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Abstract: The article presents a novel idea of Interaction Quality Sensor (IQS), introduced in the
complete solution of Hybrid INTelligence (HINT) architecture for intelligent control systems. The
proposed system is designed to use and prioritize multiple information channels (speech, images,
videos) in order to optimize the information flow efficiency of interaction in HMI systems. The
proposed architecture is implemented and validated in a real-world application of training unskilled
workers—new employees (with lower competencies and/or a language barrier). With the help of the
HINT system, the man–machine communication information channels are deliberately chosen based
on IQS readouts to enable an untrained, inexperienced, foreign employee candidate to become a good
worker, while not requiring the presence of either an interpreter or an expert during training. The pro-
posed implementation is in line with the labor market trend, which displays significant fluctuations.
The HINT system is designed to activate human resources and support organizations/enterprises in
the effective assimilation of employees to the tasks performed on the production assembly line. The
market need of solving this noticeable problem was caused by a large migration of employees within
(and between) enterprises. The research results presented in the work show significant benefits of
the methods used, while supporting multilingualism and optimizing the preselection of information
channels.

Keywords: human–machine interaction; interaction quality sensor; industry 5.0; quality of work;
human resource; employee training; co-bots

1. Introduction

In the developing world of advanced technologies and constantly changing working
environment conditions, where time and quality of performed tasks and manufactured
products are especially valued, enterprises are forced to search for new means of competi-
tiveness. The advancement is made through the use of new technologies, created for the
needs of economic and flexible production while affecting the quality of work performed
also by newly hired employees with short work experience. Technical and organizational
solutions supported by new technologies created for the implementation of production
activities, the application of which is constantly being expanded, are a key element in the
development of enterprises that must adapt to the requirements of Industry 4.0 and in the
near future also to Industry 5.0.

The ever-changing reality and the evolving digitization of the industry force enter-
prises to transform toward the inclusion of new and visionary approaches [1,2]. New
approaches imply in turn opportunities for enterprises to improve the quality of work
organization and/or the selection of techniques that allow maintaining the continuity of
the supply chain, and thus, increase the competitiveness of a company [3,4].
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One of the foundations of Industry 5.0 is the co-existence and collaboration of men
and machines in a natural environment. Controlling and managing the man–machine col-
laboration process require sufficient methods and ways to be utilized. The authors propose
a novel Interaction Quality Sensor (IQS) integrated into the broader system fulfilling the
instruction supporting the HMI role in the production line environment. This collaboration
is expected to take place using natural communication, instead of specialized interfaces or
protocols, shifting the focus towards human-oriented, context-aware, adaptive systems [5].
With the progress of Artificial Intelligence (AI), as well as NLP (Natural Language Pro-
cessing), which is clearly seen in modern conversational {systems [6,7], the man–machine
collaboration becomes an urgent and promising trend in modern industry. Nevertheless,
despite recent significant advancements [8–11] in the field of Human–Computer Interaction
(HCI) (namely: the Amazon Echo available since 2015 [12–14], Microsoft Cortana massively
expanding in 2015 to numerous platforms [15], Google Speech announced in 2016, up-
graded in 2018 [16] and 2022 [17], Google Assistant announced in 2016 [18,19], Google Nest
introduced as Google Home also in 2016 [20–24], and the Apple Siri updated in 2017 [25,26])
and undoubtful progress in Artificial Intelligence and Machine Learning [27–30], conversa-
tional AI systems usually still tend to disappoint rather than to amaze their interlocutors
(and there are some specific reasons for that, already diagnosed and described [31]). In the
case of industrial solutions, an appropriate sensor network with insight into every aspect
of the man–machine communication with regard to its purpose is required (allowing later
to provide insight into the quality and efficiency of every stage of the process for a given
worker/trainee). In many cases, the introduction of new tools and technologies into an
enterprise ecosystem is associated with the need for a change, including expanding the
scope of duties of employees, changing their job position, or opening new job positions
focused on knowledge and sustainability [32]. However, intelligent digitization is not
about replacing employees with robots or other automatic systems, but about increasing
operational efficiency and work comfort by leveraging the importance of flawless and
natural man–machine interaction [33]. Appropriately selected tools and IT technology
ensure the improvement of the quality of employee workflows, increase the efficiency
of the work carried out, improve communication and information flow, and support the
development of the enterprise [34,35].

Currently, an increasingly popular way to optimize the work cycle in enterprises
and production plants is the use of new technologies and IT tools to support company
employees in their daily duties through the use of automation and robotization solutions.
Robotics makes it possible to transfer repetitive activities from human employees to robots
while allowing to shorten the overall time of process implementation and reducing costs
and the number of production defects [36]. Enterprises that want to maintain a good
position in the market and gain new contractors must strengthen their image, especially
with regard to future prospects [37]. The use of robots increases the production capacity of
enterprises, making them attractive partners in a competitive market. The possibilities of
using robots in enterprises are even wider, namely, they are currently extremely useful in
selected application fields, among others, in quality control processes [38]. The introduction
of robots in enterprises contributes to numerous significant benefits, including improved
customer service quality, greater motivation of employees to perform their work, as well
as a sense of effectively performed work and its optimization [39]. The lifecycle of an
enterprise assumes constant evolution toward positive financial income. Nowadays, when
the world struggles with pollution and energy price spikes, the life cycle also includes
lowering power consumption in the production process. Introducing new technologies
such as robotics and AI positively impacts green innovation [40,41].

Despite the popularity of the use of new technologies and the current degree of devel-
opment of robots, the problem of recruiting qualified employees is still an issue in many
enterprises [42]. Many companies and organizations are currently facing difficulties in find-
ing employees with the skills currently in demand [43,44]. Difficulties in acquiring qualified
employees may partially be a consequence of the competency mismatch of candidates on
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the market with the dynamically advancing technological capabilities, digitization, and the
evolving specificity and organization of many enterprises [45]. Moreover, the labor market
dynamics forces companies to be able to quickly train employees to adapt to production
and/or employment changes [46,47], and furthermore, the migration crisis [48–50], results
in a new requirement—to be able to create workplaces for foreign-speaking employees [51].
All this causes the search for solutions that may support the functioning of enterprises
without causing downtime in the execution of tasks. These challenges are met by new
technology that offers support and solutions. The current pace of enterprise adoption
of new technologies, artificial intelligence, robotics, and automation in the workplace is
strongly accelerating [52]. The whole range of opportunities related to new technologies is
changing. Artificial Intelligence, as well as robotics, open up new opportunities for many
areas of business operations [53], including the HR department [54–57].

Mitigating human resource shortages requires the entrepreneur to make difficult deci-
sions about delegating qualified employees to train new workers, whose integration with
the workplace environment and processes can itself become a long-term task, which carries
the risk of failure [58]. The training abilities of the senior staff directly affect not only the
success rate achieved, but also the newly established relationships with new employees,
and the level of adaptation of training to the skills and knowledge of a particular per-
son [59,60]. The number of quantified parameters affecting successful training in the above
case increases with the complexity of the activities performed at the workplace and the
possible level of knowledge absorption by a person per unit of time. The unavailability of
communication in the employee’s native language (and insufficient adjustment of training
methods and materials) is a serious barrier that is difficult to eliminate [61].

In the case of a classic approach (employee training without involving advanced IT
systems) to the management of the employee training process, the evaluation (assessing
the effectiveness of the teaching-learning process) and the prediction of their achieved
proficiency level are difficult to implement (mostly due to the lack of appropriate procedures
implementations, as well as reliable data) [62]. Nevertheless, new technologies based
on Machine Learning [57], predictive analytics [63], and Big Data [56] can significantly
improve employee onboarding processes within an organization [64,65]. Moreover, they
can also provide insight into the KPIs (Key Performance Indicators) of the implementation
process [66], which allows for systematic standardization of methods and teaching materials
used in training [67], and for adapting the information transfer process to the individual
predispositions of a particular individual (e.g., predominance of visual- or speech-based
form of information, the speed of information transfer, etc.) [68]. An additional noteworthy
aspect in the field of production engineering is the possibility of providing a training
stand able to take its parameters into account at the stage of simulating the influence
of the new employee on the production line operation. This will be possible with the
help of the Interaction Quality Sensor (IQS) proposed in this article, which introduces the
implementation of Hybrid INTelligence (HINT) architecture for intelligent control systems,
enclosing the prioritization of information channels and optimizing both the apprenticeship
of unskilled workers and the performance of employees.

Industry 5.0 builds on the previous industrial revolutions but focuses on integrating
new digital technologies to create an intelligent and flexible production system. Industry 5.0
aims to create an intelligent factory that is fully integrated and allows employees, machines,
and IT systems to collaborate in a more harmonious way. This integration can lead to
improved efficiency, reduced waste, and increased sustainability. The presented HINT
system follows this trend by implementing the proposed adaptive mechanism in the area
of information channels used in HMI. The HINT system uses multimedia information (e.g.,
speech, images, videos), as well as optional co-bot support, especially for applications with
foreign and/or unqualified employees.



Sensors 2023, 23, 3826 4 of 21

2. Materials and Methods

Production quality, often depicted by the technical quality of a product, seems to
be quite an intuitive term. However, the evaluation of employee training quality is not
trivial [69], and it may be not suitable for intelligent control of the training process unless it
is properly approached, defined, and measured. This ‘training quality’ can be perceived
as a result of (1) the training/teaching process (initial basic training as well as the master-
ing performed later) and (2) the personal predispositions of a particular employee, play
an essential role in the decision-making process of the HINT system algorithm relaying
especially on sensing capabilities of the IQS. The production line‘s sensors provide the
knowledge of the apprentice’s work quality [64] and enable adjusting the steering parame-
ters for HMI guidance delivery channels, conceivably due to the HINT system’s capability
of full integration into the factory processing event bus. Based on the available information,
the HINT system is designed to be able to distinguish alternate information channel sce-
narios and to utilize a control algorithm optimized with regard to a particular apprentice
and the situation. The IQS delivers the necessary data by comparing patterns of behavior
saved in the set of basic instructions against the behavior of the worker and expected
quality in advancements of current activity. The optimization process of selection of the
best-performing channel to the situation conditions was already briefly introduced in [64],
and presented by comparing it to the concept of Hanoi Towers. Meanwhile, the study
presented in this article refers to the real-world conditions of a local furniture factory and
the conclusions drawn from real-world use-case implementation and integration with an
existing quality control system, by enhancing the functionality of an existing apprentice
workstation with HMI instruments, and upgrading it to a quality- and process-related
research station. The factory was categorized as having: (a) medium complexity of opera-
tion producing wooden windows and doors for civil houses—manually assembled using
prefabricated parts and specialized tools, (b) a significant level of job quitting individuals
just after initial training, and (c) a long (unacceptable) time of training before reaching the
required level of self-sufficient proficiency at work.

An important part of the experiment was the customized HINT system software,
prepared and installed in the HMI workstation (see Section 2.4), providing work guid-
ance/instructions to novices in textual, vocal, and visual form (both static and moving
images)—in frames of a tutorial, especially considering preferences and the predispositions
of the individuals, while recording their choices and performance (language, menu nav-
igation, information channels choices, perception delay [70], assembly (execution) time,
etc.). In an emergency (when no further steps of assembly could be reached), there was a
possibility of a two-way voice connection to the foreperson for instructions/support. Com-
munication between HMI and workers could be done by voice commands or touch screen.
The transcripts of all interaction events were visible to the manager (foreperson) in a web
browser window, along with the camera top view of the workstation, and the current state
of all workstation screens. The foreperson was able to interfere with the communication of
the system and the worker, by using a web chat window, to make adjustments (or even
overtake) the system’s guiding role for a while. This functionality was also designed to
introduce amendments that could actively retrain the underlying neural network model of
the expert system (Figure 1). During the experiment run, it was recorded which elements
of the system were used by the apprentice, for how long, and how many times (the most
important aspect of the data collected was the use of information channels). The acquired
performance data were linked to the result of the final assembly quality check, which
allowed conclusions to be drawn. In pursuit of remarkable level of User eXperience of
man–machine communication, the authors proposed a solution incorporating the following
ideas [64]:

• AI system, with a predefined fact database containing topics within an expert knowl-
edge domain;

• The ability to extend/supplement the system’s knowledge by adding new facts and
relations;
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• A human-in-loop expert assistance for the approval of new knowledge and for emer-
gency situations.

Figure 1. Main components diagram of the Hybrid Intelligence System (HINT).

2.1. Hybrid Intelligence System (HINT) Architecture

The concept described in the current research aims to enable the adaptation of a
system to users’ preferences and to improve the operation of the system as a result of the
analysis of the process data. The system analyzes the initial stages of interaction and the
user’s preferences (choice tendencies) and adjusts the presentation of content (resources)
according to a personalized interaction model. The patterns are based on the data from
previous interaction instances.

The developed HINT system allows for a variety of architecture configurations corre-
sponding to the characteristics of the implementation requirements in a given production
environment. As part of the system validation, the HINT system was implemented in the
woodworking industry, specifically in a company producing wooden joinery. The specificity
of the company focused on the implementation of short series and products, and even the
production of personalized products, is a good training ground for the developed system.

The implementation of the HINT system, which is especially important in the face
of the new multilingual nature of the labor market, takes the full benefits of the modular
system architecture (presented as a simplified diagram in Figure 1). The following modules
are involved in the personalization of user interaction: STT, TTS, data repositories, quality
assurance module, and others.

The HINT system has been designed to be modular, allowing it to be adapted to
customer requirements. One of the modules is responsible for system integration with
external devices and systems. As an example of its versatility and modularity, the ABB
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YuMi co-bot can be used, which was successfully applied in data acquisition for active
verification of assembly quality (as presented in Section 2.4).

2.2. Dual Sensor Component: Interaction Quality Sensor Merged with User Experience Sensor

The presented implementation uses the algorithm described in [64], designed as a
dual mode sensor including User Experience (UX) sensor and Interaction Quality Sensor
(IQS). The idea and theoretical basis of this sensor are described as an analogy to the towers
of Hanoi (see Figure 2).

Figure 2. Graphic explanation of the idea of reflecting the process as an analogy to the towers of
Hanoi presented in [64].

This is initiated automatically without the knowledge and awareness of the system
user—which is fulfilling the role of the User Experience Sensor.

The primary objective is to reconsider the adaptation of the information channels
to best-performing in the context of individual preferences of the user on the basis of
the readouts of IQS/UX sensors. At a glance, the best-performing channel is selected
after analysis of the retrospective data of previous stages of completed work as presented
in Figure 2 using the Hanoi Towers approach. Exemplary adaptation of HMI guidance
delivery channels in case of lack of progress (no switching to the next stage) in a given
assignment would proceed as follows (described in detail later in Section 2.4):

1. If a trainee is stuck in a given stage and decides to try a different information channel,
which is visualized in the Hanoi Tower as the same width of disks (the tower does not
narrow up, the subsequent disk is of the same width, which represents a repetition of
the stage);

2. The work performance at a given stage performed by a given trainee is acquired
by the proposed IQS and these data increase the knowledge base about the trainees’
performance per stage;

3. The best-performing channel is considered for pre-selection as the default one for future
users.

The secondary objective is to detect probable faults in users’ work as quickly as
possible by comparing the path and timing of activated sections on the video stream
between recorded traces of workers and saved patterns within the instruction. The found
discrepancy is marked for verification and inspection in case of any automated quality
checking system within the production line. Later, aggregated data of discrepancy of a
larger count of complete users’ interactions are analyzed in terms of the quality of the
interaction. High values would mean that instruction is not explicit or does not fit the
personal capabilities of an individual.
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In addition, data from this process can be used to optimize the process according to
selected criteria, e.g., time, process quality, or both of these factors at the same time. Testing
the performance of this sensor in optimization issues will be the subject of future research.

The process of building the tower of Hanoi can be used for representing any process
implemented in the system. For proper analysis of interaction processes depicted using
Hanoi towers (as in Figure 2), the following assumptions should be made:

1. The diameters of the rings placed on the tower are adjusted to the number of stages in
the analyzed process;

2. The largest diameter ring corresponds to the first stage of the process, with rings
gradually decreasing in size with each subsequent stage;

3. The height of each ring represents the duration of execution of each stage of the process;
4. The colors of the rings represent the particular chosen information channel, such as

text, images, videos, or consultation with an expert.

2.3. Vision System as an Additional Detector of Process Anomalies

The IQS proposed in this article can optionally be equipped with a visual analysis sub-
system of the correctness of assembly process stages, in order to facilitate, streamline, and
automate the verification of the technical correctness of a given process stage. The inclusion
of a video supervision subsystem significantly supports the operation of IQS, offering
additional insight into the quality of work (or employee training).

2.4. Adaptive Information Channel Customization Module Based on the “Hanoi Towers” Concept

Quality control may be defined as a process that helps a company make sure that
it creates quality products and that its employees make minimal mistakes. Therefore,
in order to achieve this goal, two mechanisms have been distinguished: Passive Quality
Control (Figure 3) (mechanisms supporting the employee by providing them with the
necessary information, forcing the correct order of operations, etc.) and Active Quality
Control (understood as active control and verification). The proposed implementation uses
a vision system that analyzes the correct assembly of the key node.

Figure 3. (A) Passive and (B) Active Quality Control in the exemplary implementation of the HINT
system in a wooden joinery production industry company.
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During the research and development of the HINT (Hybrid INTeligence) system,
(created as part of research at Weegree company, and implemented, tested, and validated at
Halupczok company), numerous solutions were designed and applied in order to support
the new employees during the process of getting acquainted with the new workplace and
to support the quality control during the training and the performance of work. The HINT
system is capable of using a co-bot to support active quality control (Figure 3B) by using
vision processing. Passive quality control (Figure 3A) is carried out by enforcing the correct
order of activities and is supervised by the HINT system.

The quality assurance module uses two mechanisms implemented in the HINT system:
(1) passive quality control, which is carried out by enforcing the correct order of activities
(stages) (supervised by the HINT system), and (2) active quality control (presented in
Figure 3) using video analysis. In one of the test implementations of the system in the
woodworking industry, a vision sensor integrated into a SmartGripper attached to the ABB
YuMi co-bot (Figure 4) was used. It acquires visual data for image processing enabling the
assessment of the correctness of the key stages of assembly of the wooden window sashes
and frame. The YuMi co-bot operates in accordance with the guidelines of the ISO 10218-1
standard [71] for safety of people in a previously defined (at the stage of designing the
workplace) workspace [72].

Figure 4. The co-bot interactive helper workbench. The interaction interface hardware is the same as
presented in the next figure.

The HINT system, in the case of an employee’s need to contact a supervisor (or other
competent person regarding the performed tasks), provides the possibility of a remote
teleconference connection with an expert. This mechanism supports and implements the
above-mentioned active quality control. Employees were able to contact an expert (called
Avatar) when they encountered a difficult problem. The assembly training was monitored
independently. During the initial phase of testing, before optimization, employees were
given the autonomy to decide when to utilize the Avatar assistance. However, after the
optimization, the HINT system was able to identify the Avatar to be the most appropriate
information source and prioritized it higher than other information channels.

The analyzed experimental interactive assisted window assembly process consisted of
twenty separate assembly steps, and was carried out at the Halupczok company production
facility. A number of inexperienced people (with no prior experience in window assembly)
faced the challenge of completing the task with the help of the interactive stand (presented
in Figure 5). They were briefly instructed on its HMI interface, available information
channels, including the last option (which would on the one hand make the assembly
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process possibly take longer, but on the other hand could be helpful in avoiding mistakes
or damage)—the Avatar support (Figure 6).

Figure 5. Interactive assisted assembly stand.

Figure 6. The employee’s last resort—a videocall with the expert (the expert’s workplace and
communication application interface).

2.5. User Interaction Adaptive Model Implementation

The Hybrid Intelligence System (HINT) was first introduced theoretically in [64],
where the authors presented a novel user experience optimization concept and method,
named the User Experience Sensor. The concept presented there enabled the selection of
the most effective channels of information transfer [73] available to be chosen from for any
given stage:
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• Text-based information (description);
• Speech (TTS synthesized speech audio);
• Images (visual guide with photos or diagrams);
• Videos (mostly available only for stages that are difficult to explain);
• Video call to the senior staff or process supervisor (VOIP audio connection with the

additional top-view camera of the workbench).

Choosing and switching between available information channels (forms of information
for every given stage of window assembly) helps to optimize the efficiency of a production
line (for a given employee) or of training of a particular new employee.

In the implementation of the HINT system, the concept of quick employee onboarding—
regardless of their current technical competencies and regardless of what languages they
speak—was an absolute priority. The specificity of the local labor market consists of the
availability of workforce; however, with limited knowledge of the local language (in this
case, Polish). The system has a module that allows you to quickly change the predefined
languages (languages of text messages, verbal messages, visual content). Verbal communi-
cation with the system also requires access to the STT service in the selected language.

An important element of the employee support system (Figure 5), especially at the
initial stage, is the ability to contact an expert directly using the interactive workbench
(Figure 6), and while multilingualism is supported, it is possible to translate the user’s
and/or Avatar’s statements on the fly in the event of a language barrier using STT and
translation and TTS. A translation module based on the Google Cloud service is used
for this.

At the beginning of every training (the system operation), the personal preferences of
individual employees are unknown. This is a result of individual cognitive preferences and
so-called Default Bias [74,75] in the user expectancies towards interactive systems or kiosks.
Therefore, the system starts working on the default configuration of information channels
used to present content (Figure 7A). As a result of the analysis of data from the first stages
(e.g., typically the first three stages, but the range can be adjusted), the system compares
the particular employee’s interaction model and, if it deviates from the proposed model,
reconfigures the information channels to adapt to the employee’s individual preferences
(Figure 7B).

This tactic can be used many times during the user’s activity after collecting and
analyzing each portion of information about the preferred information channels used. This
mechanism also modifies the statistical model of the default configuration of information
channels, which can be modified for use with selected cohorts (e.g., age- or language-related
groups). The “default configuration of information channels” is understood as a predefined
information channels-related communication scheme consisting of available channels
(audio, video, graphics, and selected language) prioritized in a predicted/presumed order.
When the system determines that the window fittings have been properly installed, it
selects as default those forms of providing information that reduced the work time of
the trained person while correctly completing the assembly stage [64]. The system was
prepared to operate in four predefined languages or in the case of calling an avatar that
does not speak the language of the learner, we have a multi-step process consisting of:
STT—Google Translator—Avatar answer—STT—Google Translator—TTS. The adaptive
mechanism of the method of choosing appropriate information channels supports the
minimization of the negative effects of the Default Bias, which consists of imposing on the
user an inadequate (not optimal) information channel choice, resulting from the statistical
analysis of the generalized behavior of cohorts (Figure 7).



Sensors 2023, 23, 3826 11 of 21

Figure 7. The adaptive matching mechanism of the presented content to the detected user interaction
model: (A) before optimizations, (B) after optimizations.

3. Results

The HINT system, presented in Section 2 (and its architecture—in Section 2.1), was
included in the design of the prototype of the Adaptive information channel customization
module (Section 2.4), which enabled the possibility to perform experimental research on
the User interaction adaptive model (Section 2.5). The results of the trials—using HINT
to leverage the efficiency and quality of training of new (unqualified) employees for a
particular task—are presented below.

3.1. Use Case 1—HINT as a Window Assembly Assistant

The first use case process—onboarding of untrained employees using the HINT-
equipped windows assembly interactive assistant—was conducted twice: once before
optimization and once after, and the employees were not trained beforehand. The progres-
sion of each stage was recorded. Additionally, each user was asked to fill out a process
evaluation questionnaire, which served as the foundation for the User eXperience (UX) eval-
uation. After finishing each HINT-assisted window assembly training session, the quality
of each window assembly was assessed.

The experiment participants were chosen at random from a group of volunteers with
no prior experience in window assembly. They were only given the HINT system, available
on a touch screen with textual instructions and images for each assembly stage, and videos
available for the majority of steps. Each employee was instructed how to interact through
voice commands and the touch screen.
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3.2. Use Case 2—HINT with a Window Assembly Co-Bot

The proposed HINT system was also tested with the use of ABB YuMi co-bot (see
Figure 4) to investigate its purposefulness in operation with co-bots (cooperative robots).
The YuMi co-bot was intended to help the human employee in the window assembly
learning process, by participating in the assembly. However, it turned out that the inclusion
of a robotic companion adds some complexity to the learning process. The basic part of
the research (analysis, comparison, and optimization of the information channels in the
training process) was designed and conducted without a co-bot and contributed the most
interesting and valuable insights into HINT-assisted employee training. The inclusion
of a co-bot introduces new interactive training options, extending the set of available
information channels.

3.3. Analysis of the Learning Process Using HINT

The impact of the learning process using the HINT system depends on the participants’
perception of the difficulties of the technological process as well as the quality of the
documentation prepared by a foreman (supervisor of the teaching procedure and expert) for
mastering that process. For the window assembly process, which was used as the research
use case basis for the analysis of the HINT system operation, the trainees/participants
stated that the performed activities were difficult or very difficult, and the quality of the
prepared documentation was good or very good. This allows for the conclusion that the
perception of the quality of the instructions translates into actual actions resulting in the
quality of window installation. This subjective assessment was confirmed during the real-
life experimental verification. The correlation coefficient between the perceived quality of
the instruction and the verified quality of the assembly was 0.69—both for the assemblies
performed without the HINT system (only with paper documentation: text, illustrative
photos, or in-person dialogue with an expert), as well as in the case of its use within the
training process (information channels: text, illustrative photos, voice messages, illustrative
video, or remote video conference with an expert).

Important information is that in the case of working with the HINT system, the ability
to adjust information channels resulted in a significant decrease in the need to use time-
consuming contact with an expert. The average time of a single contact with an expert
decreased from about 62 s if the HINT system was not used and to 26 s if this system was
used (Figure 8).

In the case of using the HINT system, an interesting information source usage specificity
on window assembly can be observed. This specificity is illustrated by the Figure 9, which in
a synthetic way shows the use of the information channels by all participants/trainees as the
window assembly process progresses. Such determination of the independent variable results
from the fact that there are significant discrepancies in the interaction with the HINT system
by various persons. The smallest number of interactions was 10, while the largest number
was 92.

Figure 9 shows that interactions involving the use of the vocalized description of
an assembly step (blue) occur uniformly throughout the assembly process. At the same
time, as the window assembly process progresses, the use of videos (green) increases (the
number of uses is numerically highest at the end of assembly). In the initial stages of
assembly, pictures and diagrams constitute a vast majority of information channel choices,
which decreases (at about 2nd/3rd of the assembly process), along with the “discovery” of
other, in the opinion of the learners, more advantageous forms of transferring information.
The figure also shows that the repetition of the information transfer process (cyan) usually
occurs in the middle of the assembly process and is not used at the beginning when the
assembly steps depicted seem to be easy for the assembler. This may also be caused by
fatigue of using one information channel, mitigated by using another one; however, the
authors tend to see this situation rather as a search for better explanation of assembly
steps. Asking for help from the supervisor (magenta) starts to appear about halfway
through the process and initially aligns with the repetition of information delivery and then
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supplants the repetition process as some trainees have found this assistance more useful
than repetition of the information delivery process in any other form. Table 1 contains
detailed information on the number of uses of various forms (channels) of information
retrieval by 10 selected unqualified participants of the window assembly experiment
involving the use of the HINT system.

Figure 8. Number of meetings or video calls with the expert for individual participants. Blue bars—
without the use of the HINT system, only paper documentation (information channels: text, overview
photos) or physical contact with an expert. Red bars—with the use of the HINT system (information
channels: text, overview photos, voice messages, overview video, remote contact with an expert).
Data arranged in ascending order.

Figure 9. The number of changes of information channels depending on the advancement of the
window assembly process using the HINT system).
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Table 1. Summary of the number of the information channel changes by the assembler.

Participant Images (Graphical)
[No. of Uses]

Videos
(Multimedia)
[No. of Uses]

Audio (Speech)
[No. of Uses]

Channel Replay
[No. of Repetitions]

Avatar
Teleconference
[No. of Uses]

1 4 4 4 2 1
2 0 0 1 0 2
3 0 0 1 0 1
4 2 3 2 2 0
5 0 0 0 0 1
6 0 1 5 0 1
7 0 0 0 0 1
8 0 2 1 1 0
9 3 7 1 0 0
10 2 1 1 0 0

Table 1 shows that there were people who often used different information channels,
e.g., participants 1 and 4. There were also people who preferred one specific form (channel)
of information, for example, participant 6 and 9.

4. Discussion

The purpose of this paper was to present an implementation of Hybrid INTelligence
architecture for Intelligent control systems (HINT), enclosing the prioritization of infor-
mation channels, and optimizing both the apprenticeship of unskilled workers and the
performance of employees.

The HINT system presented in the article and its exemplary implementation in the
production environment is an example of a solution that naturally fits into the industry
4.0 concept. The modularity of the system facilitates its adaptation to particular use-case-
specific implementation requirements, and at the same time enables the system to be
extended with new functionalities. An example is the adaptive content customization
module based on the concept of “Towers of Hanoi” (presented in [64]). Integration of
applications originating from diverse implementation areas into common quality-oriented
training systems (similar to the HINT presented in this study) seems to be the transcendent
direction in which many other employee-supporting systems will follow.

They contribute to an increase in employee efficiency, ensure the quality of performed
tasks and enable the labor market to absorb new employees (despite their initial lower
competencies and/or a language barrier).

Looking into the future of development of processes containing a human element and
trying to visualize the latest human-centric technological trends, the proprietary HINT
system presented in this study offers the opportunity to improve the quality of training,
as well as the effectiveness of human work and enables easier adaptation of a person in
the process of performing the required activities by selecting the most effective informa-
tion channels and methods of knowledge transfer, carried out without the participation
of experts.

The HINT system was developed with thought and intention to leverage the teaching
effectiveness of multimedia information channels, such as speech, images, and videos (and
optionally the assistance of a co-bot), particularly for applications with inexperienced em-
ployees (with limited skills or with language barriers). HINT aims to enable employees and
aid enterprises in efficiently integrating new hires into the works and processes performed.

The proposed solution in the form of the HINT system is part of the future develop-
ment of robotization, automation, and the upcoming Industry 5.0. The HINT system has
many possibilities that enable the quick assimilation of information required in the imple-
mentation of tasks in places where employees are required for various reasons, including
economic ones. Current studies of the use of the HINT system indicate an increase in the
speed and efficiency of knowledge acquisition.
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Industry 5.0 gives new opportunities to obtain high added value of human capital
as an element that gives value to manufactured products [76]. The idea of Industry 5.0
emphasizes the need for cooperation between man and machine, while pointing to the
importance of humans in the manufacturing processes. The idea of people and machines
working together leads to flexible and effective business models [77–83].

4.1. HINT’s Placement in the Kaleidoscope of Robotics’ Future

Currently, enterprises operate in times of rapid technological progress, in particular
the development of digitization driven by the need to reduce energy consumption, max-
imize efficiency, and react faster to changes in the immediate and global environment.
The events of 2021–2022 significantly changed the list of issues to be considered when
planning business continuity, i.e., dynamic adaptation to new conditions and ensuring
sustainable development.

Ideas based on automation, robotization, and artificial intelligence are already used
in the Industry 4.0 trend and will, thus, dominate the upcoming industry of the future.
Currently, the possibilities of new technologies and the technological potential of robots
have reached an unbelievable level of development, and their general availability in connec-
tion with large adoption (almost indispensable) in enterprises has a critical impact on the
development of many industries. Robotics, automation, and AI are already changing the
quality of life in a wide range of activities [84] and the way work is performed, increasing
the level of efficiency and safety of activities and processes, improving the standard of
services, customer service, and logistics, and improving the supply chain.

Cooperative teams, consisting of humans and machines (robots), can be seen to consti-
tute interconnected cognitive entities, able to include human communication using natural
language. With the communication performed purely using voice or text communica-
tion, as well as answering questions and giving recommendations for action, cooperative
systems are able to use their knowledge and capabilities to contribute to increasing the
quality of manufactured products, optimizing the implementation of activities and making
better decisions (both strategic and tactical) by the management staff [85]. The progress of
digitization, new technologies within the Industry 4.0 and the idea of Industry 5.0, automa-
tion, robotization, and use of AI require the use of the Internet, which results in the dawn
of a new era of human–robot interaction, IoT, security, cybersecurity, work performance,
functioning, and operation.

In the last few years, new types of interactions between humans and machine learning
algorithms have emerged, which can be grouped under the umbrella term human-in-the-
loop (HITL) [86,87]. HITL is a branch of artificial intelligence that requires the involvement
of both humans and machines to create machine learning models [88]. HITL illustrates
a process where a machine or computer system is unable to solve a problem on its own
and requires human intervention. The human, then, becomes the element that trains,
adapts, tests, and in many cases also controls the system’s algorithms. The HITL process
is a continuous feedback loop, which means that every training-and-test task is fed back
into the algorithm. HITL aims to achieve what neither man nor machine can achieve in
isolation, i.e., by functioning independently. An effective HITL system is designed in such
a way as to allow many people to contribute information to the learning process (at any
time), and the person giving feedback is usually responsible for making the final decisions
about the learning process [76,89,90]. By applying the HITL concept, HINT becomes more
capable of performing a variety of tasks by facilitating employees’ cognitive (including
knowledge) and physical (mainly manual and motor) skills, while profiting from the robots’
ability to perform repetitive tasks and tedious activities [91]. The advantage of using
HINT is the ability to parameterize the quality of the job instructions provided, and more
precisely to identify elements that need improvement because they are incomprehensible or
complicated for the employee, which is visible through the excessive use of communication
channels around one stage. If the obtained information is used to update work instructions,
the instruction standardization process can be carried out. The ubiquitous profiling (it
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is common in the world of the Internet to learn the preferences of the Internet user for
marketing purposes) is also reflected in HINT, but in a fruitful way for everyone—allowing
for the personalization of the process of transferring knowledge to the user, enabling them
to learn quickly, and hypothetically reducing their stress and tension. HINT is a system
that connects a cooperating man with a machine into a team and provides the function of a
supervisor, thus relieving the qualified management staff.

4.2. Safety of the System (Human and Robots Cooperation)

Measures to ensure safety during human–machine cooperation are described in the
ISO 10218 standard [71,92] (entitled “Robots and robotic devices—Safety requirements for
industrial robots”). This is an international standard for the safety of industrial robots,
developed by ISO/TC 184/SC 2 “Robots and robotic devices” in parallel with the Euro-
pean Committee for Standardization. It consists of two parts: (1) “Robots”, describing the
requirements for robots, and (2) “Robotic system and integration”. Together, these stan-
dards contain requirements for robotic systems, including systems cooperating with robots.
The standard is aimed at robot manufacturers, integrators, and builders of workstations
containing robots and co-bots. According to the [93], a collaborative robot workstation
“should be considered as a machine or assembly of machines, depending on the degree of
complexity”, which implies the necessity to extend the scope of considerations—from “a
robot” to “the system”.

4.3. The Co-Bots’ Future and the Road Map to Industry 5.0

Presently, a crucial aspect in the advancement of businesses is the integration of
machines, robotic systems, people, and processes [94–96], resulting in an increased utiliza-
tion of co-bots. The incorporation of robots and co-bots in businesses brings numerous
benefits for both the enterprises and their employees. In addition, the lack of qualified
employees means that companies increasingly decide to automate processes, including
the use of robots, which begin to play the role of collaborators, with their potential rec-
ognized by entrepreneurs. Human–robot collaboration sets a new direction of activities
in which human–robot cooperation takes place [91]. Collaborative robots (co-bots) are
machines with technical precision in performing tasks, designed to work safely with people
in human-centric environments [97–102]. Co-bots, due to their flexibility, neatness, and
light mechanical structure (low weight, small size, ease of use, and being extremely precise)
can be introduced in any enterprise and used for various processes and tasks, practically at
any time [103–106].

5. Conclusions

This article is the summary and the result of a new approach to the optimization of
man–machine interaction in collaborative, Industry 5.0-compliant workplaces. The authors
propose not only sensing the quality of individual tasks as “building blocks” of the process’
representation, but also adding a supervising layer able to evaluate, manage, and optimize
the execution of individual blocks (stages) as well as the whole interaction.

One of the results of the research is the ability to model the window assembly process
(or any given work task) using the proposed quality parameters, visualized as the “building
blocks” of a specific height and width.

The most important research result (and the research contribution) is the ability to use
the proposed process model to automate the optimization, taking into consideration the
individual preferences of particular participants, easily introducing human-centricity and
collaborative intelligence into the Industry 5.0 workflow.

6. Future Work

The main challenge for upcoming research will be the adaptation and profiling of
the proposed architecture to specific use cases of new workplaces. Further improvements
and advancements will include, inter alia: centralized AI engine for numerous domain-
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restricted agents [107], distributed implementation for the centralized AI engine [108],
load optimization for the distributed engine [109–112], integration of interactive artificial
agents (including co-bots), and possibly a better data representation model created using
information retrieval logic and a specified description language [113,114] instead of a
static database of facts and relations. An alternative approach would be to follow the
mainstream of current AI research and to implement a GPT-3-based chatbot [115]; however,
this approach either needs reasonable funding or will generate a general model not suitable
for domain-specific professional uses. Therefore, the future of assisted quality-oriented
employee training systems remains an open topic.
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