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Abstract: This paper aims to enhance the lateral path tracking control of autonomous vehicles (AV) in
the presence of external disturbances. While AV technology has made significant strides, real-world
driving scenarios often pose challenges such as slippery or uneven roads, which can adversely affect
the lateral path tracking control and reduce driving safety and efficiency. Conventional control
algorithms struggle to address this issue due to their inability to account for unmodeled uncertainties
and external disturbances. To tackle this problem, this paper proposes a novel algorithm that combines
robust sliding mode control (SMC) and tube model predictive control (MPC). The proposed algorithm
leverages the strengths of both MPC and SMC. Specifically, MPC is used to derive the control law for
the nominal system to track the desired trajectory. The error system is then employed to minimize the
difference between the actual state and the nominal state. Finally, the sliding surface and reaching
law of SMC are utilized to derive an auxiliary tube SMC control law, which helps the actual system
keep up with the nominal system and achieve robustness. Experimental results demonstrate that the
proposed method outperforms conventional tube MPC, linear quadratic regulator (LQR) algorithms,
and MPC in terms of robustness and tracking accuracy, especially in the presence of unmodeled
uncertainties and external disturbances.

Keywords: autonomous vehicle (AV); model predictive control (MPC); sliding mode control (SMC);
tube MPC; path tracking

1. Introduction

The main technologies of an autonomous vehicle (AV) typically include environmental
perception, behavioral decision-making, path planning, and motion control. To ensure safe,
smooth, and comfortable driving of an AV, the motion control algorithm has become a top
priority in modern autonomous driving technology [1]. The motion control of an AV is typically
divided into two categories: longitudinal control and lateral control [2]. Longitudinal control
focuses on controlling the speed and distance between vehicles, which has been thoroughly
resolved in recent years. On the other hand, lateral control is responsible for steering the vehicle
and ensuring it stays on a predetermined path, even in the presence of internal unmodeled
uncertainty and external disturbances like slippery or rough roads [3,4], which has yet to be
fully resolved. Currently, the most commonly used lateral control methods for AV include
pure tracking control, proportional-integral-derivative (PID) control, model-free control, linear
quadratic regulator (LQR), feed-forward control, sliding mode control (SMC), H∞ control, and
model predictive control (MPC), among others [5,6].

For example, Zhao et al. [7] designed a pure tracking control method based on dynamic
delay prediction to obtain sight control by using the deviation value between the travel
direction and the tracking direction. Kapsalis et al. [8] combined linear parameter varying
(LPV) control theory with a new pure tracking control method to realize stable driving of
vehicles with variable speed. Ahn et al. [9] proposed an improved pure tracking method to
enhance the tracking accuracy of low-speed unmanned vehicles in straight lines and curves
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based on Ackerman’s steering geometry. These pure tracking control methods have the ad-
vantages of being simple, low-speed, and flexible, but the disadvantage is that they will be
limited by road curvature conditions. Moshayedi et al. [10] proposed a method to optimize
the PID controller for an AV model using PSO and BAS algorithms. The effectiveness and ra-
pidity of the method were verified on five different paths, making it valuable for researchers
in the field of service robots. In a later study, they extended remote sensing applications to
calibrate drone cameras accurately, ensuring precise detection of vehicle speed to enhance
the operating efficiency of vehicles in congested road environments, thereby improving
intelligent city services based on the Internet of Things [11]. Chu et al. [12] proposed a
trajectory-tracking framework based on the PID feedback method, with a steady-state
error close to zero when finally tracking the curve. The advantage of this method is that it
is easy to design for engineering applications, but the PID controller has the problem of
poor performance, and the tuning of its control parameters is always a challenge in PID
control [13]. Jiang et al. [14] and Wang et al. [15] proposed a simple control framework
using a model-free control method for ideal road driving, but it has poor robustness and
is challenging to analyze the stability of the control system as a black box. Park et al. [16]
designed a feedback controller based on the LQR method, which can maintain balance
and track the circle in the drift state. Najjari et al. [17] presented an LQR controller by
studying the torque vectoring system and steering controller, making it easy to achieve
closed-loop optimal control of tracking the target. However, these LQR methods have
poor robustness as the controllers are designed based on offline calculation. Jiang et al. [18]
proposed a constrained arc fitting method to design the feed-forward control model of
curvature, which improves the control accuracy, and Khan et al. [19] proposed a feed-
forward control method to process external disturbances, modeling error, and sensory
noises. Still, these methods require expensive sensors mounted on the vehicle to collect
data at a high cost, which can only be used in specific situations and are unsuitable for
mass production. Wu et al. [20] used SMC to calculate the total driving force of vehicle
lateral control, improving the adaptability of control algorithms and tracking accuracy at
high speed. Ding et al. [21] added an improved second-order SMC with power integrator
technology to improve the transient performance of path-tracking errors. However, there
was a chattering problem caused by SMCs in the path tracking. Yan et al. [22] improved
comfort by using an H∞ control to suppress noise while maintaining the lane based on
the incremental control vehicle model, and Liu et al. [23] designed an H∞ control method
according to system performance parameters to have strong robustness to sideslip angle
measurement, model uncertainty, and external disturbances. However, this type of H∞
controller requires a complex solution and calculation process.

MPC is considered the simplest online constrained optimal control method, which
has been proven to be better than the previously discussed methods. In recent years, it has
been widely used in the field of vehicle control, with various applications such as path
tracking, collision avoidance, and trajectory planning [24–28]. For instance, Chowdhri et al.
proposed an MPC-based approach that considers brake constraints and collision avoidance
with the vehicle in front [24], while Chen et al. designed MPC to complete tracking control
of 14-DOF vehicles with tire turning angle and road adhesion constraints [25,26]. Igarashi
et al. proposed a linearization method to improve vehicle operation efficiency [27], and Wu
et al. implemented MPC for path planning of collision avoidance to ensure the stability of
driving [28]. However, traditional MPC algorithms require precise system models to improve
tracking accuracy, and vehicles are often affected by unknown external disturbances during
actual operation, leading to a loss of control system robustness [29]. To address these issues,
tube MPC methods have been proposed, such as the robust method by Mata-Machuca et al. [30],
which uses a linear feedback control law as an auxiliary control law to improve the robustness
of traditional MPC algorithms against unknown factors. However, the offline calculation of the
auxiliary control law reduces its convergence speed, making it less robust [31]. In this paper,
we propose an SMC-based tube MPC to overcome the limitations of traditional tube MPC. By
combining the receding-horizon optimization of MPC with SMC’s strong ability to suppress
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internal and external disturbances, we significantly improve stability and tracking accuracy
compared to other MPC algorithms.

Given the tracking instability problem caused by internal unmodeled uncertainty and
external disturbances such as slippery or rough roads during the operation of AV, this paper
proposes a robust SMC-based tube MPC method. The main contributions are as follows:

(1) This paper presents a new SMC-based tube MPC strategy for AV trajectory tracking
by combining discrete time MPC control strategy and discrete time SMC. The proposed
strategy improves control accuracy and robustness.

(2) To enhance the robustness of MPC in the presence of external disturbances and
internal modeling uncertainties, we introduce an auxiliary SMC control law to address
any bounded disturbances. Experimental results under three different road conditions,
namely muddy roads, snowy roads, and icy roads, demonstrate the superior robustness of
the proposed method compared to MPC and traditional tube MPC methods.

(3) This paper provides a design method for the constraint inputs of the entire control
law, the robust control invariant set of the SMC, and the boundedness of the upper control.
The stability of the proposed method is also analyzed.

The remainder of this paper is structured as follows: In Section 3.1, we present the
derivation of the vehicle system, while Section 3.2 provides details on the linearization and
discretization of the system. The proposed algorithm is introduced in Section 4.1, followed
by the design of the nominal MPC controller in Section 4.2, and the stability analysis of the
nominal MPC in Section 4.3. In Section 4.4, we present the design of the auxiliary SMC
controller, and Section 4.5 analyzes the stability of the auxiliary SMC. Section 4.6 outlines
the control flow of the proposed algorithm. Finally, in Section 5, we analyze the results of
experiments conducted under different environmental conditions.

2. Notations

In this paper, we use R to represent the set of real numbers, Rn×n to represent the set of real
n× n matrices, and Rn to represent a vector with n real number elements. The identity matrix
of any dimension is represented by I, and diag(·) denotes the diagonal matrix. The Minkowski
sum is denoted by the operator

⊕
. The Euclidean norm is represented by |x|2 = xTx, and its

weighted norm is denoted by |x|2W = xTWx, where W is the weight matrix.

3. Problem Formulation
3.1. Model Derivation

This paper considers a front-wheel steering vehicle modeled using the Ackerman
steering bicycle model. The kinematic system structure and related symbols of the con-
trolled vehicle are illustrated in Figure 1. In Figure 1, (x, y) is the coordinate of the rear axle
axis B, (x f , y f ) is the coordinate of the front axle axis A, l is the axle length between the
front and rear wheels, P is the instantaneous rotation center, and R is the rotation radius.
The kinematic system of the vehicle can be constructed as follows [32]:{

x f = x + l cos ϕ

y f = y + l sin ϕ
(1)

{
ẋ f sin(ϕ + δ) = ẏ f cos(ϕ + δ)
ẋ sin(ϕ) = ẏ cos(ϕ)

(2)

where δ represents the angle of the front wheel steering, while ẋ f , ẏ f , ẋ, and ẏ represent the
speeds of the front and rear wheels in the X-axis and Y-axis directions, respectively. The
yaw angle of the vehicle is denoted by ϕ, while v represents the speed of the vehicle. The
yaw rate ϕ̇ can be calculated using the relationship between the center coordinates of the
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rear axle (x, y) and the vehicle speed v. The vehicle kinematics can be described by the
following equations: 

ẋ = v cos ϕ
ẏ = v sin ϕ

ϕ̇ = v tan δ
l

(3)

To account for the physical limitations of AV, including maximum speed and steering
wheel position, Equation (4) expresses the input constraints. It is essential to ensure stability
in the tracking process while applying these constraints.

Uω :=
{

v : vmin ≤ v ≤ vmax
δ : δmin ≤ δ ≤ δmax

}
(4)

where Uω denotes the set of control variables constraints. Specifically, vmin and vmax
correspond to the minimum and maximum speeds that the vehicle can reach. Meanwhile,
δmin and δmax represent the minimum and maximum steering angles of the vehicle’s front
wheels, respectively.
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Figure 1. The basic structure of an autonomous vehicle (AV).

3.2. The Linearization and Discretization of the Kinematic AV

Taking into account the impact of actual bounded uncertain disturbance, the kinematic
model of the controlled vehicle (3) can be formulated as a general form continuous-time
nonlinear system equation, which can be expressed as follows:

χ̇ = f (χ, µ) + ω (5)

The variable χ = (x, y, ϕ)T represents the state of the vehicle, and χ̇ = (ẋ, ẏ, ϕ̇)T

denotes their corresponding velocities. The input control variable is denoted by µ = (v, δ)T

and the bounded uncertain disturbance is represented by ω.
The predetermined tracking reference can be represented as χr = (xr, yr, ϕr)

T, while
the desired reference tracking input can be represented as µr = (vr, δr)

T. The reference
equation is given by χ̇r = f (χr, µr). We can simplify the system Equation (5) by expanding
it using a Taylor series with respect to the tracking reference, ignoring higher-order terms
after the first order.

χ̇ = f (χr, µr) +
∂ f
∂χ

∣∣∣∣χ=xr
µ=µr

(χ− χr) +
∂ f
∂µ

(µ− µr)

∣∣∣∣χ=χr
µ=µr

+ ω (6)
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Subtracting the reference equation χ̇r = f (χr, µr) from Equation (6), we can obtain the
linearized model as follows:

˙̄χ =

 ẋ− ẋr
ẏ− ẏr
ϕ̇− ϕ̇r


=

 0 0 −vr sin ϕr
0 0 vr cos ϕr
0 0 0

 x− xr
y− yr
ϕ− ϕr

+

 sin ϕr 0
cos ϕr 0
tan δr

l
vr

l cos2 δr

[ v− vr
δ− δr

]
+ ω

(7)

where ˙̄χ = χ̇− χ̇r, assuming a sampling time of T, the above continuous-time system can
be discretized as follows:

χ̂(k + 1) = Ãχ̂(k) + B̃µ̂(k) + ω(k) (8)

χ̂(k) = χ(k)− χr(k) =

 x(k)− xr(k)
y(k)− yr(k)
ϕ(k)− ϕr(k)

,

µ̂(k) = µ(k)− µr(k) =
[

v(k)− vr(k)
δ(k)− δr(k)

]
,

Ã = I + T · A =

 1 0 −Tvr sin ϕr
0 1 Tvr cos ϕr
0 0 1

,

B̃ = T · B =

 T sin ϕr 0
T cos ϕr 0
T tan δr

l T vr
l cos2 δr

.

The input constraint is expressed as Equation (9):

µ̂(k) ∈ Uω (9)

The variable ω(k) defined above consists of two parts. The first part represents
the internal unmodeled uncertainties of the vehicle kinematics, while the second part
corresponds to external disturbances encountered during actual driving. For instance, the
vehicle may experience various unknown disturbances on slippery and rough roads due
to rainwater or snow accumulation, which can affect the vehicle’s state during motion.
Both the unmodeled uncertainties and external disturbances are represented by ω(k) ∈W,
where W = {ω(k) ∈ R3, ‖ω(k)‖ ≤ ωmax} denotes the set of bounded uncertainties with
maximum assumption ωmax.

4. The Proposed Robust SMC-Based Tube-MPC Algorithm for AV
4.1. The Designing of SMC-Based Tube-MPC Controller

During the sampling interval T, the total control input of the actual system is designed
as follows:

µ̂(k) = û∗(k) + φη(k) (10)

where the optimal control law û∗(k) is obtained from the optimal cost function (12), subject
to the constraint that û∗(k) ∈ U and µ̂(k) ∈ Uω, where Uω=U⊕ φη(k). The adjustable
parameter matrix φ ∈ Rnµ , where nµ is the dimension of the input. The ancillary tube SMC
law η(k) is designed based on an error system described below.
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4.2. The Designing of the Nominal MPC

Under ideal conditions with no internal or external interference, the nominal system
of the AV is given by Equation (11):

ξ̂(k + 1) = Ãξ̂(k) + B̃û(k) (11)

where ξ̂(k) = ξ(k) − χr(k) is the deviation between the nominal system state and the
reference tracking state, and û(k) = u(k)− µr(k) is the deviation between the input and
the reference input.

To achieve a smooth, fast, and accurate tracking of the reference trajectory, a soft
constraint approach is adopted to formulate the cost function for optimal control [33]. This
technique helps to alleviate the problem of exceeding hard constraint limits caused by
frequent acceleration, deceleration, and steering adjustments. Therefore, the cost function
is defined as follows:

J(k) =
Np

∑
i=1
‖ξ̂(k + i | k)‖2

Q +
Nc−1

∑
i=0
‖û(k + i | k)‖2

R + κε(k)2

s.t. û(k + i | k) ∈ U
ξ̂
(
k + Np | k

)
= 0

(12)

The objective function constraint is û(k) ∈ U, as calculated in Section 4.4, and an
additional mandatory constraint ξ̂

(
k + Np | k

)
= 0 is included in the aforementioned

cost function. The constants Np and Nc represent the prediction and control horizons,
Q ∈ Rnξ̂×nξ̂ and R ∈ Rnû×nû are weighted diagonal matrices of state variables and in-
put variables, respectively. nξ̂ is the state quantity dimension, nû is the input quantity
dimension. The relaxation factor ε and the weighting coefficient κ are used to balance the
constraints. The goal is to avoid infeasible optimization problems caused by constraints.
When the constraints are exceeded, the relaxation variable ε becomes positive and expands
the feasible range of û; otherwise, ε is set to 0. Moreover, to regulate the input energy, a
quadratic penalty term is added to the cost function to achieve optimal control.

Then, the optimal control sequence is obtained by solving the constrained optimization
problem of the nominal predictive controller at each step.

U∗(k) = arg min J(k)

= [û∗(k), û∗(k + 1), · · · , û∗(k + Nc − 1)]T
(13)

Its corresponding optimal state trajectory and cost function are defined as the symbol[
ξ̂∗(k + 1), ξ̂∗(k + 2), · · · , ξ̂∗(k + Np)

]T
and J∗(k).

After selecting the first item û∗(k) in Equation (13) as the nominal control signal, it is
transmitted to the vehicle body for control. Then, the optimization problem is immediately
updated using the newly acquired state, and the process is executed recursively until
the control process is completed. This iterative approach ensures that the control system
continuously adapts to changes in the system and environment, thereby enhancing the
system’s adaptability and robustness.

4.3. The Stability Analysis of the Nominal MPC System

In this section, the stability analysis of the nominal system (11) using the proposed
MPC algorithm is presented below.

Theorem 1. Consider the nominal system (11) and the cost function (12) with soft constraints,
a positive semi-definite matrix Q, the positive definite matrix R. For ease of calculation and
understanding, let Np = Nc = N. Let the optimal cost function J(k) at time instant k be the
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Lyapunov function V(k). Then, V(k) ≥ V(k + 1) holds at time instant k + 1, which implies that
the optimal solution ensures the nominal stability of the system (11).

Proof. The Lyapunov function is defined as follows:

V∗(k) = min
[û(k+i|k),ε(k)]

J(k)

= min
[û(k+i|k),ε(k)]

N

∑
i=1
‖ξ̂(k + i | k)‖2

Q +
N−1

∑
i=0
‖û(k + i | k)‖2

R + κε(k)2
(14)

The input of the nominal system at time instant k + 1 can be expressed as

û(k + i + 1 | k + 1) =[û(k + 1 | k + 1), û(k + 2 | k + 1) . . . . . . , û(k + N − 1 | k + 1), 0]

=[û∗(k + 1 | k), û∗(k + 2 | k) . . . . . . , û∗(k + N − 1 | k), 0]

ε(k + 1) =ε∗(k)

(15)

According to Equation (15), the nominal state of the system at time instant k + 1 is
expressed as follows:

ξ̂(k + i + 1 | k + 1) = ξ̂∗(k + i + 1 | k), i = 1, · · · , N − 1

then

ξ̂(k + i + 1 | k + 1) =[ξ̂(k + 2 | k + 1), ξ̂(k + 3 | k + 1) . . . . . . , ξ̂(k + N | k + 1)
]

=[ξ̂∗(k + 2 | k), ξ̂∗(k + 3 | k) . . . . . . , ξ̂∗(k + N | k)
] (16)

It should be noted that in the above relationship (15), the û(k + N | k + 1) = 0 and
ξ̂∗(k + N | k) = 0 can be observed by Equation (12). By utilizing Equation (11), we obtain:

ξ̂(k + N + 1 | k + 1) = Ãξ̂(k + N | k + 1) + B̃û(k + N | k + 1)

= 0
(17)

By considering the cost function (14) at time instant k, we can derive the relationship
between J(k + 1) and V∗(k), which is given by Equation (18) below:

J(k + 1) =
N

∑
i=1
‖ξ̂(k + 1 + i | k + 1)‖2

Q +
N−1

∑
i=0
‖û(k + 1 + i | k + 1)‖2

R + κε(k + 1)2

=
N

∑
i=2

∥∥ξ̂∗(k + i | k)
∥∥2

Q +
N−1

∑
i=1
‖û∗(k + i | k)‖2

R + κε∗(k)2 +
∥∥ξ̂(k + N + 1 | k + 1)

∥∥2
Q (18)

+ ‖û(k + N | k + 1)‖2
R

=
N

∑
i=1

∥∥ξ̂∗(k + i | k)
∥∥2

Q +
N−1

∑
i=0
‖û∗(k + i | k)‖2

R + κε∗(k)2 − ‖ξ̂∗(k + 1 | k)‖2
Q − ‖û∗(k | k)‖2

R

=V∗(k)− ‖ξ̂∗(k + 1 | k)‖2
Q − ‖û∗(k | k)‖2

R

It can be seen from the properties of the optimal solution that any solution at the time
instant k + 1 is not less than the optimal solution V∗(k + 1), that is V∗(k + 1) ≤ J(k + 1).

V∗(k + 1) ≤ J(k + 1)

≤ V∗(k)−
∥∥ξ̂∗(k + 1)

∥∥2
Q − ‖û

∗(k)‖2
R

(19)

Finally, note that since
∥∥ξ̂ (k + 1)

∥∥2
Q + ‖û(k)‖2

R > 0, it follows that V∗(k + 1) 6 V∗(k).
Therefore, the stability of the nominal system is proven.



Sensors 2023, 23, 3844 8 of 23

4.4. The Designing of the Ancillary SMC

Before designing the auxiliary SMC controller, an error model needs to be established
to represent the difference between the nominal system model (11) and the actual system (8)
under the influence of internal and external disturbances. The error model can be obtained
by substituting Equation (10) into Equation (8), resulting in the following Equation (20):

ε(k + 1) = Ãε(k) + B̃φη(k) + ω(k) (20)

Among them, the error state is represented by ε(k) = χ̂(k)− ξ̂(k) = χ(k)− ξ(k). The aux-
iliary tube SMC law φη(k) aims to ensure that the trajectory of the error system remains within
the invariant set Ωtube centered on the nominal trajectory. The calculation process of φη(k) and
Ωtube is explained in Equations (24) and (25). In other words, SMC laws maintain the AV’s
tracking accuracy by keeping the actual system in line with the nominal system.

The discrete-time switching function is established according to the error system
function (20) as follows:

s(k) = Ceε(k) (21)

In the above equation, Ce ∈ R1×nχ is a constant matrix with nχ being the dimension
of the state variable. Since the disturbance factor ω(k) is unknown and cannot be directly
measured, a delay estimation method can be utilized to estimate the disturbances:

ω̂(k) = ε(k)− Ãε(k− 1)− B̃φη(k− 1)

= ω(k− 1)
(22)

Meanwhile, to further improve the convergence process, the reaching law of the SMC
controller is designed as

s(k + 1) =(1− qT)s(k)− λ

β + sgn(s(k))
T sigα(s(k)) + Ceσ(k) (23)

where sigα(s(k)) = |s(k)|α sgn(s(k)),0 < qT < 1, 1 < λ < β,0 < α < 1, σ(k) = ω(k)−
ω(k− 1). The auxiliary tube SMC law is derived as follows:

η(k) =(Ce B̃φ)−1
(
(1− qT)s(k)− λ

β + sgn(s(k))
T sigα((s(k)))− Ce Ãε(k)− Ceω̂(k)

)
(24)

Lemma 1. If the auxiliary tube SMC law is known as the Equation (24) mentioned above, then the
upper limit of the control input can be expressed as

Ωtube =
{

η(k) : ‖η(k)‖ ≤
∥∥∥(Ce B̃φ

)−1
∥∥∥[∥∥Ce Ã

∥∥ωmax + ‖Ce‖ωmax + qT‖Ce‖ωmax

+
λ

β + sgn(s(k))
T‖Ce‖αωmax

α + ‖Ce‖ωmax

]} (25)

Proof.
‖η(k)‖ ≤

∥∥∥(Ce B̃φ
)−1
∥∥∥[∥∥Ce Ãε(k)

∥∥ + |s(k)|+ qT|s(k)|

+
λ

β + sgn(s(k))
T|sigα(s(k))|+ ‖Ceω̂(k)‖

] (26)

Assuming that the switching function and known disturbances are bounded, we can
establish the following condition:

‖η(k)‖ ≤
∥∥∥(Ce B̃φ

)−1
∥∥∥[∥∥Ce Ã

∥∥‖ε(k)‖ + |s(k)|+ qT|s(k)|

+
λ

β + sgn(s(k))
T|(s(k))|α + ‖Ce‖ωmax

] (27)
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Therefore, the set of auxiliary tube SMC law is bounded by

Ωtube =
{∥∥∥η(k)‖ ≤

∥∥∥(Ce B̃φ
)−1
∥∥∥[∥∥Ce Ã

∥∥‖ε(k)‖+ |s(k)|+ qT|s(k)|

+
λ

β + sgn(s(k))
T|(s(k))|α + ‖Ce‖ωmax

]} (28)

Based on the stability analysis in Section 4.5, it can be inferred that |s(k)| is a decreasing
function, and ‖ε(k)‖ is also decreasing. Therefore, we can assume the initial maximum
disturbance limit ωmax to be the upper bound of ‖ε(k)‖. In other words, ‖ε(k)‖ ≤ ωmax
and |s(k)| ≤ ‖Ce‖‖ε(k)‖ ≤ ‖Ce‖ωmax. This leads to the conclusion in Equation (25).

Remark 1. To obtain the nominal constraint of MPC, we use the upper bound of the auxiliary
SMC law as a basis and define U = Uω ⊕ (−φΩtube ) [34]. By doing so, the designed QP function
(11) of the nominal MPC satisfies the tight constraint U.

4.5. The Stability Analysis of Auxiliary Tube SMC Law

Theorem 2. For the discrete-time tube error system (20) with an allowable disturbance ω(k),
applying the auxiliary tube SMC law (24), we can obtain the following results [35]:

(1) Sliding mode state s(k) can enter the region Ω within K∗ steps and remain there indefinitely,
where

Ω =
{

s(k) : |s(k)| ≤ ρ

= ψ(α)max
{( (β + sgn(s(k)))σ∗

λT

) 1
α

,
λT

(β + sgn(s(k))(1− qT)

} (29)

with
ψ(α) = 1 + α

α
1−α − α

1
1−α ,

K∗ = [m∗] + 1 ,

m∗ =
s2(0)− ρ2

$2 ,

$ = qTρ + [ψα(α)− 1]σ∗.

(2) The |s(k)| in the switching function (21) is a decreasing function.

Proof. The proof process consists of three main steps.
Step 1.

The reaching law of SMC is given by Equation (23). However, previous studies
(references [36,37]) have suggested that non-quadratic Lyapunov functions may offer
better performance. In this paper, we use a simple design form of the Lyapunov function,
V(k) = s2(k), to facilitate calculation and comprehension.

∆V(k) =V(k + 1)−V(k)

=−
(

qTs(k) +
λ

β + sgn(s(k))
T sigα(s(k))− Ceσ(k)

)
×
(

2s(k)− qTs(k)− λ

β + sgn(s(k))
T sigα(s(k)) + Ceσ(k)

) (30)

Next, we consider two cases when s(k) /∈ Ω.



Sensors 2023, 23, 3844 10 of 23

Case 1. When s(k) > ρ,

s(k) > ρ = ψ(α)

((
β + 1
λT

) 1
α

)
,

qTs(k) +
λ

β + 1
Tsα(k)− Ceσ(k)

≥qTs(k) + σ∗ψα(α)− |Ceσ(k)|
≥qTρ + [ψα(α)− 1]σ∗ := $

(31)

where 1 < ψα(α) < 2, sgn(s(k)) = 1, sigα(s(k)) = sα(k), σ∗ > 0, σ∗ is a constant assumed
to exist, making |Ceσ(k)| ≤ σ∗, so $ is also a constant.

On the other hand, it is noted that

s(k) > ρ = ψ(α)

(
λT

(β + 1)(1− qT)

) 1
1−α

(32)

Transform Equation (32) as follows:

(1− qT)s(k)1−α > ψ1−α
(α)

λ

β + 1
T

(1− qT)s(k) > ψ1−α
(α)

λ

β + 1
Tsα(k) >

λ

β + 1
Tsα(k)

(33)

Which means that
s(k) > qTs(k) +

λ

β + 1
Tsα(k) (34)

Combining Equations (30), (31), and (34), we can conclude that:

2s(k)− qTs(k)− λ

β + 1
Tsα(k) + Ceσ(k)

≥qTs(k) +
λ

β + 1
Tsα(k)− |Ceσ(k)| ≥ $

(35)

In conclusion, we obtain ∆V(k) ≤ −$2.
Case 2. When s(k) < −ρ,

Based on the above conclusion, we can derive the following relationship (36).
Step 2.

s(k + 1)2 − s(k)2 ≤ −$2



s(k + 1)2 ≤ s(k)2 − $2

s(1)2 ≤ s(0)2 − $2

s(2)2 ≤ s(0)2 − 2$2

...
s(m)2 ≤ s2(0)−m$2

(36)

If s(m∗)2 = ρ2, it indicates that at time m∗, s(k) reaches the boundary of the region Ω.
At the next time step, K = m∗ + 1, it enters the switching band.
Step 3.

Next, it is proved that when s(k) enters the area Ω, it will not exceed the boundary.
The definition of Φ is expressed as follows:

Φ = max
{(

(β+sgn(s(k)))σ∗
λT

) 1
α ,
(

λT
(β+sgn(s(k))(1−qT)

) 1
1−α

}
(37)
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Let ρ = ψ(α)Φ, considering the following Equations (38) and (39):

(
(β+sgn(s(k)))σ∗

λT

) 1
α ≤

(
λT

(β+sgn(s(k))(1−qT)

) 1
1−α

= Φ

σ∗ ≤ λ
(β+sgn(s(k))

((
λT

(β+sgn(s(k))(1−qT)

) 1
1−α

)α

σ∗ ≤ λ
(β+sgn(s(k))TΦα = (1− qT)Φ

(38)



Φ =
(
(β+sgn(s(k)))σ∗

λT

) 1
α ≥

(
λT

(β+sgn(s(k))(1−qT)

) 1
1−α

σ∗ = λT
(β+sgn(s(k))Φα

(σ∗)1−α ≥ λT
(β+sgn(s(k))(1−qT)α

σ∗ ≤ (1− qT)
(
(β+sgn(s(k))σ∗

λT

) 1
α
= (1− qT)Φ

(39)

The following derivation (40) can be obtained

σ∗ ≤ λ

β + sgn(s(k))
TΦα ≤ (1− qT)Φ (40)

Since −ρ ≤ s(k) ≤ ρ, assuming s(k) = θρ = θψ(α)Φ,−1 ≤ θ ≤ 1, we can obtain:

s(k + 1) = (1− qT)θρ− λ

β + sgn(s(k))
T sigα(θρ) + Ceσ(k)

≤ (1− qT)ψ(α)θΦ− λ

β + sgn(s(k))
T sigα(ψ(α)θ)Φα + σ∗

(41)

Similarly, we consider two cases when s(k) ∈ Ω.
Case 1. When s(k + 1) ≤ ρ.

If ψ(α)θ ≥ 0:

s(k + 1) ≤ (1− qT)ψ(α)θΦ− (ψ(α)θ)ασ∗ + σ∗ (42)

If ψ(α)θ ≥ 1:
s(k + 1) ≤ (1− qT)ψ(α)θΦ ≤ ψ(α)Φ = ρ (43)

If 0 ≤ ψ(α)θ ≤ 1:

s(k + 1) ≤ [1 + ψ(α)θ − (ψ(α)θ)α](1− qT)Φ

≤ (1− qT)Φ

< ψ(α)Φ = ρ

(44)

If ψ(α)θ ≤ 0, it can be obtained according to the derivation (40):

s(k + 1) ≤− (1− qT)|ψ(α)θ|Φ + |ψ(α)θ|α(1− qT)Φ + σ∗ (45)

If ψ(α)θ ≤ −1:

s(k + 1) ≤ σ∗ ≤ (1− qT)Φ < ψ(α)Φ = ρ (46)

If −1 ≤ ψ(α)θ ≤ 0:

s(k + 1) ≤ −[|ψ(α)θ| − |ψ(α)θ|α − 1](1− qT)Φ (47)

By |ψ(α)θ| − |ψ(α)θ|α − 1 ≥ −ψ(α) in Lemma 2, we can obtain s(k + 1) ≤ (1− qT)
ψ(α)Φ < ψ(α)Φ = ρ.
Case 2. When s(k + 1) ≥ −ρ.
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According to the definition of Equation (41) and ρ, we can obtain:

s(k + 1) ≥(1− qT)ψ(α)θΦ− λ

β + sgn(s(k))
T sigα(ψ(α)θ)Φα − σ∗ (48)

Based on the derivation in Equation (40), it is clear that
If ψ(α)θ ≥ 1:

s(k + 1) ≥ −σ∗ ≥ −(1− qT)Φ > −ρ (49)

If 0 ≤ ψ(α)θ < 1:

s(k + 1) ≥ [ψ(α)θ − (ψ(α)θ)α − 1](1− qT)Φ

≥ −ψ(α)(1− qT)Φ

> −ψ(α)Φ = −ρ

(50)

If −1 < ψ(α)θ ≤ 0:

s(k + 1) ≥ −(1− qT)|ψ(α)θ|Φ + |ψ(α)θ|ασ∗ − σ∗

≥ −[1 + |ψ(α)θ| − |ψ(α)θ|α](1− qT)Φ

≥ −(1− qT)Φ

> −ρ

(51)

If ψ(α)θ ≤ −1:

s(k + 1) ≥ (1− qT)ψ(α)θΦ + |ψ(α)θ|ασ∗ − σ∗

≥ (1− qT)ψ(α)θΦ

> −ψ(α)Φ = −ρ

(52)

Thus, we can deduce that −ρ ≤ s(k + 1) ≤ ρ, which indicates that s(k + 1) ∈ Ω.

Lemma 2. If ψ(α) = 1 + α
α

1−α − α
1

1−α and 0 < α < 1, So 1 < ψ(α) < 2, for any x ∈ [0, 1], we
have the following conclusion:

xψ(α)− xαψ(α)α + ψ(α)− 1 ≥ 0 (53)

Proof. The function D(x) is defined as

D(x) = xψ(α)− xαψ(α)α + ψ(α)− 1 (54)

To calculate the minimum value of D(x) in the interval (0, 1), we start by noting that
D(0) = ψ(α)− 1 > 0 and D(1) = ψ(α)− ψ(α)α + ψ(α)− 1 > 0.

Next, we find the critical point of D(x) by setting its derivative to zero:

dD(x)
dx

= ψ(α)− αxα−1ψ(α)α = 0 (55)

Solving for x, we obtain:

x∗ = α
1

1−α · 1
ψ(α)

(56)

Substituting x∗ into D(x), we get:

D(x∗) = α
1

1−α − α
α

1−α + ψ(α)− 1 = 0 (57)

Finally, we compare the values of D(0), D(1), and D(x∗) and conclude that the
minimum value of D(x) in the interval (0, 1) is zero. This completes the proof.
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4.6. The SMC-Based Tube MPC Algorithm

The proposed robust SMC-based tube MPC algorithm is depicted in Figure 2. To aid
comprehension of the controller’s design and application, we present the workflow of the
proposed SMC-based tube MPC method in Figure 2, with detailed explanations of the
working sequence provided in Step 1–4:

Step 1: The actual system state χ̂(k), which is subject to bounded disturbances ω(k),
is decomposed into the nominal system state ξ̂(k) and error system state ε(k).

Step 2: The nominal system state ξ̂(k) is predicted by linearizing the reference trajectory,
and the MPC optimization algorithm is employed to compute the nominal control û∗(k).

Step 3: The error system state ε(k) is controlled by SMC using a sliding mode state
and reaching law to obtain the auxiliary control law φη(k). The auxiliary control law is
designed to overcome the impact of uncertain disturbances, such as rough and slippery
roads, during operation and achieve approximate convergence of the actual system state
χ̂(k) to the nominal system state ξ̂(k).

Step 4: The nominal MPC control input û∗(k) and the auxiliary tube SMC law φη(k)
are combined to form the final actual control input µ̂(k), which is used to track the prede-
termined path of the vehicle in the presence of uncertain disturbances.
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Figure 2. The proposed robust SMC-based tube MPC algorithm.

The aforementioned process is executed in a receding horizon until path tracking
is completed. Overall, this four-step approach offers a comprehensive solution to the
challenges of robust lateral control in the presence of disturbances and shows promising
results for real-world AV applications.

5. Experiments and Analysis

To verify the efficacy of the proposed robust SMC-based tube MPC algorithm, an
experimental study will be conducted using the Wuling-MiniEV vehicle, which has been
retrofitted with CAN-BUS control technology, as depicted in Figure 3. The system leverages
full CAN-BUS control and adheres to automotive-grade standards, with wire control
techniques enabling features such as front-wheel drive and electro-hydraulic driving brakes.
The auto-drive system provides access to the bottom executive control interface and can
be integrated with sensors such as lidar, radar, high-precision integrated navigation and
positioning systems, and cameras, enabling multi-scene automatic driving applications.
To evaluate the stability of the proposed SMC-based tube MPC algorithm, we compare
its performance with other classic methods such as LQR [16], traditional MPC [33] and
traditional tube MPC [30]. The experimental test road spans a total length of 400 m,
consisting of straight road segments, curves, and right-angle turns. The vehicle tracking
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reference speed is set at 16 km/h, with the tracking instability effect being tested on muddy,
snowy, and icy roads.

Figure 3. The experimental AV.

5.1. Muddy Road

Driving on a muddy road section presents a significant challenge for self-driving cars,
resulting in delayed control behavior and path tracking overshooting. Based on multiple
test situations, we set the maximum disturbance of the controller to (58):

ωmax = 10 (58)

To facilitate comparison, Table 1 presents the parameters of the proposed SMC-based
pipeline MPC algorithm on muddy roads, while Table 2 provides the setting parameters of
the MPC and LQR controllers.

Table 1. SMC-based tube MPC.

Nominal MPC Auxiliary SMC

NP = NC = 8 φ = (0.14, 0.23)T

κ = 6 Ce = (0.7, 0.4, 0.3)
Q = diag{1, 1, 0.5} q = 5
R = diag{0.1, 0.1} λ = 3

vmax = 20; δmax = 30 β = 7

Table 2. MPC and LQR.

MPC LQR

NP = Nc = 12 Q = diag{2, 2, 2.5}
κ = 9 R = diag{1, 1, 3}

Q = diag{1.5, 1.5, 1}
R = diag{0.2, 0.15}

vmax = 20; δmax = 30

In Figure 4, a comparison of the tracking effect is presented for the proposed method,
traditional tube MPC, LQR, and MPC on muddy road sections. The red curve represents
the reference trajectory that is set. The tracking accuracy of each method is shown by a
dotted line, with the proposed method in blue, the MPC method in green, the traditional
tube MPC method in orange, and the LQR method in purple. Since the LQR solves the
control law offline, the vehicle body has significant limitations when facing the interference
of muddy road sections in the tracking process, resulting in the worst tracking effect. The
MPC method can control the vehicle to track the predetermined path through real-time
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solutions under the influence of muddy road surfaces, but the tracking accuracy is still
poor, and its robustness to disturbance is not good. Although the traditional tube MPC
algorithm has a good tracking effect, the offline linear feedback control law is selected for
the auxiliary control law, which is inferior to the method proposed in this paper in terms
of convergence speed and robustness. As SMC is good at resisting bounded interference,
the method proposed in this paper can more effectively resist the interference caused by
muddy roads than traditional methods, and the tracking effect is more accurate and smooth.
This is mainly because our robust SMC-based tube MPC method combines the advantages
of MPC and SMC, and has strong robustness in the face of uncertain interference in the
actual tracking process, resulting in more accurate tracking.
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Figure 4. The path tracking effect on the muddy road.

Figure 5 illustrates the steering angles of the front wheels under different control
algorithms on muddy roads. It can be observed that LQR-generated control laws cannot
stabilize the vehicle body, leading to steering instability. The MPC method exhibits relative
stability but still suffers from overshoot caused by muddy roads and internal uncertainties.
In contrast, the proposed method has the smoothest tracking process, consumes the least
input energy, and achieves the most accurate reference tracking. This is attributed to the
SMC-based tube MPC algorithm that enhances the AV’s robustness to external interference
and improves its stability compared to the traditional tube MPC. By utilizing the auxiliary
SMC feedback control law, the proposed method has the least redundant actions and
guarantees the most accurate and smooth tracking of the reference trajectory.
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Figure 5. The variation of front wheel angle on the muddy road.
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Figure 6 shows the speed changes of AV under different control algorithms on muddy
roads. The speed of LQR-controlled AV varies significantly during tracking, mainly due to
the lack of robustness of the offline control law. Similarly, the MPC method also exhibits
frequent speed changes due to the drag caused by muddy roads. By incorporating the
SMC algorithm, the proposed SMC-based tube MPC method ensures the smooth changes
in AV speed during driving and smooth rise and fall of vehicle speed during cornering.
Moreover, it has a simple and fast response time and exhibits robustness to external noise
disturbance and parameter ingestion. Compared to the traditional tube MPC, the proposed
method ensures smoother speed changes during driving and improves the accuracy and
stability of AV control.
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Figure 6. The variation of speed on the muddy road.

5.2. Snowy Road

The tracking process is significantly affected by snow-covered roads due to the in-
creased likelihood of sideslip and resistance, particularly during turns, leading to larger
deviations from the reference path. The controller is designed to mitigate these effects, with
disturbance parameters specified in Equation (59).

ωmax = 15 (59)

The parameters used for the proposed method on snowy roads are presented in Table 3,
while the parameter settings for the MPC and LQR controllers are shown in Table 4:

Table 3. SMC-based tube MPC.

Nominal MPC Auxiliary SMC

NP = NC = 9 φ = (0.14, 0.23)T

κ = 7 Ce = (0.7, 0.45, 0.32)
Q = diag{1, 1, 0.5} q = 5
R = diag{0.1, 0.1} λ = 3

vmax = 0.4; δmax = 18 β = 7

Table 4. MPC and LQR.

MPC LQR

NP = Nc = 14 Q = diag{3, 3, 2.5}
κ = 11 R = diag{2, 2, 3}

Q = diag{1.5, 1.5, 1}
R = diag{0.2, 0.15}

vmax = 0.4; δmax = 25
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Figure 7 shows that snow has a significant impact on the tracking performance of LQR
and MPC methods. The lack of robustness in these methods leads to large deviation errors
during turns, with some even exceeding the lane centerline, posing potential safety risks to
the vehicle. While the traditional tube MPC method is effective, it still suffers from errors
when dealing with snowy roads. In contrast, the proposed SMC-based tube MPC method
uses an auxiliary SMC law that improves robustness and has excellent anti-interference
capabilities. Even under the influence of tire sideslip caused by snowy roads, the proposed
method can accurately track the reference path with a stable turning process.
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Figure 7. The path tracking effect on the snowy road.

As depicted in Figure 8, the control performance of LQR and MPC methods on the
snowy road is still suboptimal due to the influence of snow, resulting in complex and
redundant changes in the front wheel angle, which may cause potential safety risks such
as skidding during driving. To address this issue, the proposed SMC-based tube MPC
method modifies the traditional tube MPC by incorporating an auxiliary SMC control law,
which enhances the stability of the front wheel steering. With the excellent anti-interference
ability of SMC, the impact of snow on the road surface is rapidly suppressed and fed back
to the system, reducing the impact of snow on the side slip of the vehicle body. As a result,
the AV can still accurately track the reference path while ensuring safe driving.
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Figure 8. The variation of front wheel angle on the snowy road.

In Figure 9, when driving on a snow-covered road, the AV is subject to more unknown
disturbances during the tracking process due to side slip and resistance caused by snow.
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While LQR and MPC methods struggle to overcome the tire side slip, resulting in fre-
quent speed changes, the proposed SMC-based tube MPC method remains stable and can
maintain a steady change of speed, outperforming the traditional tube MPC method.

4

0

8

Time/(s)
0 10 30 50 70 9020 40 60 80 100

Sp
ee

d/
(k
m
/h

)

12

16

20

24
SMC-based tube MPC

Traditional tube MPC

Traditional MPC
LQR

Figure 9. The variation of speed on the snowy road.

5.3. Icy Road

When driving on icy roads, vehicles are more prone to sideslipping and the road sur-
face is typically rougher. The Equation (60) displays the controller’s disturbance parameter
configuration.

ωmax = 20 (60)

Table 5 displays the parameters of the proposed method utilized on icy roads, while
Table 6 exhibits the parameter settings for the traditional MPC and LQR controllers.

Table 5. SMC-based tube MPC.

Nominal MPC Auxiliary SMC

NP = NC = 8 φ = (0.14, 0.23)T

κ = 6 Ce = (0.8, 0.5, 0.3)
Q = diag{1, 1, 0.5} q = 5
R = diag{0.1, 0.1} λ = 3

vmax = 20; δmax = 30 β = 7

Table 6. MPC and LQR

MPC LQR

NP = Nc = 12 Q = diag{2, 2, 3}
κ = 10 R = diag{1.5, 1.5, 2}

Q = diag{1.5, 1.5, 1}
R = diag{0.2, 0.15}

vmax = 20; δmax = 30

As depicted in Figure 10, the LQR and MPC controllers exhibit poor tracking perfor-
mance on icy road surfaces due to side slips and bumps, particularly when maneuvering
turns. The traditional tube MPC demonstrates better performance in handling bumps and
side slips, but the controller is subject to higher pressure on icy roads, making it more
prone to reaching its limit. By incorporating SMC, the proposed tube MPC approach
effectively mitigates the impact of icy conditions on the controller, leading to a more stable
and accurate tracking performance with greater robustness.
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Figure 10. The path tracking effect on the icy road.

As illustrated in Figure 11, when controlled by LQR and MPC, the AV’s front wheels
exhibit excessive motion due to side slip and jitter caused by bumps and icy road surfaces,
leading to vibrations and unstable driving behavior. By leveraging the auxiliary SMC
method, the proposed tube MPC approach outperforms the traditional tube MPC in terms
of disturbance suppression and update speed in the disturbance feedback loop. This results
in reduced occurrence of front wheel jitter and enables safe and smooth operation of the
AV on icy roads.
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Figure 11. The variation of front wheel angle on the icy road.

In Figure 12, it is evident that skidding on icy roads poses a more significant challenge
for the AV in terms of maintaining consistent driving speed during tracking. The presence
of side slips and bumps further complicates the task of speed control. The insufficient
robustness of LQR and MPC controllers makes it difficult to achieve stable changes in
vehicle speed. While the traditional tube MPC approach yields satisfactory results due to
the inclusion of auxiliary control methods, the proposed SMC-based tube MPC method
with improved auxiliary control feedback can further enhance driving comfort by ensuring
even smoother changes in AV speed on icy roads.
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Figure 12. The variation of speed on the icy road.

Figure 13a–c illustrate the lateral and longitudinal errors of the four control methods
on three different road surfaces, namely, muddy, snowy, and icy roads. The LQR and MPC
methods exhibit large deviations in both the horizontal and vertical directions, indicating
poor robustness. However, the addition of an auxiliary control law to overcome external
disturbances can significantly improve the controller’s performance. The traditional tube
MPC method displays high tracking accuracy with small horizontal and vertical errors.
Nevertheless, the proposed SMC-based tube MPC effectively suppresses sideslip and drag
effects in various road environments, further enhancing control accuracy and stability.
This method employs a more robust SMC as the auxiliary control law, featuring a simple
structure and fast computation speed, enabling the AV to smoothly and safely track the
reference path while ensuring accuracy.

(a)Muddy road (b)Snow road (c)Icy road
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Figure 13. The variation of tracking error on the three roads.

After testing on three types of roads, the average cycle time of the proposed algorithm
is shown in Table 7. It can be seen that due to the low dimension of the system, the
calculation efficiency of nominal MPC is very fast and remains at about 38 ms, while the
calculation efficiency of SMC is even higher. The minimum time is only about 2 ms, and
the overall algorithm cycle calculation time takes about 42 ms, which meets the real-time
requirements of AV in path tracking. After the path tracking test on three roads, the tracking
errors of the four methods are shown in Table 8. Due to the different disturbance effects
brought by the three different roads, the LQR tracking error is the largest, about 10%. The
effect of traditional MPC is average, with an average error of 5%. After adding an auxiliary
control law, the robustness of the controller can be significantly improved. The average
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error of the traditional tube MPC is about 3.5%, and the SMC-based tube MPC proposed in
this paper has further improved the auxiliary control law, resulting in the best performance
with an average error of only 2.5%.

Table 7. Average computing time.

Method Average Computing Time

SMC-based tube MPC 42 (ms)
Nominal MPC 4 (ms)
Auxiliary SMC 38 (ms)

Table 8. Average tracking error.

Method Average Tracking Error

SMC-based tube MPC 2.5%
Traditional tube MPC 3.5%

MPC 5%
LQR 10%

In summary, the proposed SMC-based tube MPC algorithm offers smooth steering
control, high precision, good stability, and strong adaptability to external disturbances
and internal unmodeled uncertainties. It meets the real-time requirements of the actual
operation process and provides the best tracking performance during path tracking in
challenging conditions such as mud, vibration, ice, and snow. The effectiveness of the
proposed control method is demonstrated by its ability to handle any emergencies that
occurred during the experiment. Therefore, the algorithm proves to be a promising solution
for lateral control in AV.

6. Conclusions

This paper presents a novel approach for lateral control of autonomous vehicles by
proposing a robust SMC-based tube MPC method. The main objective of this method
is to address the tracking overshoot and instabilities that arise from internal unmodeled
uncertainties and external disturbances. The design of the proposed method combines
discrete-time computational MPC and tube SMC laws, which provide stability and robust-
ness. The nominal MPC is employed to achieve control accuracy with a predictive control
law, while the discrete tube SMC law ensures vehicle stability in the presence of distur-
bances. The proposed method has demonstrated remarkable results, maintaining a tracking
error of around 2.5%, which is significantly lower than previous methods. Further research
is required to investigate the performance of the proposed method under different road
conditions and vehicle speeds, such as strong crosswinds, rain, and high-speed driving.
Overall, this SMC-based robust tube MPC method has the potential to improve the lateral
control performance of autonomous vehicles in challenging driving scenarios.
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