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Abstract: A variety of low-cost sensors have recently appeared to measure air quality, making it
feasible to face the challenge of monitoring the air of large urban conglomerates at high spatial
resolution. However, these sensors require a careful calibration process to ensure the quality of the
data they provide, which frequently involves expensive and time-consuming field data collection
campaigns with high-end instruments. In this paper, we propose machine-learning-based approaches
to generate calibration models for new Particulate Matter (PM) sensors, leveraging available field
data and models from existing sensors to facilitate rapid incorporation of the candidate sensor into
the network and ensure the quality of its data. In a series of experiments with two sets of well-known
PM sensor manufacturers, we found that one of our approaches can produce calibration models for
new candidate PM sensors with as few as four days of field data, but with a performance close to the
best calibration model adjusted with field data from periods ten times longer.

Keywords: air quality; sensor calibration; multi-sensor calibration; low-cost sensor; machine learning;
particulate matter

1. Introduction

According to estimates by the World Health Organization (WHO), air pollution causes
seven million deaths yearly worldwide [1]. Epidemiological studies reveal that there is
concrete evidence of the connection between poor air quality due to fine particulate matter
(PM) and risk of chronic diseases [2–4]. Therefore, monitoring air quality within urban
areas is a necessity for citizens, the health sector, and epidemiological and environmental
research. Air quality information is also useful for informing local governments about
the impact of public policies that mitigate air degradation. For example, to carry out
interventions in sectors, such as energy, transport, waste management, agriculture, urban
planning and sustainable economic development [5,6].

Traditionally, air quality information in urban areas is obtained through networks
of high-end certified measurement stations, which provide data of guaranteed qual-
ity. However, the deployment of adequately sized monitoring networks of certified sta-
tions is often unfeasible for many cities due to their high acquisition and maintenance
costs [7]. In response to this, a variety of low-cost sensor (LCS) technologies for assessing
air quality have recently emerged. These solutions enable the deployment of large sensor
networks, facing the challenge of monitoring air quality in extensive metropolises in real
time and with high spatial resolution [5,8–14].

Despite these benefits, the reliability of the data captured by LCS technologies has
frequently been questioned [5,8,10,15–19]. One approach commonly suggested by manu-
facturers to increase data quality is to adjust linear correction functions using calibration
laboratories, where different concentrations of air pollutants are placed in a controlled
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manner, and the parameters of the calibration functions are estimated [7]. However, this
method, in addition to being expensive because it involves the use of certified laboratories,
assumes that the laboratory environment will be similar to the operating environment,
which is often not the case in practice [17].

The other common approach to calibrate air quality sensors is called “on-site cali-
bration” [15], in which a certified station (called “reference’) is co-located next to the LCS
(called “candidate”), and simultaneous measurements are collected for a period of time.
Then, a correction function is adjusted to approximate the measurements of the candidate
sensor to that measured by the reference sensor [5,18,19]. On-site calibration is often pre-
ferred over laboratory calibration because calibration functions fitted with data collected
from the environment in which the sensor will operate are expected to better represent
reality [15]. However, building a proficient calibration function is always a challenge, since
many factors affect the sensor’s response, such us meteorological conditions, pollution
conditions, particle composition and sizes, sensor aging, among others [15]. In particular,
one area of challenge is when conditions go outside a previously “seen” range. Most of the
works on sensor calibration for air quality assessment are aimed at per-sensor calibration
functions due to the variability of sensor behaviors, even if they are of the same type,
manufacturer and environmental conditions [6,14,16,20,21].

Among the most popular calibration function types are simple linear regression (use
only the candidate sensor measurement as input variable) and multivariate linear regression
(incorporate additional input variables to the regression, such as temperature, humidity,
etc.) [18,22]. However, limitations have been found in these approaches because they fail to
follow the nonlinearities of the sensors and the complex atmospheric processes that influ-
ence them [5,23]. For example, the following factors are sources of error for the correction
functions: sensor behavior change due to age, sensor dynamic limits, and weather and
pollution conditions where the sensor is located [5,24,25].

Machine learning (ML) methods have shown promise in dealing with sensor non-
linearities and exploiting different local and context variables [5–7,9,14,18,26,27]. Most
of these proposals are focused on the adjustment of ad hoc calibration functions for the
candidate sensor. This implies that for each new candidate sensor that is to be installed in
the monitoring network, the respective correction function must be estimated, implying the
need to collect on-site data with a reference station and the costs and time that this implies.

In this paper, we describe and evaluate ML-based approaches to calibrate LCS of
particulate matter (PM) for which we do not have on-site data against a reference station (or
we have a limited amount of these data) but for which we have field data from other sensors
(base sensors) of the same manufacturer that passed an inter-comparison campaign with a
reference station in the same city. The aim is to leverage existing field data in the process of
building calibration models for new sensors and thus facilitate their rapid incorporation
into the monitoring network and ensure the quality of the data they provide.

We studied different ML algorithms and different multi-sensor calibration strategies
in order to identify the most suitable ones for the described problem. A comprehensive
experimental evaluation was performed using data from two sets of sensors from well-
known manufacturers deployed in Lima city. The rest of the paper is organized as follows.
Section 2 describes the air quality devices, the field data collection, and the methods used
for building the calibration model. Section 3 describes the experimental setup, results and
discussion. Finally, Section 4 presents the conclusion and delineates future research that
the present work can generate.

2. Materials and Methods
2.1. Sensing Devices

In this study, we evaluated two sets of LCS from two different manufactures: IQAir
and AirBeam, which are described next.
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2.1.1. IQAir AirVisual Devices

AirVisual devices are manufactured by IQAir company. This is one of the world’s
largest providers of low-cost air quality measurement solutions. It also maintains a web
platform (AirVisual) that displays air quality information from thousands of monitoring
stations around the world. In this study, we evaluated four IQAir devices as candidate
sensors to be calibrated. These devices possess light-scattering laser photo sensors capable
of measuring airborne particles (PM2.5 and PM10) along with temperature and relative
humidity (RH) in real-time concentrations. The particulate matter (PM) sensors have a
measuring range of 0–1000 µg/m3 (resolution of 0.1 µg/m3). The temperature sensor
has a measuring range of −30 to 60 ◦C (resolution of 0.1 ◦C). The humidity sensor has a
measuring range of 0 to 100% RH (non-condensing) with a resolution of 1%. The devices
have a local storage capacity and also Wi-Fi connectivity for continuous data sharing.
According to the manufacturer’s website, the sensors are calibrated at the factory to ensure
high precision. In what follows, IQAir sensors will be identified with the initials HC.

2.1.2. AirBeam Devices

AirBeam is a small low-cost monitor manufactured by HabitatMap company (www.
habitatmap.org). In this study, we evaluated three AirBeam devices as candidate sensors
to be calibrated. The device possesses a digital universal particle concentration sensor
(Plantower PMS7003) to measure concentrations of airborne particles (PM2.5 and PM10)
along with temperature and humidity sensors. The PM sensors have a measuring range of
0–1000 µg/m3 (resolution of 1 µg/m3). The temperature sensor has a measuring range of
−40 to 150 ◦C (resolution of 1 ◦F). The humidity sensor has a measuring range of 0 to 100%
RH (non-condensing) with a resolution of 1%. The devices have a local storage capacity
and also Wi-Fi connectivity for continuous data sharing. In what follows, AirBeam sensors
will be identified with the initials AB.

2.1.3. Reference Air Quality Station

The reference station used in this study was a Teledyne API T640 Mass Monitor. This
instrument is a federal equivalent method (FEM), as designed by the U.S. Environmental
Protection Agency (EPA). The device uses scattered light spectrometry for measurement and
has the capability to continuously measure PM2.5 and PM10 concentrations. The measuring
range is 0–10,000 µg/m3 with a resolution of 0.1 µg/m3 and 1-h average precision of ±0.5
µg/m3. The equipment is operated by the Municipalidad Metropolitana de Lima.

2.2. Field Data Collection

A field data collection campaign was conducted with the above instruments between
the months of November 2021 to January 2022 in the city of Lima (Peru). The place of the
campaign was the roof of the Municipal Palace of Lima, located at the Lima main square at
latitude −12.045287317106624, longitude −77.03090612125114 (UTM Easting 278922, UTM
Northing 8667635) and altitude of 160 m above sea level. The height of the building was
about 8 m. Figure 1 shows the arrangement of the evaluated devices, located at a maximum
distance of 2 m from the reference station. The meteorological conditions of the site in the
period of data collection correspond to the end of the spring season and the beginning of
summer, with temperatures ranging from 18 to 26 ◦C and relative humidity between 70%
and 90%. The hourly averages of the wind speed vary between 0.5 and 2.1 m/s, with the
lowest values appearing between 5 and 9 h and the highest values between 17 and 21 h.
The prevailing wind direction is from the south, followed by the southeast. Figure 2a–d
shows plots of hourly averages of temperature, humidity, solar radiation, and wind speed,
respectively, throughout the day for each month involved in the data collection campaign.

www.habitatmap.org
www.habitatmap.org
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Figure 1. Place of the data collection campaign and the arrangement of the sensors. The reference
station (Teledyne) is located in the center.
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Figure 2. Plots of hourly mean temperature (a), relative humidity (b), solar radiation (c) and wind
speed (d) for the three months involved in the study (November 2021 to January 2022). The hourly
mean temperature and solar radiation increase with the arrival of summer (December–March), while
the humidity decreases.

2.3. Data Analysis

The time resolution of the raw data collected by the IQAir devices was fifteen minutes.
The time resolution of the raw data collected by the AirBeam devices was one minute.
The time resolution of the reference station was hourly. Therefore, we converted the data of
all devices to an hourly frequency (using mean aggregation) to be comparable. The periods
of field data collection for each set of sensors were as follows:

• IQAir: from 24 November 2021 to 30 December 2021 (873 h);
• AirBeam: from 15 November 2021 to 8 January 2022 (1320 h).

For purposes of development and evaluation of calibration models, the data were
divided into three time periods: Train (training), Ack (acknowledge) and Test (testing).
Data from Train and Ack periods were used to build the models, as will be described in the
next section. Data from the Test period were exclusively used for testing the performance
of the developed models.
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Figure 3 shows the hourly time series of PM2.5 and PM10 values registered by the
IQAir sensors (denoted as HC1, HC2, HC3, HC4) and the reference (Teledyne) sensor in
the considered period. We saw a noticeable overestimation of the PM2.5 IQAir sensors
when compared to the reference instrument, specially when the pollutant concentrations
were high. As for PM10, we observed a significant overestimation in the HC1 sensor,
although apparently the other PM10 sensors were close to the reference.

(a)

(b)

Figure 3. Plots of PM2.5 and PM10 hourly data collected by IQAir sensors and reference sensor
(Teledyne) during 24 November 2021 to 30 December 2021: (a) hourly PM2.5 series measured by
IQAir sensors; (b) hourly PM10 series measured by IQAir sensors.

To have a clearer idea of this, Figure 4 shows scatterplots of reference (Teledyne) vs.
IQAir hourly values in the Test period. We can verify the overestimation bias of PM2.5
sensors (regression lines above the diagonal line) and a moderate degree of accompaniment
(coefficient of determination R2 between 0.46 and 0.62). Regarding the PM10 sensors, we
can verify the large overestimation of the HC1 sensor, although this has the best R2 of all
PM10 sensors (0.57). The other sensors do not show an overestimation bias (in fact, they
underestimate), but they present low accompaniment (R2 less than 0.44).

Figure 5 shows the hourly time series of PM2.5 and PM10 values registered by the
AirBeam sensors (denoted as AB1, AB2, AB3) and the reference sensor (Teledyne) in the
studied period.

Figure 6 shows scatterplots of the reference (Teledyne) vs. AirBeam values in the Test
period. We can see that PM2.5 sensors do not present significant measurement bias (the
regression lines are close to the diagonal). In addition, they present a good accompaniment,
with R2 between 0.78 and 0.82. With respect to the PM10 sensors, these exhibit a marked
underestimation bias and a moderate accompaniment (R2 around 0.5).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Scatterplots of the reference (Teledyne) vs. IQAir hourly measurements in the Test period.
The top row shows results for the PM2.5 sensors. The bottom row shows results for the PM10 sensors.
The red line represents the linear regression function between candidate sensor values and reference
sensor values adjusted with data from the Train period: (a) HC1 (PM2.5); (b) HC2 (PM2.5); (c) HC3
(PM2.5); (d) HC4 (PM2.5); (e) HC1 (PM10); (f) HC2 (PM10); (g) HC3 (PM10); (h) HC4 (PM10).

(a)

(b)

Figure 5. Plots of PM2.5 and PM10 hourly data collected by the AirBeam sensors and the reference
sensor (Teledyne) during 15 November 2021 to 8 January 2021: (a) hourly PM2.5 series measured by
the AirBeam sensors; (b) hourly PM10 series measured by the AirBeam sensors.
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(a) (b) (c)

(d) (e) (f)

Figure 6. Scatterplots of the reference (Teledyne) vs. AirBeam sensor measurements in the Test period.
The top row shows results for PM2.5 sensors. The bottom row shows results for PM10 sensors. The
red line represents the linear regression function between candidate sensor values and reference
sensor values adjusted with data from the Train period: (a) AB1 (PM2.5); (b) AB2 (PM2.5); (c) AB3
(PM2.5); (d) AB1 (PM10); (e) AB2 (PM10); (f) AB3 (PM10).

2.4. Calibration Models

Two kinds of calibration models were evaluated: monosensor and multisensor calibration.

2.4.1. Monosensor Calibration Models

This type of model is the most common in the literature. In this approach, the cor-
rection model is adjusted for a specific candidate sensor using data from a period of
simultaneous measurements of that sensor and a co-located reference sensor. For better
explanation, we will assume that we have organized such data into a set of n observation
instances D = {(xi, yi)}n

i=1. Each instance (xi, yi) is formed by an input feature vector
obtained at time i, xi ∈ X, and the reference (target) value yi ∈ Y obtained at the same
time. In general, the input feature variables X are composed of the PM measurement of the
candidate device and other variables that it can measure and that can help in the correction
(temperature, humidity, etc.). The modeling process involves finding a mapping function
fθθθ : X → Y (the model) with parameters θθθ that minimize at each observation instance
(xi, yi) some loss function l(ŷi, yi) that expresses the divergence between the predicted
value ŷi = fθθθ(xi) and the actual reference value yi. For this work, we use the common
squared error loss l(ŷi, yi) = (ŷi − yi)

2. With this, the empirical loss of the model fθθθ on the
whole training set D is the mean squared error (MSE), defined as Equation (1).

MSED( fθθθ) =
1
n ∑

(xi ,yi)∈D
( fθθθ(xi)− yi)

2 (1)

For the present study, we evaluated the machine learning (ML) methods listed below as
inductors of monosensor calibration models. As input variables (features), we considered
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the common ambient parameters sensed by the candidate devices (particulate matter
concentration (PM), temperature (T) and relative humidity (RH)); thus, a data instance
is a vector xi = [PMi, Ti, RHi]. For the implementation and experimentation of the ML
methods, we used Python language and the library scikit-learn (Sklearn).

• Univariate Linear Regression: The calibration model follows the form: fθθθ(xi) =
θ0 + θ1PMi. The parameters are optimized using the ordinary least squares technique
implemented in the Sklearn library.

• lMultivariate Linear Regression (MLR): The calibration model follows the form [28]:
fθθθ(xi) = θ0 + θ1PMi + θ2Ti + θ3RHi. The parameters are optimized using the ordinary
least squares technique implemented in the Sklearn library.

• Nearest Neighbors Regression (KNN): This model predicts the target value of a
testing data instance based on the local interpolation of the targets of the k-nearest
neighbors instances in the training set. As distance metric, we use the Euclidean
distance and five neighbors, which experimentally showed to be adequate. Hagan
et al. [29] applied this approach for SO2 sensor calibration with good results.

• Support Vector Regression (SVR): This model is the extension of support vector
machines (SVM) for regression tasks. Only a subset of training instances is used in the
model (the support vectors), ignoring instances whose prediction is close to the target.
For the present study, we used default hyperparameters of the SVR implementation in
the Sklearn library: linear kernel, regularization parameter C = 1, maximum number
of iterations = 1000. Bigi et al. [30] applied SVR for NO/NO2 sensor calibration with
better results than linear models.

• AdaBoost Regression: This method sequentially builds an ensemble of predictors. Each
predictor is fitted using a weighted version of the dataset, where weights are adjusted
according to the error of the last predictor; thus, each new predictor focuses on more dif-
ficult cases. In this study, we used default hyperparameters of AdaBoost implementation
in Sklearn: number of predictors = 100 and learning rate = 1.0. Liang et al. [31] applied
this method to predict air quality index (AQI) levels with outstanding results among
various ML methods.

• Gradient Boosting Regression (GB): This method additively builds an ensemble
of predictors (decision trees). Each predictor is fit on the negative gradient of the
loss function of the previous model, thus trying to correct its errors. In this study,
we used default hyperparameters of AdaBoost implementation in Sklearn: number
of predictors = 100, learning rate = 0.1, maximum depth of individual predictors
(max_depth) = 3. Johnson et al. [32] applied this approach to calibrate PM2.5 sensors,
finding a better performance than linear models.

• Random Forest Regression (RF): This is an ensemble method that builds several
decision trees by sampling the training set with replacement (bagging) and also
performs feature sampling (random subspace). The final prediction is the average
of individual predictors, thus avoiding overfitting. In our experimentation, we used
default hyperparameters of random forest in Sklearn: number of predictors = 100,
max_depth = none (nodes expanded until all leaves are pure or contain two samples).
RF has been widely used in air quality sensor calibration with promising results [33,34].

• Extra Trees Regression (ET): This method is similar to RF in that multiple decision
trees are fitted to random sub-samples of the training set, and their predictions are
mean aggregated at testing stage. However, the sub-sampling is performed without
replacement. In addition, the nodes of decision trees are split randomly instead of
using a purity criterion. In our experiments, we used default hyperparameters of
random forest in Sklearn: number of predictors = 100, max_depth = none (nodes
expanded until all leaves are pure or contain two samples). This method has shown
outstanding performance predicting AQI values [35].
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2.4.2. Multisensor Calibration Models

This type of model is proposed here to calibrate a new sensor ST (target sensor) to be
incorporated into an existing sensor network. We assume that the sensors in operation (base
sensors) have passed an inter-comparison campaign with a reference station. However, we
consider that we do not have such field data for the new target sensor (or we have a limited
amount of these data).

Let us denote the set of base sensors as S1, S2, . . . Sk and their corresponding field
datasets as D1, D2, . . . Dk. Each dataset Di, called the base dataset, has a similar structure
as described in the previous section, namely: Di = {(xi, yi)}ni

i=1. With dataset Di, we
can induce a calibration model fi() for the base sensor Si using any of the ML methods
described in the previous section. Let us denote the set of resulting calibration models
(called base models) as { f1, f2, . . . , fk}. We drop θθθ from the model’s notation for simplicity,
but it is understood that each model is defined by its fitted parameters θθθ.

In Figure 7, we present a modeling framework from which we can derive various
approaches to calibrate the new target sensor ST based on the available base datasets or
base models. Next, we describe calibration models derived from this framework.

Reference Station

Base Sensors

Sensor 1

Sensor 2

Sensor n

D1

Base datasets

D2

Dk

ML

ML

ML

f1( )

f2( )

fk( )

..

.

..

.
..
.

fE ( )

..

.

Base Models

Target Sensor

Calibrated data

Target 
Sensor

PM, T, RH

Ensemble multisensor 
calibration with ACK data

Short 
intercomparison

DAck

ML

---
---
---

fAck( )

Ensemble multisensor 
calibration model

Intercomparison

Dmerge

vConcatenate

ML fmerge( )

Merge multisensor 
calibration model Reference Station

Average

Figure 7. Proposed framework for multisensor calibration modeling.

• Merge Multisensor Calibration Model: This model is obtained by first merging the
base datasets (vertical concatenation): Dmerge = vConcatenate(D1, D2, . . . Dk) and then
fitting a single model fmerge on this merged dataset using the same ML methods as
those indicated in Section 2.4.1. The idea behind fitting a model with data from several
base sensors is that it can generalize the calibration task to new sensors.

• Ensemble Multisensor Calibration: This model uses the base models to correct the
PM measurement of the target sensor at time point i as the mean value of the predic-
tions of the base models given the input feature vector xi obtained at that time i by the
target sensor (Equation (2))

ŷi = fE(xi) =
1
k

k

∑
j=1

( f j(xi)) (2)

• Ensemble Multisensor Calibration with Acknowledge Period: In this approach, we
assume that the target sensor passed a short intercomparison period with a reference
station (called the acknowledge period) obtaining a dataset DAck = {(xi, yi)}

nack
i=1 . Then,

this dataset is column-augmented by the predictions of the above ensemble multisensor
calibration (Equation (2)). This means that the extended dataset has the form D̃Ack =
{([xi, fE(xi)], yi)}

nack
i=1 . With this dataset, we propose to fit the final calibration model for

the target sensor fAck(xi) using an ML method. The idea of having as input variable
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the predictions of the ensemble of base models is to take advantage of the knowledge
captured on them, since they were fitted to a significant greater amount of field data.
In this way, it is expected to make efficient use of all available data and, at the same time,
to customize the model to the target sensor to improve efficiency in calibrating it.

3. Results and Discussion
3.1. Performance Evaluation of Monosensor Calibration Models

We first assessed the performance of the monosensor approaches described in
Section 2.4.1. For each sensing device and ML method, we performed a 10-fold cross-
validation evaluation on the training set (see Section 2.3) in order to determine the method
that best induces monosensor calibration models. More precisely, for a given sensor Si, we
randomly split the corresponding training set Dtrn

i into 10 equal parts (folds). Then, in an
iterative way, one fold is separated for testing and the remaining folds are used for fitting
the model, which is asked to predict the targets of the testing fold, and then an error metric
is calculated. After evaluating each fold as a test set, the mean and standard deviation of
the error metrics are calculated. We used the square root of the MSE (RMSE) as an error
metric, which can be interpreted in the same units of the predicted variable. All models and
evaluation were implemented in Python programming language using the Scikit-learn ML
library. For the ensemble methods, we used 500 estimators (it was verified experimentally
that more than this value did not improve the results).

Tables 1 and 2 show the cross-validation error metrics and standard deviations (in paren-
thesis) for PM2.5 and PM10, respectively. In general, we can see that among the methods
with less performance are the SVR and the multivariate linear regression. The methods with
the best results are random forest and extra trees. These methods show very close results, al-
though with extra trees having some tendency to overcome random forest in PM2.5. In PM10,
both methods offer remarkable results, without a clear trend of which is better. Interestingly,
the KNN method presents results close to the best despite its simplicity, although with a
higher standard deviation, which can represent unwanted performance variability with small
perturbation to the training and test data. These results are in line with other results reported
in the literature relating appealing results of ensemble methods in calibrating air quality
sensors [32–34,36,37], confirming the nonlinear behavior of these devices.

3.2. Performance Evaluation of Multisensor Calibration Models

The above evaluation showed that the random forest and extra trees methods consistently
induce models with the best cross-validated performances on the training set, with a slight
advantage for the extra trees method. Because of this, we selected this method to induce the
base models for the multisensor calibration approaches. The three approaches (Section 2.4.2)
were evaluated on a per-sensor cross-validation strategy: for given manufacturer (IQAir or
AIRBeam), one sensor was chosen as the candidate sensor to be calibrated (its dataset was
separated for testing the models). The remaining sensor’s datasets were used to induce the
multisensor calibration model, which was then asked to predict the calibrated test measure-
ments of the candidate sensor. Then, performance indices were calculated. This process was
repeated until every sensor was evaluated as a candidate sensor. As performance indices, we
used the coefficient of determination (R2) and the RMSE index. The R2 index measures the
proportion of co-variation between the model’s predictions and the reference values. A value
of one means a perfect accompaniment. A value less than or equal to zero means that the
reference’s mean is a better prediction than what the fitted model predicts. The RMSE is a
scale-dependent index and measures the actual differences between the model predictions and
the reference values. Both indices give a different and complementary perspective of a model’s
performance. For each candidate sensor and calibration approach, we ran ten independent
evaluations to obtain ten performance metrics. Then, for each candidate sensor, we compared
the means of the performance values among all pairs of studied calibration methods with a
t-test statistical test. We found that all pairs of calibration methods show statistical differences
in the means of performance metrics under the 0.05 significance level.
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Table 1. Cross-validated RMSE values of different monosensor calibration methods for calibrating
PM2.5 sensor values (IQAir and AirBeam). The cross-validation has been performed on training data
using 10 folds. Values in parenthesis are the standard deviation of the RMSE values obtained in the
10 folds. Bold numbers indicate the best values in each row.

Manufacturer Device MultivarLinear KNN SVR AdaBoost GradientBoosting Random Forest Extra Trees

IQAir

HC1 2.55 (0.38) 2.33 (0.50) 2.87 (0.83) 2.99 (0.26) 2.16 (0.38) 2.24 (0.36) 2.14 (0.29)

HC2 2.76 (0.47) 2.53 (0.60) 3.12 (1.01) 3.19 (0.39) 2.38 (0.26) 2.42 (0.35) 2.29 (0.33)

HC3 2.51 (0.39) 2.23 (0.49) 2.85 (0.85) 2.86 (0.42) 2.19 (0.29) 2.16 (0.46) 2.13 (0.35)

HC4 2.78 (0.48) 2.55 (0.52) 3.16 (0.83) 2.77 (0.38) 2.34 (0.28) 2.38 (0.38) 2.34 (0.34)

AirBEam

AB1 3.73 (0.40) 2.93 (0.33) 4.57 (0.79) 3.17 (0.29) 2.69 (0.23) 2.65 (0.27) 2.65 (0.26)

AB2 3.74 (0.49) 2.84 (0.39) 4.33 (0.81) 3.17 (0.31) 2.73 (0.30) 2.58 (0.35) 2.62 (0.29)

AB3 3.58 (0.65) 2.62 (0.41) 4.09 (0.85) 3.09 (0.39) 2.61 (0.38) 2.51 (0.36) 2.48 (0.23)

Table 2. Cross-validated RMSE values of different monosensor calibration methods for calibrating
PM10 sensor values (IQAir and AirBeam). The cross-validation has been performed on training data
using 10 folds. Values in parenthesis are the standard deviation of the RMSE values obtained in the
10 folds. Bold numbers indicate the best values in each row.

Manufacturer Device LinearReg KNN SVR AdaBoost GradientBoosting Random Forest Extra Trees

IQAir

HC1 7.93 (0.95) 8.64 (1.06) 10.8 (1.51) 8.8 (0.91) 8.44 (1.14) 8.09 (1.07) 8.07 (1.09)

HC2 7.92 (1.21) 8.08 (1.22) 9.98 (3.03) 8.74 (0.90) 8.26 (1.08) 7.95 (1.19) 7.94 (1.11)

HC3 7.79 (1.00) 7.75 (1.09) 9.85 (1.76) 8.12 (0.83) 7.67 (0.97) 7.38 (1.10) 7.43 (0.83)

HC4 8.47 (1.29) 8.59 (1.01) 10.3 (2.06) 9.01 (0.68) 8.86 (0.60) 8.41 (0.71) 8.53 (0.86)

AirBEam

AB1 10.2 (1.20) 9.47 (0.92) 11.4 (1.93) 9.64 (1.04) 10.1 (0.88) 9.5 (0.92) 9.46 (1.03)

AB2 10.3 (0.82) 9.2 (0.77) 11 (1.73) 9.34 (0.68) 9.42 (0.71) 9.05 (0.85) 9.2 (0.83)

AB3 9.84 (1.08) 8.87 (0.58) 10.8 (1.71) 9.21 (0.48) 8.94 (0.71) 8.74 (0.55) 8.72 (0.56)

Figure 8 shows scatterplots of R2 vs. RMSE mean values obtained on the test data for
each IQAir PM2.5 target sensor with the different multisensor approaches. Figure 9 shows
equivalent results for AirBeam PM2.5 sensors, and Figures 10 and 11 show results for PM10
sensors. Additionally, we have included in the plots the mean performance points of original
measurements (uncalibrated) and the monosensor models: univariate linear regression (Uni-
varLinear_MonoSensor), multivariate linear regression (MultivarLinear_MonoSensor) and
extra trees regression (ET_MonoSensor), which was the best monosensor model. The ideal
performance is when RMSE = 0 and R2 = 1, which corresponds to the lower right corner of
the plots. Thus, points closest to that corner represent models with better performance.

We can see that in the case of IQAir sensors, uncalibrated measurements perform
worse than calibrated data by any model. The UnivarLinear_MonoSensor model noticeably
improves the RMSE index on IQAir sensors, but the R2 remains unchanged as expected.
In the case of AirBeam, the UnivarLinear_MonoSensor correction worsens the RMSE with
respect to the uncalibrated data. In all sensors, the corrections performed with multivariate
models present better RMSE and R2 indices than the uncalibrated data or calibrated data
with univariate models. This effect can be attributed to the temperature and humidity input
variables in the multivariate models, which can be deduced to carry relevant information
to improve calibration performance. Among the monosensor approaches, the extra trees
regression has the best results in IQAir sensors (PM2.5 and PM10), significantly improving
the results of MultivarLinear_MonoSensor in R2 and RMSE metrics. However, in the case
of AirBeam, the best monosensor models correspond to multivariate linear regression,
with slighly better R2 and similar RMSE values. A possible explanation for this is that this
type of sensor may have a more linear behavior than those of IQAir, making the benefit of
using nonlinear models, such as extra trees, not evident.
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For the multisensor models, the ensemble approach for PM2.5 sensor calibration (En-
semb(ET)_MultiSensor) outperforms the merge approach in both performance indices.
In the case of PM10 sensors, the merge models tend to offer similar RMSE than En-
semb(ET)_MultiSensor models with some few cases also presenting better R2 (AB2, AB3).

For the ensemble models that combine acknowledge period data and base models
predictions (Ensemb(ET)_MultiSensor+Ack), we see better RMSE values compared to the
ensemble model without acknowledge data in most cases, conserving the R2 or improving
it (HC3-PM2.5, HC4-PM2.5, HC3-PM10, AB2-PM2.5, AB3-PM2.5, AB1-PM10). The case of
the IQAir PM10 sensor HC1 clearly shows the advantage of using the acknowledge period,
where the merge and ensemble models without acknowledge data present an RMSE of
around 50 (close to the RMSE of the original data). However, the acknowledge period
data leads the ensemble model performance to RMSE values less than eight. Most of the
Ensemb(ET)_MultiSensor+Ack models present performances close to the best monosensor
models. However, it is worth mentioning that these models only use a small proportion
of field data from the target sensor (4 days) compared to the 40 days of field data used
by the monosensor models. This implies that a new sensor can be incorporated into the
monitoring network without needing long-period field data to fit its calibration function.
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Figure 8. Scatterplots of R2 vs. RMSE mean values obtained on test data for each IQAir PM2.5 sensor
as candidate sensor with the different calibration models. The ideal performance is the point with
RMSE = 0 and R2 = 1, which is the lower right corner of the plots. Points closest to that corner
represent models with better performance. Subfigures correspond to the following PM2.5 candidate
sensors: (a) HC1; (b) HC2; (c) HC3; (d) HC4.
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Figure 9. Scatterplots of R2 vs. RMSE mean values obtained on test data for each AIRBEAM PM2.5

sensor as candidate sensor with the different calibration models. The ideal performance is the point
with RMSE = 0 and R2 = 1, which is the lower right corner of the plots. Points closest to that corner
represent models with better performance. Subfigures correspond to the following PM2.5 candidate
sensors: (a) AB1; (b) AB2; (c) AB3.
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Figure 10. Cont.
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Figure 10. Scatterplots of R2 vs. RMSE mean values obtained on test data for each IQAir PM10

sensor as candidate sensor with the different calibration models. The ideal performance is the point
with RMSE = 0 and R2 = 1, which is the lower right corner of the plots. Points closest to that corner
represent models with better performance. Subfigures correspond to the following PM10 candidate
sensors: (a) HC1; (b) HC2; (c) HC3; (d) HC4.
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Figure 11. Scatterplots of R2 vs. RMSE mean values obtained on test data for each AIRBEAM PM10

sensor as candidate sensor with the different calibration models. The ideal performance is the point
with RMSE = 0 and R2 = 1, which is the lower right corner of the plots. Points closest to that corner
represent models with better performance. Subfigures correspond to the following PM10 candidate
sensors: (a) AB1; (b) AB2; (c) AB3.
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3.3. Data Quality Objectives

Here, we present an analysis of data quality objectives according to the Ambient
Air Quality Directive 2008/50/EC, given by the European Commission (https://eur-lex.
europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050, accessed on 10 December
2022). This is a kind of standard to assess the equivalence of non-reference measurement
methods to the reference methods. To follow this guidance, we used the tool “Test the
equivalence V3.1” to facilitate the use of the directive for PM monitoring. This is pro-
vided by the European Commission at https://circabc.europa.eu/ui/group/cd69a4b9-1
a68-4d6c-9c48-77c0399f225d/library/24e15212-5858-4511-9da1-7ffb32683282/details (ac-
cessed on 10 December 2022). With this tool, we calculated the expanded uncertainty
of the original measurements and of the data corrected by our best calibration models
(Ensemb(ET)_MultiSensor+Ack). All the analyses were performed on the data of the test
intervals. Figure 12 shows the expanded uncertainty (Wcm) on test data of the differ-
ent IQAir and AirBeam sensors. It can be observed that in both pollutants (PM2.5 and
PM10), the original measurements do not pass the quality objective of 25% of expanded
uncertainty to be considered as equivalent measurement for the monitoring of particulate
matter. The original measurements also fail to pass the 50% criterion to be considered as
indicative measurement (except AirBeam PM2.5 sensors and an IQAir PM10 sensor). On the
other hand, the corrected measurements of PM2.5 by our best model exhibit an expanded
uncertainty below the 25% criterion, so it can be considered an equivalent measurement.
The corrected PM10 measurements fail to pass the 25% criterion of expanded uncertainty,
but in all cases, they exhibit an expanded uncertainty of less than 50%, so they can be
considered as indicative measurements.
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Figure 12. Expanded uncertainty of the original test measurements and of the data corrected by
our best calibration models (Ensemb(ET)_MultiSensor+Ack) of the different IQAir and AirBeam
sensors. The red line indicates the quality objective of 25% of expanded uncertainty to be considered
as equivalent measurement for the monitoring of PM, according to Directive 2008/50/EC of the Euro-
pean Commission; 50% of expanded uncertainty is the quality objective for indicative measurements;
(a) IQAir; (b) AIRBeam.

4. Conclusions

Currently, there is a strong interest in using low-cost technologies for air quality
assessment in order to avoid poor air quality for citizens, deploy political strategies for
public health and follow national and international regulations.

However, the data which arise from these sensors must be calibrated to ensure data
quality. The fitting of calibration functions is usually performed ad hoc for each sensor to
be incorporated in the network, requiring field data with a reference station for a period
of time, which is an expensive and time-consuming process. In this article, we evaluated
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https://circabc.europa.eu/ui/group/cd69a4b9-1a68-4d6c-9c48-77c0399f225d/library/24e15212-5858-4511-9da1-7ffb32683282/details
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several approaches to generate calibration models for a new sensor for which we have
no or very limited field data. The results lead us to conclude that the proposed strategy
combining pre-fit calibration models on an ensemble of sensors together with a reduced
period (4 days) of field data from the candidate sensor can provide performance similar
to that of the best fitted monosensor model adjusted with field data from that sensor over
a ten times longer period. With this approach, new sensors could be incorporated into a
monitoring network quickly but still guaranteeing the quality of the data. A limitation of
the study was the number of types of manufacturers and sensors. However, the results
indicate that having field data from as little as two sensors is useful with the proposed
approach to help build the calibration function for a new candidate sensor.

New research is needed to test the proposed approaches in different seasonal periods
and possibly investigate new input variables, such as month or season of the year. The im-
plications of our approach are the possibility of making available a multi-sensor calibration
function that can serve as a pretrained model to conduct transfer learning to new sensors
from the same manufacturer or from other manufacturers.
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