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Abstract: Software-defined networking (SDN) is a new network architecture that provides pro-
grammable networks, more efficient network management, and centralized control than traditional
networks. The TCP SYN flooding attack is one of the most aggressive network attacks that can
seriously degrade network performance. This paper proposes detection and mitigation modules
against SYN flooding attacks in SDN. We combine those modules, which have evolved from the
cuckoo hashing method and innovative whitelist, to get better performance compared to current
methods Our approach reduces the traffic through the switch and improves detection accuracy, also
the required register size is reduced by half for the same accuracy.

Keywords: software-defined network (SDN); programmable data plane; cybersecurity; SYN flooding

1. Introduction

With the development of the Internet, many networking technologies have been de-
veloped, including the Internet of Things [1] and software-defined networks (SDN) [2].
However, these online systems suffer from cybersecurity threats that degrade their perfor-
mance. Therefore, how to detect and mitigate these risks has become a critical issue. In 2020,
Bouyeddou et al. [3] presented the most popular denial-of-service (DoS) and distributed
DoS (DDoS) attacks: the TCP SYN flooding, UDP flood, Smurf, and ICMPv6-based flooding
attacks. The SYN flooding attack is the most aggressive network security attack, which
abuses the three-way TCP handshake to rapidly fill the server’s memory storage [4,5]. In
traditional networks, SYN flooding has been mitigated by deploying expensive firewalls
in front of critical servers. Fortunately, software-defined networking has introduced new
ways to mitigate SYN flooding, primarily based on OpenFlow and P4, which provide the
standardized interface between the control and data planes.

To reduce the load on the controller and the possibility of saturation attacks, Program-
ming Protocol-independent Packet Processors (P4) was proposed in 2014 [6]. This allows
the switches to perform some of the control plane tasks, giving network administrators
more flexibility to monitor the network and reducing the possibility of controller-switch
overload. Therefore, P4 is adopted in this paper to implement the proposed scheme.

The proposed scheme is based on the combination of the cuckoo hashing [7] and TCP
reset [8] methods. First, we set up the detection module by designing a data structure based
on cuckoo hashing without kick action. Instead of the kick action, we design a whitelist and
a blacklist to block the attackers. The reason for modifying the cuckoo method’s kicking
action is that P4 does not support for-loop. Furthermore, the original TCP reset method
only adds the client’s IP address to the whitelist table. In our research, we create two tables
for the whitelist and the blacklist, recording the source MAC address instead of the source
IP address because attackers often change their source IP addresses. With the detection
engine and the blacklist, we can block the attacker instead of having the switch return
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the SYN/ACK packet as in the TCP reset method. The contributions of this paper are
summarized as follows.

• The method proposed in this paper reduces about half of the malicious traffic, im-
proves detection accuracy by 2%, and reduces the usage of registers by half compared
to existing methods.

• To detect and mitigate more malicious traffic compared with the TCP reset method,
which only records IP addresses in a whitelist, our proposed method adds a blacklist
and records MAC addresses instead to prevent attackers from changing IP addresses
too often and being detected.

• The proposed method is implemented on bmv2 P4 software switch by combining re-
vised cuckoo hashing, a detection module, a and mitigation module. The experimental
results prove that it is more advantageous than the existing methods.

This paper is organized as follows. Section 2 introduces some typical cybersecurity
attack methods, and some detection/mitigation modules based on OpenFlow and P4 and
their drawbacks. Section 3 presents our method for SYN flooding attacks from the evolved
combination of cuckoo hashing and TCP reset method. Section 4 shows the performance
comparison of our method with the counting Bloom filter and TCP reset method through
simulation experiments. Finally, Section 5 illustrates our breakthrough and future work.

2. Related Works

In this section, we introduce some common influences on cybersecurity attacks and
then take a closer look at several detection and mitigation approaches based on OpenFlow
and P4. We also discuss the limitations of these approaches, which motivate us to propose
our method.

Cybersecurity threats have become more prevalent since the proliferation of mobile
devices and applications [9]. Almaiah et al. [10] realized that classification is an important
step before solving the problems.

In the following subsections, we introduce some methods to solve the problems of
emerging cybersecurity attacks.

2.1. SYN Flooding Attack

TCP Reset [8] protects legitimate packets and establishes connections with benign
clients using an authentication mechanism in the absence of any switch-controller commu-
nication. When an invalid packet passes through the switch, the switch converts the SYN
packet into a SYN/ACK packet. After receiving an ACK packet, it validates it and changes
it to an RST packet. If a SYN flood attack occurs in TCP reset, the attacker’s packets should
not be responded to at this time. However, to verify that the attacker is a normal client, it
still responds to the attacker’s SYN/ACK packets, which means that this process increases
unnecessary network traffic.

SAFETY [11] sets the dynamic threshold by calculating Shannon’s entropy [12]. How-
ever, since all TCP packets use the controller (packet-in) to collect traffic, it increases the
load between the controller and the switch. SLICOTS [13] reduces packet ingress frequency
by installing temporary forwarding rules. However, the load between the controller and
the switch still increases as traffic increases.

To detect the flooding, Malik et al. [14] presented a Flooding Factor based Framework
for Trust Management (F3TM) by using the calculated trust value as the identification for
malicious nodes. Alternatively, Sunil et al. [15] used the delimitated anti-jammer scheme to
identify a vehicle’s location by establishing vehicle-to-vehicle communication and detecting
anomalies in the data, which they also eliminate using the combined function of the foster
rationalizer and the morsel supple filter, respectively.

Paolucci et al. [16] assigned two registers to each IP match table to store data using
a P4-based method. While the number of connections increases, the switch needs more
registers, so packets above the threshold are discarded when the number of attempts
exceeds the threshold.
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In some studies [4,17], the counting Bloom filter (CBF) [18] is used to collect traffic
information at the data plane. Given a counting array and several hash functions, the inputs
access the corresponding counters according to the output of the hash functions. However,
this method has a drawback in some cases. If the packet rate of the attacker and the normal
user are similar, it will result in the same counter for both, so it is not possible to correctly
determine the normal user or the attacker, and there may be confusion between them.

2.2. Attack to Encryption and Blockchain

As data exchange is rapidly increasing due to the boom in mobile networks, the secu-
rity of encryption and blockchain is also critical. To prevent attacks and theft, encryption is
the most suitable method to protect information from hackers.

A novel hybrid encryption approach between elliptic curve cryptosystem and hill
cipher (ECCHC) is proposed, which generates a new encryption/decryption key without
sharing the key over the Internet. It prevents attacks by intruders and provides a better
security environment for data exchange [19]. Furthermore, Aitizaz et al. [20] presented a
mechanism that allows blockchain users to encrypt data on their side and upload it to the
distributed ledger for record purposes.

As we have seen, the possibilities for security, trustworthiness, reliability, and confi-
dentiality are becoming increasingly apparent [20].

3. Proposed Scheme

Figure 1 is the workflow of our method. The detection and mitigation modules connect
perfectly to our revised cuckoo hash function. Furthermore, in our mitigation module,
which is the combination of cuckoo hashing and TCP reset, the detection module produces
whitelist and blacklist tables. At the very beginning, the whitelist and blacklist are empty,
but after going through the workflow more, these lists become more complete and gain a
powerful mitigation capability by constantly updating the whitelist and blacklist, which
can drop the suspicious packets as soon as they are received.

3.1. Framework of the Proposed Method

This subsection introduces the framework of the method proposed in this paper, which
contains the revised cuckoo hashing, the mitigation module, and the detection module.
When the packet arrives, it first encounters the mitigation module, which contains the
whitelist and the blacklist, followed by the detection module. The packet will be blocked
if the source MAC address (src_mac) of the packet exists in the blacklist table. If not, the
source MAC address (src_mac) of the packet is checked against the whitelist table. If it
matches, the packet goes to the forwarding table. The module distinguishes whether the
packet is a SYN or ACK packet if it does not exist in the whitelist and blacklist tables. Then
it sends SYN to the check-syn table and ACK to the check-ack table.

After the SYN packet matches an entry of the check-syn table, which has 256 entries,
the program will modify the SYN packet into a SYN-ACK packet by using the mod-
ify_syn_to_synack action and detecting attackers. Similarly, after the ACK packet matches
an entry of the check-ack table, the program will modify ACK to a RESET packet using the
modify_ack_to_reset action and detecting attackers.

Note that if the ACK packet does not match an entry of the check-ack table, it means
that we have not received the SYN packet from this MAC address before, so the module
will drop this suspicious ACK packet.
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Figure 1. Workflow of our method.

3.2. Revised Cuckoo Hashing

Since the detection is handled by checking whether the key exists in the hash table or
not, we introduce a hashing method evolved from cuckoo hashing, called revised cuckoo
hashing. Because we use P4 as our approach, where for-loop is not supported, the kicking
action cannot be performed until an empty slot is found. Instead, we will clear the slot after
classifying the source MAC address to the whitelist and blacklist.

Figure 2 shows our hashing scheme with four buckets and hash functions. Since we are
going to compare our method with the performance of the Bloom filter in our experiments,
we set the number of a hash function to four to optimize the performance of the Bloom
filter based on [4], which compares the accuracy of the Bloom filter with a varying number
of hash functions.

If there is an empty slot, the key is inserted into the empty slot, as shown in Figure 2a.
If there is more than one empty slot, the key inserts into the first one it meets. As in
Figure 2b , the key does not insert into any slot as long as there is no empty slot.

3.3. Detection Module

There is a hash table for storing values in registers, and a slot in the table contains a
key and a value. The key stores two fields, the IP and MAC address, and the value stores a
counter. The detection module has two main actions: “Add to slot” and “Clear the slot”.
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(a) There is an empty slot and key 5 is inserted
into the empty slot.

(b) There are no empty slots and key 5 is not
inserted into any slot.

Figure 2. Our hashing scheme.

3.3.1. Add to a Slot

Using the source IP address and destination MAC address of the packet as the key,
then calculate k using different hash functions and obtain the k corresponding to the index.

If the key does not exist in the hash table, check if there is still an empty k slot, if there
is no empty slot, the packet will be sent back to the client; otherwise, the key (source IP
address, destination MAC address) will be stored and the key and counter will be set to 1.

Furthermore, if the key exists in the hash table, the counter is incremented by 1 and
checked to confirm if the counter is greater than the threshold (T). The threshold means
that T of connection failures are acceptable. If the counter exceeds the threshold, the switch
will send summary information to the controller, and then the controller will add the MAC
address of the key to the blacklist table. The procedure is shown in Algorithm 1. The time
complexity is given in Theorem 1.

Theorem 1. The time complexity of Algorithm 1 is O(k). The parameter k in Algorithm 1 is the
size of the array rand.

Proof of Theorem 1. In the beginning, the required parameters are read in and the opera-
tion is O(1) (lines 1–3). In the for-loop , since k represents the size of the array rand, the loop
executes k times, so the time complexity of this loop is O(k) (lines 4–21). Inside the loop,
the hash computation, judgment, and setting are performed in O(1) (lines 5–20). The final
judgment on the flag is O(1) (lines 22–24). Therefore, the time complexity of Algorithm 1 is
O(k).

3.3.2. Clear the Slot

The program will obtain the number of k slots that can be accessed using the key of
the input item. Then it will check if the key is in the hash table. The process is shown in
Algorithm 2.

Theorem 2. The time complexity of Algorithm 2. The time complexity is O(k), where the parameter
k is the size of the array rand.
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Algorithm 1 Add to a slot

Require: a hash table with N slots, hash_table; each slot contains three fields: ip, mac,
counter; an array with k random numbers, rand; the length of a bucket, row_length; the
threshold, T;

1: procedure ADD-A-SLOT(src_ip, dst_mac)
2: now_column, empty_ f lag, empty_index, f ind_ f lag, hash_value← 0
3: insert_slot← {ip : src_ip, mac : dst_mac, counter : 1}
4: for i = 1 to k do
5: hash_value← hash(src_ip, dst_mac, rand[i])
6: now_index ← now_column ∗ row_length + hash_value
7: now_column← now_column + 1
8: read_slot← read_hash_table(now_index)
9: if empty_ f lag = 0 and read_slot.counter = 0 then

10: empty_ f lag← 1
11: empty_index ← now_index
12: else if read_slot.ip = src_ip and read_slot.mac = dst_mac then
13: insert_slot.counter ← read_slot.counter + 1
14: if insert_slot.counter ≥ T then
15: alert_to_controller(dst_mac)
16: insert_slot← {ip : 0, mac : 0, counter : 0}
17: end if
18: write_hash_table(now_index, insert_slot)
19: f ind_ f lag← 1
20: end if
21: end for
22: if f ind_ f lag = 0 and empty_ f lag = 1 then
23: write_hash_table(empty_index, insert_slot)
24: end if
25: end procedure

The time complexity is given in Theorem 2.

Algorithm 2 Clear the slot

Require: a hash table with N slots, hash_table; each slot contains three fields: ip, mac,
counter; an array with k random numbers, rand; the length of a bucket, row_length;

1: procedure CLEAR-SLOT(src_ip, dst_mac)
2: now_column, hash_value← 0
3: insert_slot← {ip : 0, mac : 0, counter : 0}
4: for i = 1 to k do
5: hash_value← hash(src_ip, dst_mac, rand[i])
6: now_index ← now_column ∗ row_length + hash_value
7: now_column← now_column + 1
8: read_slot← read_hash_table(now_index)
9: if read_slot.ip = src_ip and read_slot.mac = dst_mac then

10: write_hash_table(now_index, insert_slot)
11: end if
12: end for
13: end procedure

Proof of Theorem 2. First, Algorithm 2 sets some variables to 0 in O(1) operations (lines
1–3). The for-loop executes k times, so the time complexity is O(k) (lines 4–12). Inside the
for-loop , the hash operations such as computing, judging, reading, writing, and setting
values are all O(1) operations (lines 5–10). Therefore, the time complexity of Algorithm 2 is
O(k).
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3.4. Mitigation Module

In this paper, the switch is placed near the client and a blacklist table is added to record
the attackers after combining the cuckoo hashing and TCP reset methods to prevent the
attackers. This blacklist means that the attacker can be prevented from attacking by storing
the client’s MAC address. Attackers often change source IPs, so we choose to store MAC
addresses instead of IP addresses.

The method proposed in this paper contains five tables, and the meaning represented
by each table is as follows.

1. blacklist table: Block the MAC address of the attacker.
2. whitelist table: Check the source MAC address of the packet. If there is a matching

entry, the packet will be forwarded. Otherwise, the SYN packet will be put into the
check-syn table, the ACK packet will be put into the check-ack table, and the rest of
the packet will be dropped.

3. forwarding table: Forward the packets to the corresponding output port.
4. check-syn table: If a packet matches one of the 256 entries, modify_syn_to_synack is

executed and the attacker is detected.
5. check-ack table: Verify the ACK number of the packet. If the ACK number is correct,

then run modify_ack_to_rst and detect the attacker. Otherwise, the packet is discarded.

4. Performance Evaluation

In this section, we introduce the simulation environment and then perform experi-
ments. In comparison with the existing methods, we present the progress and advantages
of the proposed method in this paper.

4.1. Simulation Environment

Figure 3 shows the experimental topology, which contains n normal users and m
attackers, and the packets sent and received by the host will pass through the switch. Three
servers are set up to implement load balancing in the experiment, and the topology is simu-
lated in Mininet [21]. The software switch uses behavioral model version 2 (bmv2) [22,23],
which can be compiled for P4. We use curl [24] to establish normal client connections and
hping3 [25] for the attackers to perform SYN flooding attacks.

Figure 3. Topology.

4.2. Experiments

In this subsection, we discuss five experiments:

• Experiment 1: Compare the traffic amount of our method and TCP reset.
• Experiment 2: Set the thresholds for the Bloom filter method.
• Experiment 3 and 4: Compare the detection accuracy of our method and the Bloom

filter method in the high/low-rate attack and normal user.
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• Experiment 5: Compare the required register size of our method and the Bloom filter
method in the same situation.

4.2.1. Experiment 1: Compare the Traffic Amount of Our Method and TCP Reset

In a SYN flooding attack, the attacker’s packet rate is typically much higher than a
normal user’s. By sending a large number of fake SYN packets, the attacker floods the target
host, making it unable to handle normal connection requests. To simulate this scenario, we
set the packet rate of 50 normal users to 0.25 (f/s) in our experiment, while the attacker’s
packet rate was set to 5 (f/s) for a duration of 30 s.

In Figure 4, we can see the percentage of malicious traffic in the network traffic passing
through the switch. TCP reset sends SYN/ACK packets even after receiving malicious SYN
packets. The method proposed in this paper can stop sending SYN/ACK packets by adding
its MAC address to the blacklist when an attacker is detected. As a result, the percentage of
malicious traffic is reduced to about half of the original TCP reset after detection by the
method proposed in this paper.

Figure 4. Experiment 1: The percentage of malicious traffic under different attacker numbers.

4.2.2. Experiment 2: Set the Thresholds for the Bloom Filter Method

Since the Bloom filter requires predefined thresholds to distinguish between normal
users and attackers, the experiment is designed to determine the detection accuracy under
different thresholds and the highest accuracy threshold.

This experiment has 20 normal users and 20 attackers. The packet rate is 0.25 (f/s)
for normal users and 0.25–20 (f/s) for attackers, and the experiment lasts one minute. The
experimental results are shown in Figure 5. When the threshold is between 0.3 and 1, the
accuracy is close to 100%, so the threshold is set to 0.65, the middle value of the best range
between 0.3 and 1.

4.2.3. Experiments 3 and 4: Compare the Detection Accuracy of thE Proposed Method with
the Bloom Filter Method for High- and Low-Rate Attacks

This paper focuses on detecting and mitigating SYN flooding attacks, which are high-
rate packet attacks of DoS. The other type of DoS attack is a low-rate attack [26], which is
not the main issue of this paper, but we hope to prove that our method is also effective
under low-rate attacks through experiments. Therefore, in our experiments, we perform
experiments on high-rate and low-rate attacks to compare the effectiveness of the Bloom
filter and the proposed method in detecting malicious traffic.
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Figure 5. Experiment 2: Effect of thresholds on accuracy.

High-Rate Attack

In this subsection, the number of normal users is first fixed, and the detection accuracy
is tested when the number of attackers changes. Then, the normal users are exchanged
with the attackers, i.e., the number of attackers is fixed, and the detection accuracy is tested
when the number of normal users changes.

In a high-rate attack, the attacker’s packet rate is 5 (f/s), while the normal user’s
packet rate is 0.25 (f/s). The detection accuracy when the number of normal users is fixed at
20 and a different numbers of attackers are encountered is shown in Figure 6. The detection
accuracy when the number of attackers is fixed to 20 and the number of normal users are
different is shown in Figure 7.

The experimental results show that the Bloom filter has some fluctuations, and its
accuracy is lower. In comparison, the method proposed in this paper has almost no
fluctuations and higher accuracy, which shows that the proposed method is more precise
and reliable. The results also show that the accuracy of the proposed method is 2% higher
than the Bloom filter.

Figure 6. Experiment 3: The effect of numbers of attackers on accuracy under high-rate attack.
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Figure 7. Experiment 3: The effect of numbers of normal users on accuracy under high-rate attack.

Low-Rate Attack

As in the previous subsection, first fix the number of normal users and experiment
with the detection accuracy when the number of attackers changes. Then, the normal users
are exchanged with the attackers.

In the low-rate attack, the packet rate of normal users and attackers is 0.25 (f/s). The
detection accuracy is shown in Figure 8 when the number of normal users is fixed at 20
and the different numbers of attackers are encountered. The detection accuracy is shown in
Figure 9 when the number of attackers is fixed to 20 and different numbers of normal users
are encountered.

The experimental results show that the Bloom filter has some fluctuations, and its
accuracy is lower. In comparison, the method proposed in this paper has almost no
fluctuations and higher accuracy, which shows that the proposed method is more precise
and reliable. The results also show that the accuracy of the proposed method is 2% higher
than the Bloom filter.

Figure 8. Experiment 4: The effect of numbers of attackers on accuracy under low-rate attack.
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Figure 9. Experiment 4: The effect of numbers of normal users on accuracy under low-rate attack.

4.2.4. Experiment 5: Evaluate the Required Size of Register

Because of the limited size of the registers, it is important to understand the con-
sumption of the registers when it is desirable to use fewer resources. We have therefore
designed the following experiment to compare the size of the registers required by the
method proposed in this paper with the Bloom filter for different numbers of flows.

Since Mininet cannot generate many hosts, this paper designs its own program to
simulate traffic and test how many registers are needed. Assume the slot size is 12 bytes
(IP address: 4 bytes; MAC address: 6 bytes; counter: 2 bytes). We create n malicious flows
using Poisson distribution with a duration of 60 s. In this distribution, λ represents the
average of the attacker’s packet rate (f/s). If all attackers are detected within 60 s of the
experiment and added to a blacklist with m slots, the required register size is m ∗ 12 (bytes).

Figure 10 shows that the Bloom filter requires twice the register size of the proposed
method when the flow reaches 65,535, i.e., the proposed method consumes only half the
register usage.

Figure 10. Experiment 5: The required size of the register under different flow numbers.

Figure 11 shows the size of the required registers for different λ values. Since the
method proposed in this paper is based on the threshold (T) to detect the attackers, if λ is
smaller, it means that the item exists in the hash table for a longer time, so more registers
are needed to defend all attackers within 60 s of the experimental time.
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Based on the experimental results, we can see that the required register size for λ = 1
is about three times larger than for λ = 3. It is estimated that the method proposed in this
paper requires the same register size as the Bloom filter method at λ = 0.05. This means
that the attacker sends a SYN packet every 20 s; however, in reality, the attacker will not
send packets that slowly during the attack. Therefore, the method proposed in this paper
still has an advantage in terms of register size.

Figure 11. Experiment 5: The required size of register with different λ.

5. Conclusions and Future Work
5.1. Conclusions

This paper proposes a method to detect and mitigate SYN flooding in P4 switches,
which consists of designing a data structure to store the values in the registers and detecting
the attacker by calculating the SYN/ACK packets. Then, we take advantage of the P4
switch to send the information to the controller when an attacker is detected and record the
MAC address in the blacklist or whitelist. Finally, we perform the implementation in the
bmv2 P4 software switch and conduct experiments.

In the experiment, it is found that the percentage of malicious traffic is reduced by half
compared with TCP reset. Compared with the Bloom filter, it can improve the accuracy by
2% and save half of the registers.

5.2. Future Work

Adding blacklists and whitelists consumes additional space and requires a free timeout
for each item in the parameter. If an item in the table has not been accessed for a while,
the switch will delete the item. However, if the idle time set is too short, it will cause
the controller to update the content frequently. Therefore, an appropriate idle timeout
parameter should be set in the future to save space in the table and to avoid frequent
updates that can cause a large increase in load between the controller and the switch.

In the future, it is expected that the method proposed in this paper can be implemented
more effectively by setting the appropriate idle timeout parameter for each item with a real
dataset of SYN flooding, or by setting the parameter automatically in a dynamic manner.
It may also be possible to estimate the size of the registers required to stop all attackers
within a given time by deriving an applicable equation. In the future, it is expected to be
implemented on real P4 hardware (e.g., switch with Intel Tofino chip) to verify the method
proposed in this paper.
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