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Abstract: Noncontact voltage measurement has the advantages of simple handling, high construction
safety, and not being affected by line insulation. However, in practical measurement of noncontact
voltage, sensor gain is affected by wire diameter, wire insulation material, and relative position
deviation. At the same time, it is also subject to interference from interphase or peripheral coupling
electric fields. This paper proposes a noncontact voltage measurement self-calibration method based
on dynamic capacitance, which realizes self-calibration of sensor gain through unknown line voltage
to be measured. Firstly, the basic principle of the self-calibration method for noncontact voltage
measurement based on dynamic capacitance is introduced. Subsequently, the sensor model and
parameters were optimized through error analysis and simulation research. Based on this, a sensor
prototype and remote dynamic capacitance control unit that can shield against interference are
developed. Finally, the accuracy test, anti-interference ability test, and line adaptability test of the
sensor prototype were conducted. The accuracy test showed that the maximum relative error of
voltage amplitude was 0.89%, and the phase relative error was 1.57%. The anti-interference ability test
showed that the error offset was 0.25% when there were interference sources. The line adaptability
test shows that the maximum relative error in testing different types of lines is 1.01%.

Keywords: noncontact; voltage measurement; dynamic capacitance; self-calibration; voltage sensor

1. Introduction

Technologies such as power metering, power equipment maintenance, power quality
monitoring, and substation area optimization and transformation are continuously ad-
vancing with the national level of urban and rural power construction. The sensing and
detection of electrical quantities play a pivotal role in the above application scenarios [1–3].
Recently, in the field of electrical quantity sensing and detection, there are relatively mature
noncontact measurement methods for current, such as using a Roche coil or Hall sensor to
measure the magnetic field around the wire to obtain wire current [4,5]. However, in the
field of voltage measurement, especially in the 220/380 V low-voltage distribution network
due to the lack of mature noncontact voltage measurement methods, when it is necessary
to collect voltage data at a certain point, most of them use power outage construction and
connect intelligent meters or electric energy information collection terminals on the line to
obtain the required key information such as voltage, power, harmonic content, etc. [6–8].
This way of requiring power-off installation limits the large area arrangement of voltage
sensors in power systems.

The excellent characteristics of noncontact voltage measurement, which does not
require electrical connection with the measured object, have made this technology a research
hotspot in different fields in recent years. Examples include: the acquisition of weak
biological potential [9,10], relay protection [11], online overvoltage monitoring [12,13], and
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partial discharge monitoring [14,15]. However, contactless voltage measurement has not
yet been applied in power systems where known frequency responses are required, due
to the uncertainty of sensor gain in field applications of contactless voltage sensors. The
gain of a noncontact voltage sensor is affected by the type of wire to be measured, the
relative position of the wire, and temperature and humidity. At the same time, it is also
subject to interference from interphase or peripheral coupling electric fields. In order to
solve the above-mentioned problem of the inability to reconstruct the line voltage due to
the difficulty in determining the voltage sensor gain, the researcher has done the following
related research.

The author of [16] proposed a voltage measurement method for 10 kV overhead lines
using the principle of spatial capacitance voltage division. Based on field applications, the
influence of factors such as the laying height of the overhead lines, the ambient temperature
and humidity, and the distance from the installation point to the tower on the measurement
results was analyzed. The fixed parametric capacitor is welded to the PCB (Process Control
Block, PCB) as the primary side capacitance, and the capacitance between PCB and ground
is calculated by finite element simulation to determine the sensor gain. However, this
method requires that the high-voltage line be directly connected to the parametric capacitor.
The author of [17,18] use a predesigned parasitic capacitance value to perform a series
of calculations on the original voltage data obtained by coupling, and finally obtains the
voltage value of the line to be tested. In this design, there is a problem that the calculated
parasitic capacitance value is not equal to the actual parasitic capacitance value. The
author of [19,20] uses a known excitation source to achieve system identification to calibrate
noncontact voltage sensors. However, this method requires calibration based on known line
types, and it is necessary to keep the calibration process consistent with the relative position
of the probe and the wire in the actual measurement process. Without special design of
the probe structure, it is difficult to achieve this goal. Therefore, currently this method is
mostly used for specially designed GIS (Geographic Information System, GIS) tanks to
achieve VFTO (Very Fast Transient Overvoltage, VFTO) measurement. The author of [21,22]
greatly improves the accuracy of measurement by injecting reference signals to eliminate
the influence of unknown capacitance between the probe and the conductor. However, due
to the absence of a shielding layer, this method is prone to interference from surrounding
coupling electric fields when measuring voltage on both overhead transmission lines and
complex low-voltage distribution network lines. The author of [23,24] proposed a D-dot
transmission line voltage measurement based on Gaussian integration. Reconstruct the line
voltage through the relationship between the electric field value obtained from multiple
sensors and the position of the sensor. However, this measurement method is more rigorous
for actual measurement scenarios and sensor placement locations, requiring accurate sensor
offline and ground distance. However, the exact spatial location of overhead transmission
lines is usually unknown and dynamic in practice, and the sagging of the lines, as well as
the presence of trees or buildings on the ground, will affect the distribution of electric fields.

Aiming at the uncertainty of the gain of noncontact voltage sensors in practical mea-
surement, this paper proposes a self-calibration method for noncontact voltage measure-
ment based on dynamic capacitance. This method uses an unknown excitation source (line
voltage to be measured) to achieve self-calibration of sensor gain in actual measurement
scenarios. This article first introduces the basic principle of noncontact voltage measure-
ment self-calibration based on dynamic capacitance, analyzes the problem of sensor gain
uncertainty caused by probe wire coupling capacitance uncertainty in noncontact volt-
age measurement, and proposes a noncontact voltage self-calibration method based on
dynamic capacitance. Subsequently, the sensor model and parameters were optimized
through error analysis and simulation research. On this basis, an anti-interference sensor
prototype and a dynamic capacitance control unit were developed. Finally, the accuracy
test, anti-interference ability test, and line adaptability test of the sensor prototype are
carried out. The experimental measurement accuracy proves the feasibility of this method.
The research results may provide a new direction for the research and development of
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transmission line voltage measurement methods. Finally, the shortcomings of sensors and
future plans are discussed.

2. Principle of Voltage Measurement
2.1. Noncontact Voltage Measurement Based on Electric Field Coupling

As shown in Figure 1, a traditional electric field coupled voltage measurement sensor
consists of part A and part C, including an inner induction electrode and an outer earth
electrode. The induction electrode forms a coupling capacitance C1 with the wire; the
induction electrode forms a coupling capacitance C2 with the earth electrode. The induction
electrode is connected to the earth electrode through the sampling resistor Rm, and the
ground electrode is connected to the actual ground. If the lead voltage is Vl, and the voltage
signal collected across the sampling resistor is Vo, the output voltage of the sensor can be
expressed as [20]:

Vo =
jωRmC1

1 + jωRm(C1 + C2)
Vl (1)
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Figure 1. Contactless voltage measurement model based on electric field coupling.

The frequency response of Vo is the frequency response of a high-pass filter with an
angular frequency of f1 = 2πRm(C1 + C2). If the operating frequency of the voltage sensor
is much greater than f1, Equation (1) can be simplified as [20]:

Vo =
C1

C1 + C2
Vl (2)

If the coupling capacitance C1, C2 and the output voltage Vo can be obtained, the line
voltage Vl can be reconstructed using Equation (2). The voltage divider capacitance C2
can be a fixed structural capacitance value, which can be obtained through high-precision
digital bridges. The output voltage Vo can be obtained in real time by means of signal
acquisition instruments or acquisition circuits. The size of the coupling capacitance is
affected by the wire diameter of the measured wire, the thickness of the insulation layer,
and the distance between the probe and the wire. According to C1 = ε0εrS/d, the dielectric
constant of the insulating layer will affect εr, the wire diameter of the wire will affect the
relative area S, and the thickness of the insulating layer will affect d. These values are
unknown in actual measurements, so they cannot be calculated by formula.

In order to quantify the impact of the factors mentioned above on the coupling
capacitance, this paper uses the finite element simulation software COMSOL Multiphysics
6.0 to calculate the capacitance values of the wire probe under different types of wires.
Considering the placement position of the wire in practical applications, the established
model is shown in Figure 2. The inner electrode length of the sensor probe is 10 cm, and
the inner electrode radius is 1.8 cm. The cross-sectional area of the wire to be tested is S2,
and the thickness of the insulation layer is d1. Five kinds of polyvinyl chloride insulated
wires in the national standard [25] are selected in the simulation. The calculated coupling
capacitance and capacitance change percentage ε are shown in Table 1.
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Table 1. Simulation Values of Capacitance under Different Specifications of Lines.

S1/mm2 d1/mm C1/pF Change Rate/%

10 1 9.122 /
16 1 10.69 14.7
25 1.2 11.22 18.7
35 1.2 12.53 27.2
50 1.4 13.07 30.2
70 1.4 14.66 37.8

According to the simulation results, there is a difference of 14.7% between the line
probe capacitance values of 10 mm2–1 mm and 16 mm2–1 mm, while there is a difference of
37.8% between the line probe capacitance values of 10 mm2–1 mm and 70 mm2–1.4 mm. As
the diameter of the line to be measured increases, the capacitance between the probe and
the electrode will increase irregularly. In the above simulation, if we further consider the
relative offset position between the probe and the wire, as well as the impact of inconsistent
insulating layer media, the resulting capacitance value will have a greater difference. If the
voltage is reconstructed by substituting the same capacitance value into Equation (2), the
error is proportional to the offset rate of the coupling capacitance.

2.2. A Method Based on Dynamic Capacitance Self-Calibration

In order to solve the problem that the line voltage cannot be accurately reconstructed
due to the uncertainty of the coupling capacitance C1 in this paper, a noncontact voltage
sensor based on dynamic capacitance is proposed. As shown in Figure 1, on the basis of
Part A and Part C, a transformation unit B is added. When the switch is turned to a, the
voltage output by the sensor can be expressed as shown in Equation (3). When the switch
is turned to b, the voltage output by the sensor can be expressed as shown in Equation (4):

Vox =
jωRmC1

1 + jωRm(C1 + C2 + Cx)
Vl (3)

Voy =
jωRmC1

1 + jωRm(C1 + C2 + Cy)
Vl (4)

The frequency response of Vo1 and Vo2 is the frequency response of high-pass filters
with angular frequencies fx = 2πRm(C1 + C2 + Cx)

−1 and fy = 2πRm(C1 + C2 + Cy)
−1,

respectively. If the operating frequency of the voltage sensor is much greater than fx and
fy, Equations (3) and (4) can be simplified as follows:

Vox =
C1

C1 + C2 + Cx
Vl (5)

Voy =
C1

C1 + C2 + Cy
Vl (6)
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Combining (5) and (6) and eliminating C1, it can be obtained:

Vl =
VoxVoy(Cx − Cy)

Vx(C2 + Cx)−Vy(C2 + Cy)
(7)

2.3. Error Analysis and Model Optimization

The selection of capacitance parameters is the key to reducing calibration errors. When
there is an error in the sensor output voltage Vo in actual measurement, using Equation (7)
for calibration may lead to a significant increase in the error. Expanding the denominator
terms of Equation (7) can obtain:

Vox(Cx + C2)−Voy(Cy + C2) = VlC1(
C2 + Cx

C1 + C2 + Cx
−

C2 + Cy

C1 + C2 + Cy
) (8)

If C2 + Cx >> C1, C2 + Cy >> C1, then Cx+C2
C1+C2+Cx

, Cy+C2
C1+C2+Cy

→ 1, Cx
C1+C2+Cx

− Cy
C1+C2+Cy

→ 0, Vx(Cx + C2)−Vy(Cy + C2)→ 0, which will lead to a significant increase in the error.
In order to reduce the propagation of errors, a feasible method is to make Cx+C2

C1+C2+Cx
→ 1,

while Cy+C2
C1+C2+Cy

tends to zero as much as possible.
However, making the structural capacitance C2 and the lumped capacitance Cy have

the same or similar order of magnitude as the capacitance C1 will result in a low partial
voltage ratio, making it difficult to use a data acquisition instrument or a microcontroller at
the output port for direct collection. To maintain high accuracy and improve the voltage
divider ratio, Figure 3 shows a design modification that uses two additional capacitors Ca
and Cb to set the voltage divider. According to the equivalent circuit diagram, when the
switch is turned to b, Equation (6) becomes Equation (9), where k = Ca/Ca + Cb:

Voy =
kC1

C1 + C2 + Cy + kCb
Vl (9)
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Combining Equations (5) and (9), it can be obtained:

Vl =
VoxVoy(Cy − Cx − kCb)

Voy(C2 + Cy + kCb)− kVox(C2 + Cx)
(10)

If necessary, the voltage waveform can be reconstructed using the calculated calibration
voltage from Equation (11). When the calibration is completed, the switch is turned to a, and
if the relative position of the sensor and the line to be measured is no longer changed, the
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waveform of the line to be measured can be reconstructed through the real-time waveform
Vox output from the sensor and the proportional coefficient K, which is expressed as:

K =
Vl

Vox
(11)

3. Design and Application of Self-Calibrating Voltage Sensor
3.1. Design and Parameter Selection of Sensor Probe

To facilitate the measurement of line voltage and effectively shield against interphase
interference or peripheral electric field interference, the coaxial induction probe designed
in this article is shown in Figure 4a. It consists of an induction electrode, an insulating
medium, a grounding shielding electrode, an opening and closing hinge, an opening and
closing buckle, and a bottom for placing a back-end circuit. The insulating dielectric layer
uses a hollow design, using air as the medium to reduce the structural capacitance C2 so
that it has the same or similar order of magnitude as the capacitance C2. The earth shielding
electrode is used to shield external electric field interference, and the hinge is opened and
closed to facilitate placement of the wire to be measured in the shaft probe.
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Figure 4. (a) Schematic diagram of coaxial induction probe. (b) Analysis of the influence of l2/l1 on
shielding effect.

As shown in Figure 4b, l1 and l2 are the lengths of the inner and outer electrodes,
respectively. A design with a better shielding effect is to make l1 < l2. Figure 4b shows the
analysis results of the impact of using COMSOL finite element simulation on the shielding
effect of l2/l1 pairs. The percentage difference between the induced voltage output of the
probe when applying excitation only to B-phase and simultaneously to phases A, B, and
C is plotted as a line, as shown by the blue line segment in the figure. It can be seen that
the shielding capability of the coaxial probe is positively correlated with l2/l1, but the
relative error decreases below 0.2% and continues to increase l2/l1, which has little benefit
to increasing the shielding. At the same time, the longer l1 have a larger sensing area, which
can capture electric field signals in a larger range, enhancing the load carrying capacity of
the back-end circuit. After comprehensive consideration, this article selects l2/l1 = 2, and
the parameters of the sensor probe are shown in Table 2.

Table 2. Dimensions of coaxial induction probe.

Parameter Value Parameter Value

l1/cm 4 l2/cm 8
d1/cm 3 d2/cm 5.4

3.2. Circuit Topology Parameter Selection

The premise of calibration using Equation (9) is that the sensor works after the inflec-
tion point frequency of the high-pass filter, where the output is independent of resistance
and frequency. The purpose of this article is to measure the 50 Hz power frequency line
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voltage; that is, when measuring 50 Hz, the sensor is behind the inflection point frequency
of the high pass filter. This requires that the values of fx = 2πRm(C1 + C2 + Cx)

−1 < 50,
fy = 2πRm(C1 + C2 + Cy + kCb)

−1 < 50, which at least meet:

Rm(C1 + C2 + Cx) > 3.18× 10−3 (12)

Rm(C1 + C2 + Cy + kCb) > 3.18× 10−3 (13)

To meet the above equation, the selected circuit component parameters are shown in
Table 3, and all components are calibrated using digital bridge.

Table 3. Calibrate system capacitance and resistance parameter values.

Parameter Value Parameter Value

C2/pF 6.46 Cx/nF 2.07
Cy/pF 5.08 Ca/pF 31.1
Cb/nF 1.96 Rm/MΩ 20

3.3. Switch Control and Voltage Calibration Steps

The switch used in this article is a relay switch. When it is turned on, its resistance
is greater than 1 GΩ, which can be considered as an open circuit. When it is closed, its
resistance is less than 75 mΩ. This means that no new stray parameters are introduced
during opening and closing. Meanwhile, the smartphone and WiFi module can also be
used with diodes and triodes to control its opening and closing. Using the output values of
the sensor before and after capacitance conversion, the line voltage can be reconstructed
according to Equation (10) to achieve remote calibration of noncontact voltage measurement.
The calibration control element and process are shown in Figure 5.
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4. Experimental Testing and Result Analysis
4.1. Establishment of Experimental Platform

To verify the feasibility of the dynamic-capacitance-based self-calibration method, an
experimental platform was built under laboratory conditions, and on-site measurements
were shown in Figure 6. The measured AC voltage is from ANB13-1 KA, which can provide
40 Hz to 100 Hz, 0–300 Vrms three-phase voltage output. Using a 16-bit resolution Pico-
Scope5000D PC oscilloscope (PicoTech, Cambridgeshire, UK) to collect sensor output, the
sampling rate is 62.5 MS/s. The collected signals are connected to a mobile personal com-
puter via USB and displayed through software PicoScope 7.120 (PicoTech, Cambridgeshire,
UK). The mobile personal computer is powered and grounded through three plugs. The
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amplitude and phase of the AC output voltage are calibrated using a Tektronix P5202A
differential probe (Tektronix, Inc., Beaverton, OR, USA), and smartphone is used to control
switch variation.
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During the experiment, the line is passed through the coaxial sense probe, the sense
electrode of the probe is connected to the back-end circuit. The back-end circuit is connected
to the oscilloscope to display the real-time waveform. A +3.7 V battery and a +3.7 V to
±5 V module are used to power the voltage follower connected to the back-end of Rm and
the WiFi module. The Tektronix P5202A differential probe is connected to both the B-phase
and zero wire terminals.

4.2. Amplitude and Phase Accuracy Test

Carry out the test on the established experimental platform, control the three-phase
voltage source to output only the B-phase voltage, and perform the following experimental
steps. In the first step of testing, use the smartphone control switch to turn to a and record
the output of the signal processing circuit observed from the oscilloscope. In the second
step of testing, use the smartphone control to turn the switch to b, and record the output of
the signal processing circuit observed from the oscilloscope and the actual output voltage
measured from the Tektronix P5202A. The output range of the AC source is increased
from 100 Vrms to 300 Vrms in steps of 10 Vrms. Repeat the above steps and complete the
experiment. The recorded results and the voltage reconstructed using Equation (10) are
shown in Table 4.

Table 4. Reconstitution accuracy test results.

Vox/mV Voy/mV Vr/V Va/V Vox/mV Voy/mV Vr/V Va/V

263.6 179.8 99.4 99.9 553.4 377.6 209.3 209.6
289.9 197.8 109.6 109.9 579.7 395.4 218.5 219.6
316.3 216 120.5 119.9 606.2 414 231.1 229.6
342.5 233.9 130.5 129.8 632.7 431.4 237.8 239.5
369.1 252 140.3 139.8 659 450.1 251.4 249.5
395.4 269.8 149.6 149.8 685.4 468.2 261.8 259.5
421.8 287.7 159 159.8 711.7 485.8 270.1 269.5
448.1 306 170.7 169.7 738.1 503.4 278 279.4
474.5 323.8 179.6 179.7 764.5 521.5 288.4 289.4
500.8 341.9 190.3 189.7 789.8 539.4 301.1 299.3
527.3 359.8 199.3 199.7
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Figure 6 shows the fitting curve and relative error characteristics of the reconstructed
voltage and the actual output voltage ε; it is expressed as:

ε =
Vr −Va

Va
× 100% (14)

As can be seen from Figure 7, in the test of amplitude accuracy test, the maximum error
between the reconstructed voltage and the actual output voltage is –0.89%. The calculation
of reconstruction voltage is shown in Equation (10), and the calculation of relative error is
shown in Equation (14).
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tance conversion when the voltage source output voltage is 200 rmsV . In the experiment, 
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Figure 8a shows the voltage output waveform of the sensor before and after capaci-
tance conversion when the voltage source output voltage is 200 Vrms. In the experiment,
the reconstructed voltage was compared with the measurement results of the Tektronix
P5202A differential probe. Figure 8b shows a comparison of the reconstructed signal
with the actual signal. The black waveform is the real-time waveform of the Tektronix
P5202A differential probe, and the green waveform is the waveform reconstructed using
Equation (11). Figure 8b shows that the time difference ∆t between two waveforms is
314.8 µs. For a power frequency voltage with a period T of 0.02 s, the relative phase error is
∆t/T·100% = 1.57%.
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4.3. Anti-Interference Ability Test

In order to verify the anti-interference ability of the coaxial probe, the following
experimental tests are conducted on the experimental platform shown in Figure 6. Based
on the above accuracy measurement experiments, apply the same voltage to the phase-A
and phase-C as the phase-B. The voltage source output range increases from 100 Vrms to
300 Vrms in steps of 10 Vrms. Consistent with the accuracy testing experimental steps, the
recorded output voltage is calculated using Equation (10). The reconstructed voltage and
the actual output voltage are calculated using Equation (14) to obtain the relative error
with and without interference sources. The error points with and without interference
sources are plotted as shown in Figure 9. As can be seen from the figure, compared
to the error of reconstructing the voltage without interference sources, the overall error
offset with interference sources is 0.25%. This indicates that the coaxial probe has good
anti-interference ability and can effectively reduce interphase interference or surrounding
coupling electric field interference.
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4.4. Conductor Adaptability Test

In order to verify that the proposed self-calibration method can be used for measure-
ment on different target lines, five kinds of polyvinyl chloride insulated wires in the national
standard [26] were selected for testing, and their cross-sectional area-insulation layer thick-
ness specifications were 10 mm2–1 mm, 16 mm2–1 mm, 25 mm2–1.2 mm, 35 mm2–1.4 mm,
and 50 mm2–1.4 mm, respectively. Set the output voltage of the AC source to 100 Vrms,
200 Vrms, and 300 Vrms (the actual output is Va), and replace the above types of wires in
turn for testing. All wires are randomly placed in the sensing probe without special fixation.
The obtained reconstruction voltage and relative error values are shown in Figure 10, the
calculation of reconstruction voltage is shown in Equation (10), and the calculation of
relative error is shown in Equation (14).

As can be seen from Figure 10, for the five different types of wires tested, the maximum
error between the actual output voltage and the reconstructed voltage is –0.94%, 0.64%,
–0.72%, –0.58%, and –1.05%, respectively. The experimental results show that the influence
of wire diameter on measurement accuracy can be ignored.
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5. Conclusions

(1) Aiming at the difficulty in determining the sensor gain in practical measurement
of traditional capacitive coupled noncontact voltage sensors, a dynamic capacitive
noncontact voltage measurement self-calibration method is proposed to achieve self-
calibration of the sensor gain in practical measurement.

(2) Theoretical research and transfer function analysis were conducted on the proposed
method. Through error analysis and simulation research, the model and parameter
optimization design of the dynamic capacitor conversion system were carried out.
Based on this, a prototype of anti-interference sensor probe and remote dynamic
capacitance control unit were developed.

(3) The calibration accuracy test was conducted using a sensor prototype at a power
frequency voltage of 100 Vrms to 300 Vrms. The results showed that the maximum
amplitude error was 0.89%, and the phase error was 1.57%. Subsequently, an anti-
interference capability test was conducted, and compared to the error of the recon-
structed voltage without interference sources, the overall error offset with interference
sources was 0.25%. Finally, adaptability tests were conducted on different types of
circuits. The test results show that the maximum relative error is 1.01%, and the
measurement line has a small impact on the calibration accuracy.

According to the test results, the noncontact voltage measurement self-calibration
sensor based on dynamic capacitance can achieve self-calibration of sensor gain under
different measurement scenarios through unknown excitation sources (line voltages to be
measured). Using the developed coaxial shielded probe, measurements can be made under
strong electromagnetic interference conditions. However, further research is still needed.
Currently, only research and testing on the voltage level of low-voltage distribution network
lines have been conducted, and further research on higher voltage levels will be carried
out in the future. The method in this article is only applicable to voltage measurement
in the presence of an effective ground point. In the future, we will study the principle of
self-calibration for sensor measurement without hanging a ground wire.
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