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Abstract: Direct measurement of electric currents can be prevented by poor accessibility or prohibitive
technical conditions. In such cases, magnetic sensors can be used to measure the field in regions
adjacent to the sources, and the measured data then can be used to estimate source currents. Unfortu-
nately, this is classified as an Electromagnetic Inverse Problem (EIP), and data from sensors must be
cautiously treated to obtain meaningful current measurements. The usual approach requires using
suited regularization schemes. On the other hand, behavioral approaches are recently spreading for
this class of problems. The reconstructed model is not obliged to follow the physics equations, and
this implies approximations which must be accurately controlled, especially if aiming to reconstruct
an inverse model from examples. In this paper, a systematic study of the role of different learning
parameters (or rules) on the (re-)construction of an EIP model is proposed, in comparison with more
assessed regularization techniques. Attention is particularly devoted to linear EIPs, and in this class, a
benchmark problem is used to illustrate in practice the results. It is shown that, by applying classical
regularization methods and analogous correcting actions in behavioral models, similar results can
be obtained. Both classical methodologies and neural approaches are described and compared in
the paper.

Keywords: electromagnetic inverse problems; regularization; machine learning; neural networks;
measurement uncertainty

1. Introduction

Current measurement in aerial power lines, in winding packs for high-field magnets,
or in plasmas for industry applications cannot be achieved easily using standard sensors,
due to poor accessibility of conductors (e.g., for aerial lines) or to demanding technical is-
sues (e.g., in high field magnets supply), or to harsh environment (e.g., in high temperature
plasmas). As a matter of fact, in the proposed examples, not only the total current ampli-
tude but also frequently the current distribution inside the support region (the different
conductors in the aerial lines and in high field magnets or the plasma column itself in the
latter case) is required. In such cases, the concept of measurement must be understood in a
broader sense, and suitable current distribution sensors should be introduced as a combina-
tion of magnetic measurements and suited mathematical treatment to cope with the inverse
problems of reconstructing current data from magnetic field sensors. The general purpose
of the paper is twofold: on the one hand, to provide an overview of effective methods for
inverting data from field sensors in order to identify the current distribution and, on the
other hand, to test them in a comparative way against a well-known benchmark problem.

The need for these methods is believed to be important because the underlying inverse
problem is ill-posed, leading to spurious solutions. The ultimate goal is to pave the way
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for a virtual sensor system, i.e., a numerical procedure that could help both the current
reconstruction, given a set of measurements, and the current source synthesis, given a set
of specification on the field distribution in a region of interest.

Recently, many research areas have taken advantage of the potential offered by behav-
ioral models based on machine learning (ML) or (deep) neural networks (DNN) [1,2]. In
fact, recent works on the DNN-assisted analysis of electromagnetic (EM) field computation
problems showed the promising potential of convolutional neural networks (CNN) and ML
tools [3–11]. A comprehensive review of recent works on ML for the design optimization
of electromagnetic devices can be found in [4], where the growing interest of the commu-
nity is clearly evidenced. Some works adopted ML or DNN models to predict the key
performance indicators of electrical machines [5–7], whilst others focused on topology
optimization [8–11].

The main appeal of ML or DNN in dealing with inverse problems is their capability
of achieving efficient solutions from experiential knowledge rather than mathematical
formulations. On the other hand, such models do not always grant accuracy. A combined
use with more classical approaches can be pursued to improve overall performance.

Note that the data used to train the ML or DNN models are inherently bidirectional,
and the role of inputs and outputs can be, up to a certain level, interchanged, training
the model to directly identify materials, geometries, or sources from measurements of
electromagnetic fields. This approach would allow the resolution of inverse problems
in much shorter times than by using classical methods, especially when endowed with
iterative schemes.

To ease reading, it is fruitful to provide here a definition of inverse problems in terms
of the reconstruction of system characteristics, e.g., its inner structure, from observed or
desired data. These problems appear in various applications, such as medical imaging with
X-rays [12] or other electromagnetic sources [13]. Image processing is the best-known appli-
cation of behavioral approaches to inverse problems. To cite just a few examples, classical
DNNs are compared in [14] with classical sparse reconstruction algorithms, while several
CNNs are presented in [15] for medical applications of magnetic resonance imaging. Other
possible approaches include recurrent neural networks (where node-connecting weights
form a directed graph) and generative adversarial networks (two networks competing into
a sort of game [13] each to achieve a different objective in the data processing, regularizing
in this way the overall behavior).

In [16], multilayer perceptron (MLP) autoencoders are added to the previously listed
approaches. Quite notably, early attempts to solve inverse problems using fully connected
neural networks (FCNNs) are reported as early as 1992 [17]. Finally, [18] presents a tax-
onomy of inverse problems depending on the type of supervision and knowledge of the
corresponding direct problem.

Although numerous works introduce ML approaches and NN to solve direct problems
in electromagnetism, contributions addressing the inverse case are still rare, yet steadily
increasing. Since the inverse problems we are dealing with are classically formulated
as the minimization of a reconstruction error, a regularization of the problem (as raw
observed data are frequently compatible with multiple solutions) is needed. Usually, to
achieve the minimum error, iterative processes are used. While DNN can provide a solution
in a single step, when properly trained, much care must be given to the way behavioral
approaches regularize the problem. As a matter of fact, the DNN proposes the solution most
closely corresponding to the observed data among those considered in the training step.
Consequently, DNN does provide an inherent regularization, ruled by the construction of
the learning set and by the teaching algorithm: this point needs further investigation in the
viewpoint of authors.

In this paper, we first identify the characteristics of various Electromagnetic Inverse
Problems (EIPs) usually found in practical cases. Then, we investigate different possible
ML and NN approaches to the resolution of the EIP, with particular reference to the bi-
directionality of the approach, i.e., to the possibility of training the model by changing the
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role of input and output of the direct problems, obtaining a straightforward resolution of
the inverse problem.

In the first section, we provide a synthetic description of the direct problem we use in
the paper and introduce the relevant inverse problem and its mathematical characteristics.
The considered EIP is a current synthesis problem: examples of this class being the recon-
struction of current distributions from external magnetic measurements, as cited above,
or the optimal choice of currents to generate a given field distribution. In the following
section, we briefly discuss the classical regularization methods used to allow the resolution
of EIPs. Then, we present a short review of available behavioral approaches, together with
the numerical techniques used to improve their performance. Finally, we test the proposed
schemes on the benchmark problem, which, albeit simple in its scheme, does show all the
problems usually faced in more complex cases. To the best of our knowledge, this is the
first attempt to assess the inherent regularization capabilities of ML and NN approaches to
EIP and to make a comparison between the characteristics of such models and the more
classical regularization strategies usually adopted in the resolution of EIP.

2. Materials and Methods
2.1. Direct and Inverse Electromagnetic (Source) Problems

As described above, data-based models require massive amounts of data in the training
step. In the class of problems considered here, such data are related to the measurements
of magnetic fields and their sources. To focus on the background theoretical aspects of
this problem, we preferred in this paper to use numerically simulated data. In particular,
we adopted as a simple example the computation of the magnetic field H in free space
generated by a set of currents J flowing in conductors with known geometry Ωs (Figure 1).
Without any pretense of generality, we provide in this section a synthetic description of the
mathematical formulation we adopt in the paper for the computation of the magnetic field.
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Figure 1. A schematic layout of the source domain Ωs and of the (simulated) field sensors (an example
being represented by the blue vector H(rf)).

In a homogenous domain, the equation governing the link between current distribu-
tion and magnetic field is given by the Biot–Savart integral:

H(rf) =
1

4π

∫
Ωs

J(rs)× (rf − rs)

|rf − rs|3
dΩs (1)

where H is the magnetic field, rf is the position vector of the field points (the sensors),
rs ∈ Ωs is the source point considered in the integration process, J is the source current
density, assumed known in the direct problem, and Ωs is the source region. We assume
that the field is to be computed externally to Ωs, to avoid convergence issues. When J is
assigned and H is unknown, a direct problem arises.

Specifically, to formulate the direct problem in a concise yet explicative form, we
can write:

H = H(J; rf, Ωs; Ωmat; Ωcnd) (2)
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where H is usually an integral operator, such as (1). In (2), J represents the input data, while
H represents the output. The dependence on the current density map J, the field point(s)
rf (the underbar sign “_” indicating an array of points), and the source volume Ωs have
been highlighted. The formulation (2) is general enough to allow the presence of magnetic
or conducting material regions, indicated by Ωmat and Ωcnd, respectively, but neglected in
this analysis for the sake of simplicity; in addition, we will assume that all materials behave
linearly with respect to the current–field relationships. The current material support is
known and fixed, and the current is constant, thus allowing a magnetostatic formulation.

Let us now flip our point of view and attempt to formulate the problem of looking
for an unknown current J from a given field map H outside the source regions, which is
known as the inverse (source) problem. In this case, we introduce the inverse operator:

J = H−1(H; rf, Ωs) (3)

Equation (3) describes a first type (inhomogeneous) Fredholm equation, generally
expressed as:

g =
∫

Ωs
K f dΩs (4)

where g represents the data of the problem, f is the unknown, and K is called the kernel of
the equation. The possibility of solving the inverse source problem depends on K, on the
data space (from now on, named Y), and on the solutions space (named X from now on).
Let us recall here that the inverse operator H−1 exists if and only if H is bijective, that is:

∀H ∈H(X) ⊂ Y, ∃! J ∈ X
∣∣∣H−1(J) = H (5)

and
H(X) = Y (6)

The set H(X) is known as the rank of the operator. Unfortunately, the plain existence of
an operator H−1 is not enough for H to be invertible, since the solution can be not unique.
It is possible to state that a linear operator H is invertible if it has a bounded inverse.

We will use the additional statement that a compact linear operator H admits a
bounded inverse H−1 if its rank, H(X), has a finite dimension. Thus, as a conclusion, we
can state that, to have a stable solution, we need H−1 to be a linear, compact operator, and
its rank (H−1(Y)) to be of finite dimension. Unicity also requires X to be of finite dimension.

Our operator H is an integral operator, defined by a kernel K, which, in the case we
are considering, is the fundamental solution of the magnetostatic problem as described
in (1). This implies:

(a) H is a linear operator;
(b) the kernel function is well-behaved (smooth, continuous, etc.), quadratically bounded,

and grants compactness to H. So, according to what was stated before, we only need
to constrain the data and solution spaces to have a finite dimension.

We usually have a discrete set of measurements, and we need to elaborate them
numerically. In order to distinguish the theoretical field H generated by J from the one
actually measured, which is affected by uncertainties and noise and generally known in
a (discrete) subset of points, we will indicate the array of available field measurements
as MH. In addition, from a practical point of view, current distribution can usually be
represented by a set of parameters, the most straightforward being the current amplitude in
the diverse conductors, but a different view can be the coefficients of current density map
in some representation bases. In any case, we will use the symbol I to indicate the solution
parameters array. Under the assumed linearity hypothesis, the discrete nature of both
sources and measurements allows one to postulate the existence of a matrix transforming
the former into the latter. This matrix is usually called the lead field matrix, and we will be
indicating it by the symbol A. In the example problem we are considering, the elements
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amn of A can be computed by evaluating the Biot–Savart integral (1) on the n-th conductor
Ωn in the m-th field point rm.

Having achieved discrete finite-dimensional data space Y and solutions space X, we
have demonstrated that the problem admits a unique solution, but this does not yet grant
well-posedness since the solution may depend not smoothly on data. If this is the case (as
it usually is), we must be aware of the impact of noise and approximation and select the
best discrete approach. We must, in any case, keep in mind that a problem in the resolution
process usually is not a consequence of lack of data, but rather a consequence of the nature
of the operator or a consequence of a wrong choice of data and solution spaces.

2.2. Regularization Methods: A Review

The correct approach to obtain solution uniqueness is to adopt regularization methods.
In this section, we present a comparative review of some among the best-known regular-
ization methods and their application to the proposed current identification problem. We
consider the following schemes:

1. Classical (direct) methods: Tikhonov method, Truncated SVD, and ν-Method;
2. Statistical methods: Linear Regression, linear fit with Principal Component Analysis,

and Elastic Net Regularization.

The classical and statistical methods considered here are based on the properties of
the lead field matrix A, computed using the Finite Element Method (FEM). Both classes
of methods apply as well in the case of lead field matrix recovered from a purposedly
designed set of measurements.

2.2.1. Direct Methods

The classical linear inverse problem I = A−1MH (where A−1 must be understood as
the Moore–Penrose pseudo-inverse) has been tackled using many different approaches for
its regularization. A non-exhaustive list may include the Tikhonov approach (TA, [19]),
the Truncated Singular Value Decomposition (T-SVD, [19]), and the Discrepancy Principle
(DP, [20]). A new group of methods, collectively known as iteration-based, has started to be
considered more recently. Examples are the ν-Method (νM, [21]) and the ART method [22].
A broader list of possible regularization schemes can be found in [23,24]. We just briefly
describe here those that are considered in the following for the comparison with the
behavioral models.

• TA: The Tikhonov approach is probably the most diffused counter measure to the
ill-posed nature of inverse problems. In the notation adopted here, the solution process
of the (regularized) inverse problem can be cast as:

min
I

(
‖AI−MH‖Y + λ‖I‖X

)
(7)

where ‖·‖Y represents the 2-norm of the measurements vector, ‖·‖X represents the 2-
norm of the parameters vector, and λ is the regularization parameter. The performance
of the TA depends on the parameter λ, balancing the model error and the solution
norm. The L-curve approach [25], or alternatively the generalized cross validation
method [26], are the most adopted strategies to choose its value.

• T-SVD: The Truncated Singular Value Decomposition is based on the representation of
A in terms of its left and right singular vectors:

A =
N

∑
i=1

siuiv
T
i (8)

where ui and vi are orthonormal vectors in the currents space and in the measurements
space, respectively; si are the singular values of A, in descending order; and N is the
matrix rank. To obtain a (rank-deficient) well-conditioned matrix An, it is possible
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to truncate the summation to an index n < N. The pseudo-inverse A−1
n provides a

(regularized) solution: In = A−1
n MH. The smaller is n, the smoother but less detailed

will be the solution.
• νM: It can be shown that iterative algorithms (e.g., conjugate gradient) allow smoother

components of the solution of the linear problem AI−MH to converge earlier. The
ν-Method leverages this property to regularize the resolution process by stopping the
iterations before complete convergence. The role of a regularizing parameter in this
case is played by the number of iterations.

2.2.2. Statistical Approaches

Statistical approaches can be used to solve inverse problems when a dataset of corre-
lated source and measurement values is available. Taking inspiration from experimental
physics, we can extract some relationship (e.g., a linear interpolation) between the outputs,
in our case, magnetic fields, and the inputs, in our case, the currents, fitting the model to
the data. Under suitable hypothesis on the distribution of the data and on the underlying
actual model, as presented in Section 2, the fitted model will be able to provide reliable
estimates of the output as well as for unseen inputs. Note that also in the case of fitted
models, the ill-conditioned nature of the underlying problem amplifies data nuisances,
and some regularizing techniques should be applied. We will briefly analyze here a few
well-known interpolation approaches.

• MLR: Multi-Linear Regression adopts linear regression model from multiple data mk
(k = 1, 2, . . . , Nmeas) to multiple output Ii, expressed by:

Ii = βi0 + ∑
k=1...Nmeas

βikmk + εi i = 1, 2, . . . Ncurr (9)

whereβi0 andβik k = 1 . . . Nmeas are the interpolation coefficients, and εi is the residual
error, due to additive white Gaussian measurement noise, for example. Currents Ii are
fitted independently. Least squares minimization is used to estimate the fit coefficients.
Thanks to the assumptions on the noise, the coefficients also maximize the likelihood
of the prediction vector.

• LPCA: Linear fit with Principal Component Analysis starts from the assumption that
the information about the (required) field map is highly redundant, so any regression
model should probably address such an issue. This is easily verified from the lead
field matrix analysis and from the correlation analysis of the field measurement. In
such cases, PCA can be used to extract the most effective regressors. This helps in
regularizing the problem, as PCA removes any redundancy among input data. The
elements of the orthogonal basis made of principal components can be ranked in a
decreasing order of variance over the data set, and reduced models explaining any
desired level of data variance can be obtained.

• ENR: Elastic Net Regularization is a regularization technique minimizing regression
coefficients of the less relevant variables. For each reconstructed variable (currents, in
our example), the ENR technique solves the following minimization problem to find
the set of interpolation coefficients β0, βk, k = 1 . . . Nmeas [27]:

{
β0, β

}
=

 1
2NSamples

∑
l=1,NSamples

(
Il − β0 −MT

l β
)2

+ λPα

(
β
) (10)

where α ∈]0, 1[, λ is a nonnegative real number, and Pα

(
β
)
= (1−α)

2 ‖β‖2
2
+ α‖β‖

1
.

Note that ENR for α = 1 reduces to lasso regularization, while for α→ 0, it approaches
ridge regression.
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2.3. Machine Learning and Neural Network Models for Electromagnetic Inverse Problems

The data-driven statistical approaches described in Section 2.2.1, i.e., learning a be-
havioral model using an available collection of paired input–output quantities, is the basic
operating principle of supervised learning algorithms such as NN and other ML algo-
rithms. The use of ML is a natural choice when the behavior of the model is generally
too complex to be efficiently described analytically, or perfect knowledge of physical pa-
rameters is lacking, and this is the case in many inverse and direct problems involved in
electromagnetic applications.

The success of NN and other algorithms, such as support vector machines, is due
mainly to two factors: they are universal approximators, and their generalization and
regularization capabilities can be controlled in several different ways. For example, regular-
ization can be improved by diminishing the number of neurons in the hidden layer by early
stopping of the training (which is equivalent to νM or ART regularization techniques), by
using a regularization term in the loss function that penalizes the presence of large neural
weights (which is in a sense similar to the TA), or by the so-called dropout method that
randomly removes a certain number of neural connections.

A further, relevant consideration exists regarding the dimensionality of the input and
output vectors. In fact, when the number of outputs exceeds the number of inputs, we
are asking the model to generate redundant information possibly not present in the input
itself, and this usually leads to poor performance of training algorithms. When using
classical approaches, standard countermeasures include the adoption of a regularization
technique. In the case of ML or NN, other possibilities are available. As a matter of fact,
it would be preferable to apply a dimensionality reduction technique to the output data
before training the model (either ML or NN) or to add some a priori information, as in the
case of Physics-Informed Networks [28].

On the other hand, when the number of inputs is greater than the number of outputs,
NNs perform quite satisfactorily. However, if the number of inputs is very high or there
are many linearly dependent inputs, the neural model can be affected by the course of
dimensionality. In this case, a dimensionality reduction of the inputs is again recommended.
As a result, in many cases, it is necessary to exploit the methods for reducing dimensionality,
which can be linear, such as PCA, or nonlinear, such as autoencoders [1]. Some models,
such as DNN, can deal directly with high dimensional inputs, avoiding the need to reduce
the number of features. In any case, a preliminary PCA is usually very helpful and adds
valuable knowledge, revealing the directions along which data points are most distributed
and how much information is lost when cutting negligible directions. In addition, in many
cases, PCA is strongly related to mathematical features of the inputs data, which can be
directly linked to a physical behavior of the system.

In the remainder of the paper, the authors use a benchmark problem, described in
Section 3, to test different data-driven approaches to solve the EIP. Three different EIP
solution procedures are implemented and briefly described as follows:

2.3.1. EIP Using Neural Networks and Deep Learning

In this contribution, the forward operators consist of a dataset of Finite Element
Models (FEMs) generating lead field matrices A for different choices of the geometrical
quantities. Then, a PCA is applied to represent the A matrices in a lower-dimension feature
space so that the original matrix can be well reconstructed from a reduced set of principal
components. Then, we train an NN to predict the reduced set of principal components
given the geometry of the system. The corresponding Lead Field (LF) full matrix is then
reconstructed from the predicted principal components. Subsequently, the EIP can be
solved by means of one of the above-mentioned regularization methods. In particular, the
pseudo-inverse is computed by means the T-SVD approach. A scheme of this method is
shown in Figure 2.
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Figure 2. Block diagram of the method based on Neural Networks and Deep Learning.

The proposed method, which combines a CNN with an inversion technique, is very
general because it is geometry-free. In fact, the network learns the equations, so it is able to
generalize to new geometries, enabling a rapid solution of the synthesis problem.

With reference to this approach, a further remark can be made. It is common practice
in many applications to solve an EIP by implementing an optimization procedure: the
direct problem (from known sources and geometry to the measured field values) is solved
iteratively, allowing the calculation of a fitness function; sources (and geometry) are updated
to reach the desired value of the fitness function. At the end of the procedure, the resulting
model is solicited with a set of (desired) field measurements, and a set of sources are
obtained. Mathematically, we first obtain a model HM of the forward operator H, and the
optimization algorithm searches for the best currents I, minimizing an objective function of
the form ‖HM(I)−MH‖

2.
This implicit approach may find accurate results, but it is computationally expensive;

for instance, in electromagnetics, HM(I) is often evaluated by a numerical procedure (i.e.,
Finite Element Method, Boundary Element Methods, Integral Methods, etc.). The optimiza-
tion phase is not relevant for the present comparative study, and it will be addressed in
future works. However, ML can also play a fundamental role in this case; in particular, the
ML-based surrogate model of H that can be obtained with the NN-LF approach can be
used to solve the direct problem at each iteration, resulting in a dramatic reduction of the
overall computational time.

Alternatively, without an explicit use of the lead field matrix, a direct estimation
H−1

ML of the inverse operator H−1 is obtained using different ML paradigms. In partic-
ular, one implementation of H−1

ML is obtained by training shallow neural networks with
sigmoidal activation function, using different learning approaches. A second ML approach
is considered, and a deep neural network, i.e., composed of multiple layers, is trained
and tested.

Learning the inverse operator by training an NN allows us to exploit the different
and powerful regularization approaches usually adopted in NN training steps, such as
early stopping with a validation set or Bayesian regularization. Moreover, the shallow fully
connected sigmoidal NN being a universal approximator, it is likely to correctly learn and
represent the inverse model from the training data. A deep, multi-layer neural network is
an alternative approach that is often heuristically found to outperform the shallow neural
network, also allowing us to use a combination of linear and nonlinear layers in order to
take into account previous knowledge on the model that generated the dataset.

2.3.2. EIP by Linear Regression

This approach consists of learning an estimate H−1
L of the inverse operator H−1 from

the data to predict the currents I from the magnetic measurements MH. We denote this



Sensors 2023, 23, 3832 9 of 17

approach as the explicit inverse model. The main advantage of this approach is that,
once the model is trained, it can perform the inversion in an extremely short time. Of
course, a training dataset containing Nsamples observations is necessary. One disadvantage
is that if the geometry of the system changes, the model is no longer valid: a new training
should be performed on a newly generated dataset. In particular, the use of Standard
Regression Algorithm (SRA), Robust Regression Approaches (RRA), and Truncated Sin-
gular Value Decomposition (T-SVD) pseudo-inverse is investigated and applied to the
benchmark problem.

3. The Benchmark Problem

In this section, the benchmark problem used to numerically evaluate the performances
of the different approaches mentioned above is described [29,30].

3.1. The Forward Problem

A multi-turn air-cored winding is considered (Figure 3). The winding, which is
composed of 2Ncurr independent turns, is suitable for in vitro experiments of magneto-
fluid hyperthermia. The geometry is axially symmetric, so a Poloidal (r, θ, z) frame is
adopted, and θ variations are considered negligible (see Figure 1 for a 3D sketch of the
geometry). The direct problem, i.e., computing the magnetic field H (or, in our benchmark,
the flux density B), given the DC source currents I and the coil geometry, is defined as an
axisymmetric system in static conditions. No polarizable magnetic materials are present,
and the problem can be considered linear. Notwithstanding the absence of ferromagnetic
materials, due to the hollow shape of the conductors, the forward field analysis is better
approached by the FEM method.
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3.2. The Current Identification (or Synthesis) Problem

The aim of the problem is to select the Ncurr currents to generate a uniform flux density
map with a prescribed value B0, uniform within a region adjacent to the symmetry plane
z = 0 inside the coils and with an amplitude as small as possible outside the winding.
In such a situation, it is reasonable to limit the search for the best current distribution to
configurations that are symmetric with respect to the symmetry plane, thus reducing the
unknown currents to just Ncurr = 10. In order to evaluate the field uniformity in the inner
region of interest (ROI), the magnitude of the flux density field B is sampled over 30 field
points, evenly spaced on the boundary of the ROI (lines S1, S2, and S3 in Figure 3); moreover,
the field is sampled on 10 points along the outer line γ. All 40 sensors are considered to
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be point-wise and ideal probes. Axial flux density components are measured only on S3
and γ, so the total number of considered measurements is Nmeas = 60. More details on the
benchmark problem geometry can be found in [29].

Starting from this background, the current identification problem is defined as:

Find the current distribution I that minimizes the discrepancy between the trial
flux density B(r,z) and the measured flux density B0(r,z) at the sensors location

where B0 = (Br0, Bz0); Br0 = 0 and Bz0 = K along S1 and S2; Bz0 = K along S3; Bz0 = 0 along γ;
K represents the desired field level (2.00 mT is assumed in the present work), and advantage
is taken from symmetry being Br0 = 0 on the axis r = 0.

Dataset Generation

Figure 4 shows the geometrical details of the three datasets: in the first one, the 10 coils
have the same radius (cylinder), in the second one, the radius linearly increases with
increasing height (diverging cylinder), and in the last one, the radius linearly decreases
with increasing height (converging cylinder). Each subfigure of Figure 3 shows the first
and the last cylinders of the dataset; the other cases are characterized by intermediate
values of the x-coordinate of each conductor. For each dataset, Nsamples = 401 different cases
(also called instances) were generated, and, for each instance, the corresponding lead field
matrix was saved. Consequently, we have a collection of lead field matrices A of dimension
Ncur × Nmeas = 10× 60.
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4. Results
4.1. Case Studies

Given the datasets described in the previous section, generated by the simulation of
the benchmark (linear) problem, the different approaches recalled in Section 2 are here
developed and discussed in detail.

4.1.1. EIP by the Approximation of the Lead Field Matrix

The aim is to obtain a surrogate model of the lead field matrix, and for the reasons
mentioned in previous sections, we first try to investigate the possibility of representing
the A matrices with a lower number of features using PCA.

Firstly, we reshape the 60 × 10 matrices to a one-dimensional vector with 600 values
by row stacking. All the collected matrices are then represented by a dataset matrix of
dimension 401 × 600, where rows are observations and columns are variables. By applying
PCA to such a matrix, we calculate that 99.99% of the total variance can be explained
using the first three principal components for all of the three datasets above. A good data
reconstruction capability is then expected using a low number of principal components.

To evaluate the reconstruction error as a function of the principal components, we first
split the dataset into 80% training and 20% validation (we do not perform the test here,
since we are interested just in the characteristics of the learning phase). We learn the PCA
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representation using the training set only, and we apply the learned PCA projection to the
validation data. Then, we use a reduced number of principal components to reconstruct
the original A matrices of the validation set, and we calculate the reconstruction error AE
as follows:

AE =

〈
max

(∣∣∣Â−At

∣∣∣)〉〈
max

(∣∣∣At

∣∣∣)〉 % (11)

where Â is the predicted matrix, At is the target matrix, max refers to the elements of each
matrix (or difference matrix) in the test set, and the average operator < > acts over the
validation data set composed of Ntest samples of the coil distribution. Figure 5 shows the
trend of the reconstruction error AE with respect to the number of principal components
for Dataset 1. Similar figures are obtained for Datasets 2 and 3 as well.
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With three principal components (PCs), the maximum absolute error is below the
0.85% of the mean absolute field value for Datasets 1 and 2, while it is below 0.5% for
Dataset 3. At this point, we can efficiently represent the A matrices in a lower-dimensional
space using just three or four principal components.

A shallow NN with sigmoidal activation functions was trained to predict the first
3 principal components of the lead field matrix A given as the input vector of the corre-
sponding 10 radii. We used the backpropagation algorithm based on Bayesian Regular-
ization, which allows fast convergence and avoids overfitting [31]. To select the number
of neurons in the hidden layer, the trained NN was validated over validation data. In
particular, validation errors are averaged over 10 runs with shuffled data. The predicted
three principal components values, obtained as the output of the neural network, were
used to reconstruct the corresponding A matrix, and we calculated the reconstruction error
as previously defined, obtaining the result shown in Figure 6.

When the number of neurons is greater or equal to three, the reconstructed ma-
trix has a maximum error within the 2.5% of the average value of the target matrix for
Datasets 1 and 2, while the error is 2.0% for Dataset 3.

As a final comment, the reconstruction of the lead field matrices (direct problem)
did not pose difficult learning tasks either for the statistical approaches using PCA or the
NN approaches.

For solving the inverse problem, the T-SVD method considering the first eight singular
values is applied for inverting the lead field matrix A. In particular, a comparison between
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the currents reconstructed by means of the At matrix obtained with the FEM and the Â
matrix predicted by the NN is made in Figure 7 for a selection of test cases.
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Figure 7. Currents from T-SVD method (8 singular values retained) applied to At (blue dot) versus
currents from Â (red dot): cylinder case (Dataset 1): up, diverging cylinder (Dataset 2): middle,
converging cylinder (Dataset 3): down.

In Figure 7 and in the other similar figures, we represented the 10 reconstructed
currents in a subset of cases from the dataset using dots with different colors. Comparison
to true values is also reported when it is useful.

If no regularization method is applied, quite large reconstruction error can be observed.
To compare regularized and non-regularized results, we show the average reconstruction
errors in Table 1.
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Table 1. Reconstruction errors for different approaches.

A−1

Moore–
Penrose
Pseudo-
Inverse

T-SVD
Threshold

10−7

T-SVD
Threshold

10−4

Standard
Regression

(SRA)

Robust
Regression

(RRA on
Noisy
Data)

Shallow
NN

Shallow
NN with
Bayesian
Training

Deep NN
with

Linear
Layer

Deep NN
with

Linear
Layer on

Noisy
Data

IAE - 99.3% 100.0% 320.0% 99.7% - - -
CEtest 2065.0% 63.1% 91.8% 4165.5% 59.2% 7169.8% 145.4% 612.4% 64.1%
CEtrain 0.0% 53.6% 91.8% 0.0% 59.2% 0.0% 87.4% 28.3% 56.8%

4.1.2. EIP Using Linear Regression

Reconstructing directly the inverse matrix A−1 requires specific measures to regularize
the problem. For the sake of conciseness, the numerical results shown here are only
relative to the case with equal radii (Dataset 1). The first tests have been performed using
Standard Regression Algorithm (SRA), corresponding to the MLR technique in Section 2.
SRA achieved quite poor results, producing a matrix Â−1

SRA with just 10 non-vanishing
columns, with a rank equal to 10, coherent with the rank of the true lead field matrix. The
thusly obtained matrix Â−1

SRA is capable of interpolating training data, but its generalization
capabilities, that is, the capability of providing results (currents from measurements) for
examples not included in the data used for regression, are quite poor. Using Robust
Regression Approaches (RRA) based on ENR with α = 1 (thus minimizing the norm of the
output together with the interpolation error on noiseless data from the magnetic sensors),
we obtained a matrix estimate Â−1

RRA providing a good approximation to the Moore–Penrose
pseudo-inverse A−1. On the other hand, when testing the reconstructed matrices on noisy

validation data, poor results are obtained for Â−1
RRA, similar to those achieved by A−1. As

a further possibility, we trained a linear model using RRA and noisy data. Generating
repeated instances of measurements with Additive White Gaussian Noise (std. deviation
equal to 0.1% of full scale) and then averaging, the validation errors (on different subset
of noisy examples) matched those obtained using a T-SVD pseudo-inverse Â−1

PINV , with
6 singular modes (out of the possible 10).

Results in terms of (inverse) matrix reconstruction error IAE are reported in Table 1
for different approaches, where possible. Table 1 also reports a similarly defined current
reconstruction error (CE):

CEvalidation =

〈
max

(∣∣Î− It
∣∣)〉

validation
Imax

% (12)

where Î is the predicted currents array, It is the target current array, and Imax is the maximum
allowed current, 100 A in our case. A similar error index CEtrain is defined using the training
set rather than the validation set in order to assess the generalization capabilities of the
different approaches. To keep results comparable, Table 1 reports also the errors in the case
of NN-based approaches. Note that in the case of NN, it is not possible to define the matrix
reconstruction error, since the networks create their own model. In addition to showing the
generalization capability of the RRA on noisy data on actual currents, Figure 8 reports a
few examples of reconstructed currents extracted from validation data.

Note that the problem is linear; hence, the relative error of the output is given by the
relative error of input times the conditioning number of the matrix. If no regularization
method is applied, even a small error in the data produces a large error in the estimates.

Quite interesting is the case of training an RRA model using data where only linear
current distributions are allowed. In this case, the matrix Â−1

RRA of the trained model has
just two non-vanishing columns (which complies with the rank in the data matrix). When
validating the model on the validation noisy data (with uniformly distributed currents),
the forecast currents resemble those obtained using a T-SVD pseudo-inverse with just two
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singular modes retained (see Figure 9). This result shows how strongly the reconstruction
capability depends on the choice of examples in the training set, similar to how the use of
T-SVD in classical approaches produces results strongly affected by the choice of truncation
level, limiting the number of retained matrix singular vectors.
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kept. Dashed lines connecting the values highlight the trend of the currents with respect to the
conductor index.
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4.1.3. EIP Using Neural Networks and Deep Learning

The first attempt was carried out using a shallow NN with sigmoidal activation func-
tions. Using “noiseless” data with the standard Levenberg–Marquardt backpropagation
algorithm [32] produces an NN with poor generalization capabilities, similar to standard
regression models or to Moore–Penrose pseudo-inverse without truncation (see Table 1).
To improve the NN generalization capability, a Bayesian learning approach was tested.
The Bayesian approach minimizes a linear combination of squared errors and weights,
modifying the linear combination to achieve good generalization capability at the end
of the training phase [33]. In addition, multiple shallow NNs were trained on different
instances of the same noisy learning data set (with the same AWGN as in the RRA case).
Results were then averaged to achieve the final, robust shallow NN model.

The high correlation among input data (measurements) suggests using a Deep NN,
i.e., a multilayer network with a first layer made of linear neurons, to “learn” a data
compression rule. Using 10 neurons in the first layer forces the DNN to look for the most
effective 10 linear combinations of measurements, achieving good results already with
10 neurons in the second, sigmoidal layer. This approach reduces the number of weights to
train, and the process is faster. Results are reported in Table 1 and in Figure 10 on a few
examples of the validation set to better show the actual quality of reconstructed currents.
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red: reconstructions using a shallow NN trained with Bayesian rule, on noisy data; and yellow:
reconstructions using a DNN with a first linear layer to encode data (60 inputs, 10 hidden neurons)
and a second sigmoidal layer (from 10 hidden to 10 output neurons).

5. Discussion and Conclusions

The problem faced here, although showing a simple structure to ease comprehen-
sion and reduce computational burden, shows all the pitfalls of electromagnetic inverse
problems. In our opinion, the difficulties in the resolution of the problem using classical
approaches are intrinsic in their mathematical structures, as discussed in Section 2, and
cannot be overcome by a plain, straightforward application of machine learning. This
point has been demonstrated, in our opinion, by the poor performance of simple, non-
regularized regression or neural approaches. On the other hand, regularization schemes
are available also for the latter, so we compared regularized neural networks with similar
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classical schemes, showing how NNs have the capability of extracting the underlaying
relationships quite naturally, with minimal tailoring of learning schemes. This is not al-
ways the case for classical approach, a typical example being the choice of the truncation
threshold required in the T-SVD approach or the choice of the regularization parameter in
the Tikhonov regularization.

In our opinion, many similarities can be found between some classical regularizations
and the way neural networks need to be trained to achieve satisfactory results. As an
example, the νM classical approach aims to prevent the overfitting of the dataset, using the
jargon of neural network practitioners. As a second example, the Bayesian learning aims to
minimize the weights of the network, thus bearing some similarities with the Tikhonov reg-
ularization. Conversely, the intrinsic feature of repeated examples presentation, eventually
in varying order, gives to the training process of neural networks an effective capability
of dealing with noisy, imprecise data, which is not a characteristic of any classical algo-
rithm, although it can be transferred to regression algorithms by dividing the data set
into smaller sets and fitting repeatedly on each of them. Note that while the handling of
ill-posedness in the classical approaches has been designed specifically for the resolution
of inverse problems and benefits from long-lasting experience for parameter tuning, the
countermeasures adopted to improve NN performance are rather general purpose ones,
and we are convinced that better results could be achieved by fine tuning their parameters.

As a conclusion, the adoption of machine learning and, more specifically, neural
networks, provides new tools for the resolution of (electromagnetic) inverse problems. The
underlaying ill-posed nature of these problems, nevertheless, must also be dealt with when
adopting data-based approaches. The main contribution of this paper, using a simple yet
illustrative benchmark problem, is the attempt to compare some of the classical well known
regularization schemes with some measures adopted in the training of machine learning or
neural model.

In our opinion, there are correspondences between many classical regularization
approaches and countermeasures used to allow NN to converge. A few were highlighted
in this paper, but we are convinced that many others can be found.
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