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Abstract: The detection and recognition of marine targets can be improved by utilizing the micro-
motion induced by ocean waves. However, distinguishing and tracking overlapping targets is
challenging when multiple extended targets overlap in the range dimension of the radar echo. In this
paper, we propose a multi-pulse delay conjugate multiplication and layered tracking (MDCM-LT)
algorithm for micro-motion trajectory tracking. The MDCM method is first applied to obtain the
conjugate phase from the radar echo, which enables high-precision micro-motion extraction and
overlapping state identification of extended targets. Then, the LT algorithm is proposed to track
the sparse scattering points belonging to different extended targets. In our simulation, the root
mean square errors of the distance and velocity trajectories were better than 0.277 m and 0.016 m/s,
respectively. Our results demonstrate that the proposed method has the potential to improve the
precision and reliability of marine target detection through radar.

Keywords: micro-doppler; micro-motion; multi-pulse delay conjugate multiplication; extended
target tracking; layered tracking

1. Introduction

Micro-motion plays an important role in radar target detection and classification [1].
The vibration of a marine target caused by wave slapping is a unique feature that can
be exploited for target identification and voyage monitoring [2]. Extracting vibration
parameters can be challenging when performing long-distance radar detection, since the
projection of micro-motion on the radar line-of-sight may be weak. The phase-derived
measurement technique has been employed to achieve high-precision range estimation
and motion feature extraction [3–6], which utilizes the principle that a half-wavelength
translation of a target induces a 2π phase delay in radar echo.

In the range domain of wideband radar echo, the marine vessel can be regarded
as an extended target composed of strong scattering points. Extended target detection
is studied in [7–9]. In order to capture the target motion variation over time, the target
tracking method was introduced. The Bayesian filtering framework is commonly used,
including the Kalman filter (KF) [10] and the particle filter [11]. Moreover, the tracking
problem can be divided into sub-problems of association between adjacent points and
be solved through the dynamic programming method [12,13]. In long-distance scenes,
the tangential coverage range of the radar beam may reach several hundreds of meters,
and there may exist multiple targets in the radar sight. The main challenge in multiple
extended target tracking is correctly associating different targets. For the multi-target
tracking issue, the pairing between tracks and measurements is usually achieved through
data association algorithms, such as nearest neighbor [14] and joint probabilistic data
association [15]. In [16], the multiple points were separated into several groups, and the
centers of the groups were tracked through the probability hypothesis density filter. In [17],
the multi-Bernoulli filter algorithm was adopted to track the centers of groups.
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However, when tracking the overlapping extended targets, current methods rely
on motion model predictions or prior knowledge of target movements. It is difficult to
directly acquire the overlapping state between targets. Additionally, existing extended
target tracking methods primarily focus on tracking isolated points or the center of entire
targets, without fully utilizing the motion correlation between scattering points, which
reflects the structure of the extended target and offers new insights for target characteristic
extraction. There is a pressing need to explore how to use the micro-motion of scattering
points to enhance extended target tracking.

To address the problems, we proposed an extended target tracking algorithm based
on the multi-pulse delay conjugate multiplication (MDCM) and layered tracking (LT). First,
we analyzed the micro-motion features of marine targets and established the radar echo
model. Then, the MDCM method was applied to calculate the conjugate phase, which was
further used to differentiate the coincident points (superimposed by multiple scattering
points) and independent points. With the assistance of independent points, the conjugate
phases of the coincident points were corrected, and LT was finally achieved.

The reminder of this paper is organized as follows. Section 2 describes the movement
model and the radar echo simulation of the marine target. Section 3 presents the MDCM-LT
method. In Section 4, the proposed algorithm is verified through the simulation and the
experiment. Furthermore, Section 5 concludes this paper.

2. Marine Target Micro-Doppler Modeling
2.1. Micro-Motion Model

According to sea-keeping theory, the stability and seaworthiness of a marine target
are related to its size, shape, and weight distribution. Furthermore, various targets may
exhibit distinct motion characteristics under identical sea conditions.

Linear strip theory [18] assumes the amplitude of the marine target motion is propor-
tional to the amplitude of the ocean wave. The ocean wave forms from a superposition of
regular waves as

ξ(t) =
∞

∑
i=1

ξi cos(ωit + ϕi) (1)

where ξi, ωi, and φi denote the amplitude, the angular frequency, and the phase of the
i-th wave, respectively.

The micro-motion of a marine target encompasses three translational and three rota-
tional degrees of freedom, and it can be expressed as

au(t) =
∞

∑
i=1

Raou(ωi)ξi cos(ωit + ϕi) (2)

where u ranges from one to six, thereby representing the target movements in six de-
grees of freedom. Furthermore, the response amplitude operator, Raou(ωi), denotes the
ratio between the movement amplitude to the regular wave amplitude at frequency ωi.
In sea states of medium to low intensity, the movements along the longitudinal direction
(heaving and pitching) are particularly influential on the micro-motion characteristics of
the marine target. To simplify the vessel motion modeling, we focused on heaving and
pitching movements.

We adopted the microtome section theory [19] to create the micro-motion model of
the marine vessel. Two coordinate systems are established: the global coordinate system
O-XYZ and the vessel-fixed coordinate system Ov-xyz (shown in Figure 1). The radar is
positioned at point O, while the longitudinal axis of the vessel is oriented along the +X axis.
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We assume that the coordinate of the vessel center, Ov, is (R, 0, 0). h(t) and θ(t) denote the
height variation caused by heaving and the pitch angle of pitching, which are expressed as

h(t) =
∞
∑

i=1
Raoh(ωi)ξi cos(ωit + ϕi)

θ(t) =
∞
∑

i=1
Raoθ(ωi)ξi cos(ωit + ϕi)

(3)

where Raoh(ωi) and Raoθ(ωi) are the response amplitude operators of heaving and pitch-
ing, respectively.

The vessel is separated into multiple sections along its longitudinal direction, and the
coordinate of each section is calculated as

x′ = R + ∆x cos θ(t)
y′ = 0
z′ = h(t) + ∆x sin θ(t)

(4)

where ∆x is the distance between the section and Ov.
Then, the distance between the section and the radar is calculated by using the follow-

ing equation:

R′(t) =
{
[R + ∆x cos θ(t)]2 + [h(t) + ∆x sin θ(t)]2

} 1
2 (5)

x

z

O X

Z

θ(t)Ov

Y
y

△x
h(t)

R

Figure 1. The coordinate systems of the vessel.

By calculating the derivative of Equation (5) with respect to time, the velocity of the
section is

v(t) =
1
b

{
[h(t)− ∆x sin θ(t)]

dh(t)
dt

+ ∆x[h(t) cos θ(t)− R sin θ(t)]
dθ(t)

dt

}
(6)

where b =
√
(R + ∆x cos θ)2 + (h(t) + ∆x sin θ)2.

Due to ∆x and h(t) being much smaller than R, b could be approximated as R. Based
on Equation (6), the velocity difference between two sections with interval ∆x1 and ∆x2 is
calculated as follows

∆v = v∆x1(t)− v∆x2(t)

≈ 1
R

[
h(t) cos θ(t)

dθ(t)
dt
− R sin θ(t)

dθ(t)
dt
− sin θ(t)

dh(t)
dt

]
(∆x1 − ∆x2)

(7)

In Equation (7), θ(t) and h(t) are variables associated with the overall vessel movement,
and do not change with ∆x. Therefore, the difference in velocities between sections depends
linearly on their relative position.
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2.2. Radar Echo Model

The radar waveform is the chirp pulse signal with carrier frequency fc. We regard
the vessel sections as scattering points and construct the radar echo by superimposing the
echoes from strong scattering points as follows

sr(t) =
I

∑
i=1

σirect
[

t− 2R′i(t)/c
Tw

]
exp

{
j2π

[
fc

(
t−

2R′i(t)
c

)
+

1
2

K
(

t−
2R′i(t)

c

)2
]}

(8)

where I denotes the total number of the scattering points, rect(·) is the rectangular function,
Tw is the pulse width, K is the modulation ratio, c is the microwave speed, and σi and R′i(t)
represent the scattering amplitude and the distance of the i-th scattering point, respectively.

The matched filtering is applied to the radar echo to obtain the range profile of the
vessel. The reference signal in the frequency domain is denoted as H(k), which is calculated
by applying Fourier transform on the transmitting signal. The output of the matched filter
is calculated as follows

x(t) = IFFT[Sr(k) · H∗(k)]

=
I

∑
i=1

Aisinc
[

B
(

t−
2R′i(t)

c

)]
exp

[
−j

4πR′i(t)
λ

]
(9)

where IFFT(·) denotes the inverse fast Fourier Transform process, Sr(k) is the Fourier
transforms of sr(t), H∗(k) is the conjugate of H(k), Ai is the amplitude of the output result,
B is the bandwidth of the chirp signal, and λ is the wavelength.

The Doppler frequency of the i-th scattering point could be aquired by calculating the
phase derivation of the range profile in Equation (9) as

fd,i(t) = −
2
λ

dR′i(t)
dt

(10)

3. Micro-Motion Tracking for Extended Target
3.1. Micro-Motion Feature Extraction through MDCM

To simplify the analysis, we focused on the micro-motion of a single scattering point.
The amplitude and envelope terms in Equation (9) are denoted as Ar, and the range profile
of the m-th pulse can be expressed as

xi(m, tn) = Ar exp
[
−j

4πR′i(tm)

λ

]
+ n(tm) = Ar exp

[
−j

4πR′i(mTr + tn)

λ

]
+ n(mTr + tn) (11)

where tn is the fast time in pulse, tm represents the sampling time in the m-th pulse, Tr is
the pulse repetition time, R′(tm) is the distance between the point and the radar at time tm,
and n(tm) denotes the echo of the environment clutter.

The approximation of R′(tm) in Equation (5) can be calculated using the first-order
Taylor expansion as

R′(tm) =
{

R2 + h(tm)
2 + ∆x2 + 2R cos θ(tm)∆x + 2h(tm) sin θ(tm)∆x

} 1
2

≈ R +
1

2R

[
2R cos θ(tm)∆x + h(tm)

2 + ∆x2 + 2h(tm) sin θ(tm)∆x
] (12)

Since ∆x and h(tm) are much smaller than R, the last three terms in the square brackets
in Equation (12) can be neglected for analysis. Then, R′(tm) can be approximated as

R′(tm) ≈ R + cos θ(tm)∆x (13)

where θ(tm) represents the pitch angle at time tm.
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θ(tm) varies slowly over pulses. Therefore, we assume θ(tm) to be linear during
processing time with a velocity vθ . Substitute Equation (13) into Equation (11), and calculate
the l-pulse MDCM as

y(m + l, Tn) = xr(m + l, tn) · x∗r (m, tn)

= Ac exp
{

j
8π∆x

λ
sin

lvθTr

2
sin
[

θ(tm) +
vθTr

2

]} (14)

where Ac is the amplitude, and l is the number of delayed intervals.
In Equation (14), the phase term is named as the conjugate phase. The range of the

phase after the MDCM process is constrained by sin(lvθTr/2), which is named as the
reduction ratio η. By changing the delayed interval l, we can manipulate the value of η and
decrease the phase variation caused by micro-motion, thereby unwrapping the ambiguity
phase. lvθTr approaches zero when l does not exceed a few hundred, and Tr is at the
microsecond level. In such circumstances, η is approximately equivalent to lvθTr/2, and is
linearly proportional to l.

3.2. Layered Tracking of Extended Target

In this subsection, the tracking of the extended target was divided into two layers:
the center tracking in the upper layer, and the scattering points tracking in the lower layer.
In each time step, the measurement points {zi(k + 1)} were initially partitioned into sets
belonging to different extended targets. The wrong conjugate phases in {zi(k + 1)} will
be corrected on the basis of upper layer state prediction, X̂c(k + 1|k). Then, the average of
zi(k + 1) will be adopted as the measurement values of upper layer, Zc(k + 1). The tracking
process of the lower layer and the upper layer were both implemented using the KF method.
The framework of the proposed LT method is depicted in Figure 2. The details of the LT
algorithm are explained in the following parts.

Measurement Partition

( ) ( ) ( )+1 +1 , +1i i iz k r k k=   

State Prediction Data Association State Correction State Update

State Prediction Data Association State Update

Lower-Layer

Upper-Layer

( )1cZ k +( )ˆ 1|cX k k+

Figure 2. The framework of the layered tracking.

3.2.1. Measurement Partition

The appropriate partitioning of measurements is the prerequisite for effective tracking.
We employed the distance partitioning principle [20] to divide the measurements at the
initial frame. The Mahalanobis distance between two measurements, zi and zj, is calculated
as follows

di,j =
[(

zi − zj
)TR

(
zi − zj

)] 1
2 (15)

where R is the distance weight matrix. When di,j is smaller than the empirical threshold,
the two measurements will be considered to belong to the same extended target.

When the scattering points of two extended targets coincide in the range dimension,
the measurement partition becomes difficult, as more than one scattering points merge
into one measurement, which we name the coincident point. To simplify the analysis, we
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assumed that a coincident point is superimposed by two scattering points with constant
amplitudes. The phase of the coincident point, φΣ, could be calculated as

φΣ = dφA + eφB (16)

where φA and φB are the phases of the two points, respectively. d and e represent the
proportion of φA and φB in φΣ, respectively.

The MDCM under two delayed intervals, l1 and l2, is applied to the coincident point,
and the conjugate phases are denoted as φΣ,1 and φΣ,2, respectively. Here, l1 is small enough
that the conjugate phases of two points are unambiguous, while l2 is larger, and the phases
are aliased. Let φA,2 and φB,2 denote the conjugate phases of the two scattering points
under interval l2; φΣ,2 can be calculated as

φΣ,2 = dφA,2 + eφB,2 (17)

Based on the linear variation of the conjugate phase with l, φΣ,2 can be rewritten as

φΣ,2 = d
(

l2
l1

φA,1 − 2kAπ

)
+ e
(

l2
l1

φB,1 − 2kBπ

)
=

l2
l1
(dφA,1 + eφB,1)− (kΣ)π

=
l2
l1

φΣ,1 − (kΣ)π

(18)

where φA,1 and φB,1 denote the conjugate phases of A and B, respectively, under interval l1,
kA and kB are the phase ambiguity integers, and kΣ = 2dkA + 2ekB. By choosing moderate
values of l1 and l2, kΣ is no longer a multiple of two. In this case, φΣ,2 can not be unwrapped
correctly based on φΣ,1, while the single scatters still satisfies the linearity among different
delayed intervals.

We therefore calculate the difference between the conjugate phases under l1 and l2 as

∆φ =

∣∣∣∣φ2 −
(

l2
l1

φ1 − 2kπ

)∣∣∣∣ (19)

where φ1 and φ2 denote the conjugate phases of the scattering point under l1 and l2,
respectively. When ∆φ is higher than the threshold ηφ, the point will be considered to be a
coincident point and be assigned to multiple extended targets.

3.2.2. State Prediction and Update

The scattering points are detected from the range profile through the constant false
alarm rate detection, which are input into the lower layer as measurements. The state
vector of each measurement in frame k contains its distance r(k) and conjugate phase ω(k)
and is denoted as

X(k) = [r(k), ω(k), ṙ(k), ω̇(k)]T (20)

where ṙ(k) and ω̇(k) denote the first derivative of r(k) and ω(k), respectively.
The state transition model is written as

X̂(k + 1|k) = FX(k|k) + V(k)

P̂(k + 1|k) = FP(k|k)FT + Q(k)
(21)

where X̂(k + 1|k) and P̂(k + 1|k) represent the predicting state and covariance matrix in
frame k + 1, respectively, X(k|k) and P(k|k) are the state matrix and covariance matrix after
frame k, respectively, F is the transition matrix under a constant velocity model, and V(k)
and Q(k) are the transition noise matrix and the process noise matrix, respectively.
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Then, the tracker is updated as

K(k + 1) = P̂(k + 1|k)HT[HP̂(k + 1|k)HT + R(k + 1)
]−1

X(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)
[
Z(k + 1)− HX̂(k + 1|k)

]
P(k + 1|k + 1) = [I − K(k + 1)H]P̂(k + 1|k)

(22)

where K(k + 1) is the Kalman gain in frame k + 1, H is the measurement vector, R(k + 1)
is the observation noise, Z(k + 1) is the measurement in frame k + 1, I is the identity
matrix, X(k + 1|k + 1) and P(k + 1|k + 1) are the state matrix and the covariance matrix
after updating, respectively.

3.2.3. State Correction

Based on Equation (6) and Equation (13), the averages of the radar distance and
velocity of the scattering points in an extended target are calculated as

R̄′(t) = R + cos θ(t)
n

∑
i=1

∆xi
n

v̄(t) =
h(t)

a
dh(t)

dt
+ d

n

∑
i=1

∆xi
n

(23)

where n is the total number of scatters, ∆xi is the distance between each scatter and the
target center, and

d =
1
a

[
h(t) cos θ(t)

dθ(t)
dt
− sin θ

dh(t)
dt
− R sin θ(t)

dθ(t)
dt

]
(24)

When the distribution of scatters remains unchanged,
n
∑

i=1
∆xi/n is constant. As a result,

R̄′(t) and v̄(t) are only related to the overall motion of the extended target. Therefore,
the state of the tracking center (rc, ωc) is regarded as the average state of scattering points
and is calculated as

rc =
n

∑
i=1

ri
n

, ωc =
n

∑
i=1

ωi
n

(25)

where ri and ωi denote the radar distance and conjugate phase of the i-th scattering
point, respectively.

The center of the extended target is tracked using the same KF framework as in
Section 3.2.2. During the tracking process, the prediction values of the target center, r̂c
and ω̂c, were used to correct the conjugate phases of the coincident points. The correction
process was based on the linear variation of micro-motion with ∆x, and each coincident
point will be corrected to fit each extended target, respectively.

We assumed a coincident point to be distributed in the tracking gates of two extended
targets at the same time and superimposed by two scattering points. For each extended
target, if there exist more than two scattering points with correct conjugate phases, the states
of the two nearest points, (r1, ω1) and (r2, ω2), will be carried out to calculate the revised
conjugate phase as follows

ωr = ω1 + (r− r1)
ω2 −ω1

r2 − r1
(26)

where ωr is the revised phase.
If only one scattering point has the correct phase, we calculate the difference as

δω = ω̂0 − ω0, where ω̂0 and ω0 denote the prediction and the measurement in the last
frame, respectively. Then, the revised phase is calculated as ωr = ω̂ + δω, where ω̂ and ω
denote the prediction and the measurement in the current frame, respectively. If no single
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scattering points exist, the predicted phases of the corresponding lower layer trackers will
be used as the phases of the coincident points directly.

In this way, the conjugate phases of the coincident points were corrected and then
used for state update process.

4. Results and Discussion
4.1. Simulation Results of Micro-Motion Extraction

A vessel with no translation was considered in this simulation. The initial distance
between the radar and the vessel center was 500 m. The vessel was composed of three
scattering points, and ∆x of the three points were −10 m, 0 m and 10 m, respectively.
The motion parameters were set as follows: the heaving amplitude was 0.5 m, with a period
of 10 s; the pitching amplitude was 1.5◦, with a period of 10 s. The carrier frequency of
the chirp pulse was 16 GHz, the pulse repetition time was 100 µs, the number of pulses
in one frame was 512, and the bandwidth was 200 MHz. In this simulation, a sea clutter
generation method considering the sea texture distribution, speckles, and sea spikes was
adopted to generate the sea clutter echoes n(tm) [21]. The theoretical velocity and the
Doppler-time diagram of the vessel under a signal-to-clutter ratio (SCR) of 20 dB are shown
in Figure 3a and Figure 3b, respectively. In Figure 3b, we noticed that the velocity variation
caused by heaving and pitching was too small to be observed under the velocity resolution
of 0.18 m/s.

(a) (b)

Figure 3. The theoretical micro-motion and the radar Doppler-time diagram of the vessel. (a) The
theoretical velocity curves. (b) The simulated Doppler-time diagram of the vessel.

The initial phases of scattering points in each time step were extracted from the radar
diagram and illustrated in Figure 4a. To unwrap the ambiguous phases, a 10-pulse MDCM
was applied to the signal, and the conjugate phases were obtained, which were unwrapped
and transformed into velocity values. The velocities derived from the conjugate phases of
the simulated data with an SCR of 20 dB are plotted in Figure 4b. According to Figure 4b,
the phase unwrapping was achieved effectively through the MDCM method, and the
estimated velocity demonstrated good agreement with the theoretical velocity, with a root
mean square error (RMSE) of 3.98 × 10−4 m/s.

Figure 5 presents the RMSEs of the velocity estimation with an SCR ranging from 8 dB
to 23 dB. The phase measurement accuracy was directly influenced by the signal quality,
which affected the velocity estimation results. Therefore, as the SCR increased, the RMSEs
of all three points decreased. The RMSE of Point 3 was noticeably higher than that of Point
1 and Point 2, which was attributed to its lower scattering amplitude. When the SCR was
above 15 dB, the RMSEs of all three points were less than 0.01 m/s, which is comparable to
the wavelength and adequate for high-precision micro-motion extraction. We excluded the
results with SCRs below 8 dB, because the RMSEs were extremely large, and the results
could not reflect the real target velocity.
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(a) (b)

Figure 4. The result of MDCM method. (a) The initial phases of scattering points extracted from the
radar range profile. (b) The estimated velocities derived from the conjugate phases by MDCM.

-     -

Figure 5. RMSE of velocity estimation with SCR of 8–23 dB.

4.2. Simulation Results of Extended Target Tracking

We considered a radar detection scenario involving two extended vessels. The motion
parameters of the two targets are listed in Table 1, while the theoretical velocities of the
two targets are displayed in Figure 6. As is evident from the figure, the velocities of the
scattering points of each target varied in a small range, which were difficult to discern from
the Doppler-time profile with a decimeter-scale velocity resolution.

Table 1. The parameters of simulated extended targets.

Parameter Name Target 1 Target 2

Translational velocity (m/s) 0 5
Center position (m) 5000 4955

∆x of scattering points (m) (−10, 0, 20, 30) (−15, 0, 15)
Amplitude of heaving (m) 0.9 0.9

Period of heaving (s) 15 5
Amplitude of pitching (◦) 3 3

Period of pitching (s) 10 5

Figure 6. The theoretical velocities of the vessels.
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The MDCM was applied to calculate the conjugate phases of the scattering points. We
extracted the conjugate phases under 10-pulse delay (φ10) and 160-pulse delay (φ160), then
calculated the difference between the linear converted phases ˆφ160 and φ160 as follows

∆φ =
∣∣φ̂160 − φ160

∣∣
= |(16φ10 − 2kπ)− φ160|

(27)

where k is the phase ambiguity integer. ∆φ was employed for coincident point classification,
and the selected points are demonstrated in red in Figure 7a. As is seen in the figure,
the linear variation of the conjugate phases among different delayed intervals l provides a
novel way for identifying coincident points.

Subsequently, the tracking of the scattering points was accomplished by utilizing the
proposed LT method. The tracking result of two targets moving near to each other is shown
in Figure 7b. The black lines correspond to the four scattering points of extended target
1 (1-1, 1-2, 1-3, 1-4), while the red lines represent the three scattering points of extended
target 2 (2-1, 2-2, 2-3). As can be seen from the figure, the shapes of the tracks conform to
the theoretical velocity curves (Figure 6).

(a)

Independent points

Coincident points

Figure 7. The simulated results of the proposed MDCM-LT algorithm. (a) The coincident points
differentiated through the MDCM-based measurement partitioning method. (b) The tracking results
derived through the LT algorithm.

The tracking results of the proposed method were compared under various scenarios.
The translational velocities of target 1 and target 2 were denoted by v1 and v2, respectively.
In this simulation, v1 was set to zero, while v2 took values of−2, 0, 2, and 5 m/s. The RMSEs
of the simulated scenes are shown in Table 2. The RMSE values indicate that the estimate
accuracies of the ranges and velocities did not significantly change when the targets
were moving near or away from each other, even when the scattering points of the two
targets were coincident in the range dimension (when v2 = 2 m/s or 5 m/s). These
results demonstrate the effectiveness of the state correction process in the LT algorithm,
which utilizes the motion correlation between scattering points and achieves the velocity
estimation for the points without valid conjugate phase information.

Table 2. The RMSEs of range and velocity tracks.

v1 (m/s) v2 (m/s) RMSEs of Range
Tracks (m)

RMSEs of Velocity
Tracks (m)

0 −2 0.470 0.023
0 0 0.590 0.019
0 2 0.765 0.020
0 5 0.277 0.016
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The performance of the proposed MDCM-LT method was compared with the KF-
ridge path regrouping (KF-RPRG) method [22] and the centroid group tracking (CGT)
method [23]. The KF-RPRG method tracks individual scattering points and connects the
interrupted tracks based on the gradient direction. The CGT method focuses on target
centroids and classifies the target merging condition based on the number of measurements
falling into the tracking gate of each target. The tracking results of the KF-RPRG and
CGT are presented in Figure 8. In Figure 8a, a–b represents the b-th scattering points
in the a-th extended target. It should be noted that the KF-RPRG does not differentiate
which scattering point belongs to which extended target, and the black and red lines were
only used for visual clarity in the plot. According to the figure, the KF-RPRG tracked the
scattering points, but the fluctuations in the conjugate phases caused fluctuations in the
movement trajectories. According to Figure 8b, the CGT offered stable tracking of the
target centroids in both the range and velocity dimensions, but it was unable to track the
micro-motion of each point.

Figure 8. The simulated results of the comparison algorithms. (a) The scattering point tracking results
of KF-RPRG method. (b) The center tracking results of CGT method.

The comparison between the three methods is listed in Table 3. The regrouping process
of the KF-RPRG could only be performed once the tracking was completed, which limited
the real-time trajectory output. Due to the CGT only tracking the centroids of the extended
targets, its processing time was the shortest among the three methods. The proposed
MDCM-LT method utilized the micro-motion disparities among scattering points to rectify
the conjugate phases, which led to reduced fluctuations in the trajectory tracking results.
Furthermore, the RMSEs of the extracted velocity and distance trajectories were held
within 0.016 m/s and 0.277 m, respectively, thereby indicating the effectiveness of the
proposed method.

Table 3. The comparison between the KF-RPRG method, the CGT method, and the proposed MDCM-
LT method.

Item KF-RPRG CGT The Proposed
Method

Group tracking × X X

Scattering point tracking X × X

Real-time output × X X

RMSE of velocity (m/s) 0.062 0.028 (center) 0.016
RMSE of distance (m) 0.276 1.529 (center) 0.277
Processing time (s) 3.26 1.07 3.06
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4.3. Experimental Results of Extended Target Tracking

A Ku-band radar was used for data acquisition in this experiment. The height of
the radar placement was 60 m, and the distance between the radar and the targets was
approximately 5600 m. In our experiment, extended target 1 was an anchored vessel.
Extended target 2 consisted of two small ships connected by a rope, and the relative
position between the two ships remained almost unchanged throughout the experiment.
The experimental scene, the schematic diagram of target locations, and the range–time
profile of the experimental radar data are illustrated in Figure 9.

Ku band 

Radar

PC

(a) (b)

Target 1

Radar Target 2

(c)

Figure 9. The experimental scenario. (a) The outdoor scene for the marine target detection experiment.
(b) The positional relationship between the radar and targets. (c) The range–time profile of the
experimental radar data.

Using delayed intervals of 6 and 10, the conjugate phases of the scattering points of
two extended targets were extracted and used to classify the coincident points (as shown
in Figure 10a). The LT method was then implemented for distance and conjugate phase
tracking, with the tracking results presented in Figure 10b. In this figure, the black lines and
red lines indicate the tracks of target 1 and target 2, while target 1 consists of three strong
scattering points (1-1, 1-2, 1-3) and target 2 consists of two strong scattering points (2-1,
2-2). The conjugate phases were transformed into velocities, with the average velocities of
target 1 and target 2 being−0.03 m/s and 1.56 m/s, respectively. The average velocity of the
vessel scattering points was nearly zero, which agrees with its anchored state. The average
velocity of small ships is in accordance with the values calculated from the translation in
the range domain. In addition, the small ships showed shorter motion periods and larger
motion amplitudes than the vessel, which is attributed to their lower mass. Consequently,
the proposed method enabled us to successfully track the micro-motion of the extended
marine targets when the targets overlapped in the range dimension of the radar echo.
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(a)

Independent points

Coincident points

Figure 10. The experimental results of the proposed MDCM-LT algorithm. (a) The coincident points
differentiated through the MDCM-based measurement partitioning method. (b) The tracking results
derived through the LT algorithm.

5. Conclusions

In this paper, we proposed a MDCM-LT algorithm for extracting the trajectories of
rigid marine targets from radar echoes. Using the proposed method, we extracted the high-
precision micro-motion trajectories of overlapping targets on the wavelength scale. The LT
took advantage of the motion association within rigid extended targets to improve the
tracking performance. Additionally, the MDCM method offers a novel approach to classify
overlapping extended targets, even when they have similar translational velocities. This
approach could potentially be used for target classification in complex marine conditions,
indicating potential avenues for future research in this field.
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