysis and selection of algorithms as a criterion for
evaluating the performance of MOMCT algorithms. In this section, the MOMCT algorithm
performance evaluation metrics are described in detail.

5.1. Basic Evaluation Metrics

(1) TP: True Positive is a positive sample that is predicted to be positive by the model,
which can be referred to as the percentage of correct judgments that are positive.

(2) TN: True Negative is a negative sample that is predicted to be negative by the model
and can be referred to as the percentage of correct judgments that are negative.

(3) FP: False Positive is a negative sample that is predicted to be positive by the model
and can be referred to as the false positive rate.

(4) FN: False Negative refers to positive samples that are predicted to be negative by the
model and can be referred to as the under-reporting rate.

(5) Accuracy: This refers to the weighting of the correct decision by the classifier, and is
publicly expressed as.

A =
TP + TN

TP + TN + FP + FN
. (1)

(6) Precision: Its the proportion of true positive samples among the positive examples
determined by the classifier, expressed publicly as.

P =
TP

TP + FN
. (2)

(7) Recall: Its the proportion of positive cases correctly determined by the classifier to the
total number of positive cases, expressed publicly as.

R =
TP

TP + FN
. (3)

5.2. Track Relevant Indicators

(1) MOTA [143]: MOT Accuracy is a measure of single-camera MOT accuracy and is
publicly represented as.

MOTA = 1 − FN + FP + Φ
T

, (4)

where FN is the sum of the false negatives of all frames, i.e., assuming that f nt is the
false negative of frame t, then FN = ∑t f nt. Similarly, FP = ∑t f pt. T is the sum of
the number of real objects in all frames, i.e., assuming that there are gt objects in frame
t, then T = ∑t gt. Φ is the number of object jumps in all frames, φt is the number of
object jumps in frame t, then Φ = ∑t φt. In other words, these three items represent
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the missing rate, the false positive rate, and the mismatch rate in that order. The closer
MOTA is to 1 the better the tracker performance.

(2) MOTP [143]: MOT accuracy is a measure of single-camera MOT position error, ex-
pressed by the formula.

MOTP =
∑i,t di

t

∑t ct
, (5)

where ct denotes the number of matches at frame t. For each pair of matches, the
matching error di

t, represents the distance between the object Oi, and its pairing
hypothesis position at frame t.

(3) MT: Mostly tracked is the number of tracks where the tracked portion is greater than
80%, the larger the value the better.

(4) ML: Mostly lost is the number of tracks where the lost portion is greater than 80%, the
smaller the value the better.

(5) Frag: The number of jumps is the number of track changes from “tracking” to “not
tracking” state.

5.3. ID Related Index

(1) IDP: Identification Precision is the accuracy of vehicle ID identification in each bound-
ing box. The formula is:

IDP =
IDTP

IDTP + IDFP
, (6)

where IDIP and IDFP are the number of true IDs and the number of false positive
IDs, respectively.

(2) IDR: Identification Recall is the recall rate of vehicle ID identification in each bounding
box. The formula is:

IDR =
IDTP

IDTP + IDFN
, (7)

where IDFN is the negative ID number.
(3) IDF1: Identification F-Score is the F-value of the vehicle ID identification in each

bounding box. The formula is:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
. (8)

In general, IDF1 is the first default metric used to evaluate the performance of the
tracker. These three metrics can be inferred from any two of them, so it is also possible
to show only two of them, although it is preferable that these two include IDF1.

(4) IDS: The number of ID switches is the number of instantaneous vehicle ID transitions
in the tracking track, usually reflecting the stability of the tracking, the smaller the
value the better.

6. Typical Algorithms and Visualization Results
6.1. Comparison and Analysis of Algorithms

To describe MOMCT algorithm models more intuitively in Section 3, these algorithm
models are listed in Table 3. It not only shows their performance of using different object
detectors and tracking methods on BDD100K data set, but also shows their results based
on IDP, IDR, IDF1 and other indicators on the data set, and makes the following analysis
and comparison of typical algorithms in Section 3.

By comparing these algorithms, we can draw the following summary:

(1) GCNM: After associating the object trajectory, the algorithm uses the graph convolu-
tion network to form the global trajectory. Then on the trajectory level, instant erasure
and random horizontal flip are used to expand the data, which enhances the data
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robustness of the camera. Finally, the new loss function improves the generalization
ability of the model, thus obtaining good performance in data accuracy.

(2) UWIPL: This method generates a motion track by using its appearance and time
information. The system takes ResNet50 as the backbone network and combines Xent
loss and Htri loss for training. The tracking accuracy is improved based on road
channelization and road condition information, and the applicability of this method
in different scenarios is realized.

(3) ANU: It provides fine-grained features by using road spatio-temporal information
and camera topology information. Removing overlapping bounding boxes by non-
maximum suppression. At the same time, it also uses the color dithering mechanism
to improve the performance of the model.

(4) BUPT: It utilizes ResNet network as the backbone network and uses random filling
and erasing methods to fill data. Then, it trains the framework by combining trajectory
consistency loss and clustering loss. Finally, a higher IDF1 is obtained by introducing
temporal and spatial clues.

(5) DyGLIP: It has better lost trajectory recovery and better feature representation during
camera overload. By adding correlation regression and attention module in the
experiment, the scalability of the model in large-scale data sets is improved.

(6) Online-MTMC: It solves the MOMCT problem by using the detection-clustering method.
The feature pyramid network is used as the backbone network, and the quality of features
is improved by Gaussian blur and contrast disturbance mechanism. This method also
employs the minimum loss function to optimize the network parameters.

(7) ELECTRICITY: It applies a cluster loss strategy to remove isolated tracks and synchronise
track ID based on the re-identification results. Meanwhile, depth ranking is considered as
a tracking model and Adagrad is applied as a loss function to optimise the model, which
makes the algorithm suitable for large-scale realistic intelligent traffic scenes.

(8) NCCU: It adopts vehicle image features and geometric factors for collaborative optimiza-
tion matching. Then, FBG analysis is used to generate the mask of road region of interest,
which effectively solves the problem of finding broken down vehicles on the road.

Table 3. Performance of Typical Algorithms on BDD100K Datasets.

Method Object Detector SCT IDP↑ IDR↑ IDF1↑
GCNM [144] SSD TNT 71.95 92.81 81.06
UWIPL [145] SSD TNT 70.21 92.61 79.87
ANU [146] SSD custom 67.53 81.99 74.06
BUPT [147] FPN custom 78.23 63.69 70.22

DyGLIP [148] Mask-RCCN DeepSORT - - 64.90
Online-MTMC [149] EfficientDet Custom 55.15 76.98 64.26
ELECTRICITY [150] Mask-RCCN DeepSORT - - 53.80

NCCU [151] FPN DaSiamRPN 48.91 43.35 45.97
IDP: the accuracy of vehicle ID identification in each bounding box. IDR: the recall rate of vehicle ID identification.
IDF1: the F-value of the vehicle ID identification in each bounding box.

6.2. Visualization Results and Analysis

The visualization results of the listed classical algorithms are shown from Figures 16–19.
Through visual analysis, we can get the following results.

(1) ANU adjusts the thresholds of positive and negative sample pairs by increasing the
perception of locality in small scenes. The non-maximum suppression mechanism
also removes some of the overlapping bounding boxes and retains those close to the
camera, improving the success rate of tracking to the vehicle.

(2) UWIPL combines camera linking and deep feature re-identification of trajectories,
uses the appearance and time information of trajectories for high confidence matching,
and uses a greedy algorithm to select the smallest pairwise distance to match the
vehicle being tracked, resulting in accurate tracking results in different scenarios.
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(3) ELECTRICITY combines MOMCT strategy and aggregation loss to eliminate the
erroneous trajectories. It tracks objects mainly through re-identification, and further
improves the robustness of the algorithm through image flipping and random erasure.

(4) BUPT system combines the loss of trajectory consistency with the loss of clustering,
and extracts more obvious features. The cluster loss used in the method improves the
tracking accuracy.

(a) (b) (c) (d) (e)

Figure 16. Visualizatio n results of ANU tracking system on BDD100K data set. (a) shows the results
of vehicle detection and tracking during the day, (b–e) show the results of vehicle detection and
tracking at different times of the night for the same video.

(a) (b) (c) (d) (e)

Figure 17. Visualization results of UWIPT tracking network on BDD100K data set, where (a–e) show
the results of detecting and tracking vehicles in different scenes of the same video.

(a) (b) (c) (d) (e)

Figure 18. Visualization results of ELECTRICITY tracking algorithm on BDD100K data set, where
(a–e) are the results of vehicle detection and tracking in the same scene in the same video.

(a) (b) (c) (d) (e)

Figure 19. Visualization results of BUPT system on BDD100K data set. (a–c) are urban scenes,
(d,e) are countryside scenes.

7. Challenges, Applications and Perspectives
7.1. Challenges and Opportunities

(1) Real-time processing

In the training stage, object detection in the sequences increases the training time. It can
better detect new objects by increasing the correlation in the sequences, while discarding
irrelevant frames. It may reduce the waiting time in training. It has become an open
question that how to establish spatio-temporal relationships between consecutive frames in
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order to improve the efficiency of detecting objects. Although some recent research works
have begun to address this problem, there is still a great demand for further works.

(2) Semi-supervised object detection

The existing methods in object detection basically need to label data sets to train
models. The supervised object detection model faces the challenge of the change of labeled
data caused by scene change. Due to the changing nature of object tracking and detection,
introducing semi-supervised learning into the model can effectively reduce the training
time of object detection. Researchers recently used semi-supervised transformer model to
improve the accuracy of object detection. However, it is still a challenge to apply them to
the detection model, because they occupy a lot of memory and need further study.

(3) Publicly available datasets

Changing environmental conditions (such as weather) affect the performance of the object
detector, but data from different environments can improve this situation during training. Using
new data to shape and test the model can make the model adapt to the changes of weather
environment. Therefore, there is a fundamental requirement for a dataset containing a wide
range of data to train the model in order to ensure better robustness.

7.2. Applications

With the advancement and development of deep learning and various new technolo-
gies in recent years, the application of MOMCT in smart city has become more widespread
and encompasses all aspects of life.

(1) Intelligent transportation

MOMCT technology enables real-time continuous tracking of vehicles on highways
and is able to solve practical tracking problems in complex environments, such as occlusion,
weather, light changes, etc. This technology obtains the traffic parameters of the vehicle
and enables high precision continuous tracking of the vehicle on the highway. MOMCT
technology can get the data of road congestion in time and provide people with more
convenient travel modes. Meanwhile, traffic workers can monitor key road conditions by
using MOMCT technology. In case of accidents such as traffic accidents, report to the traffic
police in time and inform other car owners who are about to pass the accident section to
avoid. It not only improves the efficiency of accident handling, but also reduces the waiting
time for other travelers.

(2) Intelligent surveillance

Traditional monitoring technology usually consumes a lot of human and material resources,
which is not in line with the development direction of the times. Because of its flexibility and
accuracy, MOMCT technology is widely used for real-time monitoring in scenic spots, hospitals,
banks, supermarkets and other public places with high traffic. This technology can track and
detect moving objects such as pedestrians and vehicles in real time, and it identify objects
according to semantic information such as facial expressions and postures.

(3) Automated driving

With the development of technology, advanced autonomous driving has received extensive
attention. This technology brings convenience and reduces the probability of accidents. The
application of MOMCT technology in autonomous driving makes self-driving cars popular. It
uses radar sensors and laser rangefinders to observe the surrounding traffic conditions, and
keeps real-time, multi-directional and multi-viewpoint attention to moving objects and changes
in the surrounding environment. It is realized that the vehicle keeps a relatively safe distance
from other objects at all times, and traffic accidents can be effectively avoided.
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7.3. Outlook

(1) Learning-based active tracking

Currently, some methods deal with some occlusion and ambiguity by reducing the
reliance on trackers. However, they still need each camera to track the object, and then
make motion control judgment and calculation. This method is easily influenced by the
tracker. At present, it is difficult to obtain real value through labelling, so it is worth
exploring further how to construct effective incentive functions in the real world.

(2) Multi-view information fusion

Some methods combine multi-view single object tracking methods to fuse information
by directly combining features. Although these methods learn a more complete object
image via a multi-view object model to achieve object tracking, camera movements can
lead to image blurring. At the moment, there is no well-developed solution to solve this
problem and it still requires continuous exploration by researchers.

8. Conclusions

In this paper, we present a review of recent advances in techniques and algorithms
related to deep learning for multi-object multi-camera tracking tasks, including object
trackers for MOMCT, analysis of different types of MOMCT methods, benchmark datasets,
and evaluation metrics. In addition, several classical approaches and visualization results
are presented to compare their performance. Although research on MOMCT tasks has
made great progress in recent years, there are still significant challenges such as real-
time processing problems, semi-supervised object detection problems, and open dataset
problems. Therefore, we provide some perspectives on the future direction of MOMCT,
including learning-based active tracking, multi-view information fusion, 3D object tracking,
etc. The practical application of MOMCT in smart cities can both contribute to technological
reform and help people create a better life. It is believed that this paper can help researchers
gain insight into MOMCT and its application in practical scenarios, thus furthering its
progress and development.
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