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Abstract: An Open Brain–Computer Interface (OpenBCI) provides unparalleled freedom and flexi-
bility through open-source hardware and firmware at a low-cost implementation. It exploits robust
hardware platforms and powerful software development kits to create customized drivers with
advanced capabilities. Still, several restrictions may significantly reduce the performance of OpenBCI.
These limitations include the need for more effective communication between computers and pe-
ripheral devices and more flexibility for fast settings under specific protocols for neurophysiological
data. This paper describes a flexible and scalable OpenBCI framework for electroencephalographic
(EEG) data experiments using the Cyton acquisition board with updated drivers to maximize the
hardware benefits of ADS1299 platforms. The framework handles distributed computing tasks and
supports multiple sampling rates, communication protocols, free electrode placement, and single
marker synchronization. As a result, the OpenBCI system delivers real-time feedback and controlled
execution of EEG-based clinical protocols for implementing the steps of neural recording, decoding,
stimulation, and real-time analysis. In addition, the system incorporates automatic background
configuration and user-friendly widgets for stimuli delivery. Motor imagery tests the closed-loop BCI
designed to enable real-time streaming within the required latency and jitter ranges. Therefore, the
presented framework offers a promising solution for tailored neurophysiological data processing.

Keywords: brain computer interfaces; OpenBCI; EEG; drivers; distributed systems; neurophysiological

1. Introduction

Using a Brain–Computer Interface (BCI), devices can be controlled by stimulating
brain electrical activity with a wide range of applications, including neuromarketing and
neuroeconomics [1,2], games and entertainment [3,4], security [5], frameworks for operating
medical protocols like cognitive state analysis, rehabilitation of individuals with motor
disabilities [6], diagnosis of mental disorders and emotion-based analysis [7], among others.
A recent development in using BCI technology in educational contexts is also reported [8].
It encompasses a robust set of competencies critical for individuals to contribute actively
to human development as part of the UNESCO Media and Information Literacy (MIL)
methodology, as discussed in [9,10].

Despite the availability of numerous technologies for neurophysiological data acqui-
sition in BCI, Electroencephalography (EEG) is the most common method for extracting
relevant information from brain activity due to its high temporal resolution and low cost,
portability, and low risk to the user [11]. Yet, scalp electrodes have severe disadvantages,
such as non-stationarity, low signal-to-noise ratio, and poor spatial resolution. Moreover,
adequate user skills are required to implement clinical protocols so that BCI must be
involved under controlled laboratory conditions like in Motor Imagery (MI) [12]. As a
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result, signal acquisition, instrumentation, and software development procedures must
be integrated effectively to validate clinical protocols for brain neural responses. The
implementation of BCI frameworks with acceptable reliability has therefore become a
challenging task.

Table 1 provides a comprehensive overview of the critical features supplied by leading
BCI acquisition systems. In particular, a couple of BCI systems for MI are presented:
Emotive EPOC+ (https://www.emotiv.com/epoc/, accessed on 1 October 2022) and B-
Alert x10 (https://www.advancedbrainmonitoring.com/products/b-alert-x10, accessed
on 1 October 2022). As a general rule, BCI designs should meet the following requirements
when used for clinical purposes [13–15]: (i) Accounting for the high-quality acquisition of
EEG data at moderate costs; (ii) Adaptable to various experimental settings, allowing for
a wide range of processing complexity and scalability of applications, and (iii) Ability to
accommodate specialized software to more general-purpose protocols. As regards the first
case, a BCI is typically designed to perform uncomplicated tasks and thus conceived in
a simplified configuration, including reduced state representations, low-frequency data
transmission, scalp placements with a few electrodes, or data processing modules with a
decreased computational burden. Nevertheless, several neurophysiological processes (such
as concentration, alertness, stress, and levels of pleasure) can demand more versatility and
enhanced technical requirements from BCI to gauge broader aspects of brain activity. In
addition, clinical devices still need real-time data flow access since they are often dedicated
to online analysis [16].

Table 1. Acquisition devices used for BCI. Bluetooth (BLE) devices tend to have slower speeds than
Radiofrequency (RF) and Wi-Fi communication protocols. Wired-based data transfers, like USB, have
the highest transfer rates.

BCI Hardware Electrode Types Channels Protocol and Data
Transfer Sampling Rate Open Hardware

Enobio (Neuroelectrics,
Barcelona, Spain) Flexible/Wet 8, 20, 32 BLE 250 Hz No

q.DSI 10/20 (Quasar Devices, La Jolla,
CA, USA) Flexible/Dry 21 BLE 250 Hz–900 Hz No

NeXus-32 (Mind Media B.V.,
Roermond, The Netherlands) Flexible/Wet 21 BLE 2.048 kHz No

IMEC EEG Headset (IMEC,
Leuven, Belgium) Rigid/Dry 8 BLE - No

Muse (InteraXon Inc., Toronto,
ON, Canada) Rigid/Dry 5 BLE 220 Hz No

EPOC+ (Emotiv Inc., San Francisco,
CA, USA) Rigid/Wet 14 RF 128 Hz No

CGX MOBILE (Cognionics Inc.,
San Diego, CA, USA) Flexible/Dry 72, 128 BLE 500 Hz No

ActiveTwo (Biosemi, Amsterdam,
The Netherlands) Flexible/Wet 256 USB 2 kHz–16 kHz No

actiCAP slim/snap (Brain Products
GmbH, Gilching, Germany) Flexible/Wet/Dry 16 USB 2 kHz–20 kHz No

Mind Wave (NeuroSky, Inc., San Jose,
CA, USA) Rigid/Dry 1 RF 250 Hz No

Quick-20 (Cognionics Inc., San Diego,
CA, USA) Rigid/Dry 28 BLE 262 Hz No

B-Alert x10 (Advanced Brain
Monitoring, Inc., Carlsbad, CA, USA) Rigid/Wet 9 BLE 256 Hz No

Cyton OpenBCI (OpenBCI, Brooklyn,
NY, USA) Flexible/Wet/Dry 8, 16 RF/BLE/Wi-Fi 250 Hz–16 kHz Yes

In the subsequent data processing analysis, three procedures are employed: signal pre-
processing, feature extraction, and classification/prediction inference. Additional modules
for control flow between devices and graphical user interfaces must also be incorporated.
In standard EEG clinical setups, all those components are executed simultaneously [17,18].
Furthermore, BCIs often do not run on real-time operating systems, meaning system
resources impact each component. To cope with this shortcoming, high-performance

https://www.emotiv.com/epoc/
https://www.advancedbrainmonitoring.com/products/b-alert-x10
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processing units running multiple processes on non-real-time operating systems can be
involved. As a rule, BCI complexity tends to reduce by allocating computationally intensive
tasks across a distributed system, resulting in improved system reliability and enhanced
performance [19]. However, the use of closed-loop BCI systems for the analysis of brain
neural responses implies data processing with extended complexity that requires syn-
chronization of the following components: acquisition, signals database/storage, feature
processing (extraction and classification), visualization (temporal, spectral, and spatial),
command generation for actuators, command database, and feedback acquisition. More-
over, protocols with Event-Related Potential require designs with higher precision for
marker synchronization, demanding low and consistent latency. These requirements for
enhanced stability and processing capacity become critical in research settings, where
centralized systems are vulnerable to slowing down due to unexpected computational
demands [20,21].

Next, Table 2 shows examples of the standard software tools for BCI that are au-
tonomous and run independently. Solutions for special applications like psychology,
neuroscience, or linguistics are also being developed through proprietary software. This
situation tends to hinder system extensibility due to limitations in data transmission proto-
cols and compatibility with limited hardware [22–24]. Besides, these proprietary solutions
may come with additional costs, technical expertise, and open-source benefits that require
high-level programming skills with limited support for data acquisition [25]. By contrast,
incorporating design strategies with open-source components may raise technology ac-
ceptance, lower creation costs, support collaborative development and make BCI designs
accessible to a broader class of developers. This freedom to access and modify hardware
and firmware provides ample opportunities to create custom drivers with cutting-edge
features of functionality and performance [26,27]. Nevertheless, only one of BCI’s options
in Table 1 is open-source. Still, a context-specific design and suitable drivers are also
required in enhancing the technical features of baseline BCI frameworks [28,29].

Table 2. BCI software. The most widely used software comprises free licenses: GNU General Public
License (GPL), GNU Affero General Public License-version 3 (AGPL3), or MIT License (MIT). Usually,
open-source tools admit extensibility by third-party developers.

BCI Software Stimuli
Delivery Devices Data Analysis Close-

Loop Extensibility License

BCI2000 (version 3.6, released in August 2020) Yes A large set In software Yes yes GPL
OpenViBE (version 3.3.1, released in November 2022) Yes A large set In software Yes Yes AGPL3
Neurobehavioral Systems Presentation (version 23.1,

released in September 2022) Yes Has official list In software Yes Yes Proprietary

Psychology Software Tools, Inc. ePrime (version 3.0,
released in September 2022) Yes Proprietary devices

only In software No Yes Proprietary

EEGLAB (version 2022.1, released in August 2022) No Determined by
Matlab System Matlab No - Proprietary

PsychoPy (vesion 2022.2.3, released in August 2022) Yes NO NO No Yes GPL
FieldTrip (version 20220827, released in August 2022) No NO System Matlab No Yes GPL

Millisecond Inquisit Lab (version 6.6.1, released in
July 2022) Yes Serial and parallel

devices NO No No Proprietary

Psychtoolbox-3 (version 3.0.18.12, released in
August 2022) Yes Determined by

Matlab and Octave NO No - MIT

OpenSesame (version 3.3.12, released in May 2022) Yes Determined by
Python System Python No Yes GPL

NIMH MonkeyLogic (version 2.2.23, released in
January 2022) Yes Determined by

Matlab NO No No Proprietary

g.BCISYS Yes Proprietary devices
only System Matlab No No Proprietary

OpenBCI GUI (version 5.1.0, released in May 2022) No Proprietary devices
only No No Yes MIT
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Here, we present a new OpenBCI framework designed to meet the requirements
of a broader class of MI protocols, embracing three components: (i) acquisition drivers
enhanced for OpenBCI that offer high-level features, such as distributed and asynchronous
data acquisition, enabled through a Python module wrapping the vendor’s SDK; (ii) a
distributed system strategy to eliminate latencies in BCI experiments by accurately synchro-
nizing markers and allowing for simultaneous data acquisition; (iii) a framework interface
to integrate a full-featured BCI into a single application, streamlining the deployment pro-
cess and reducing potential failure points. The OpenBCI framework leads to the automatic
creation of ready-to-use databases and simplifies testing and design procedures, enhancing
repeatability and speeding up debugging. Automatic marker synchronization is also of-
fered to improve the integration of various features from multiple systems into a single
one. Results of experimental testing performed for the MI paradigm show effectiveness,
including binary deserialization, data transmission integrity and latency, EEG electrode
impedance measurement, and marker synchronization.

The remainder of this paper is organized as follows: Section 2 describes the methods
and software tools integrated into our development. Sections 3 and 4 depict the experimen-
tal setup and results regarding an illustrative example within a motor imagery paradigm
based on our OpenBCI tool. Finally, Section 5 outlines the conclusions and future work.

2. Materials and Methods

The presented OpenBCI-based framework embraces three steps: (i) custom drivers de-
veloped to optimize system performance; (ii) driver integration into distributed systems to
increase accessibility and usability; (iii) high-level implementation of BCI utilities provided
as a main interface, offering a user-friendly experience.

2.1. OpenBCI: Fundamentals of Hardware and Software Components

OpenBCI is a highly flexible open-source hardware option for biosensing applica-
tions [30]. The board can work with EEG signals and supports Electromyography (EMG)
and Electrocardiography. Furthermore, the biosensing board, as described in OpenBCI
Cyton (https://openbci.com/, accessed on 1 October 2022), features a PIC32MX250F128B
microcontroller, a ChipKIT UDB32-MX2-DIP bootloader, a LIS3DH 3-axis accelerometer,
and an ADS1299 analog-to-digital converter with eight input channels (expandable to 16)
with a maximum sampling rate of 16 kHz (as illustrated in Figure 1). The EEG channels
can be configured in either monopolar or bipolar mode, with the capability to add up
to five external digital inputs and three analog inputs. The Transmission Control Proto-
col (TCP) can also access data flow through a Wi-Fi interface. Table 3 summarizes the
main configurations of OpenBCI. Another option is RFduino, which by default supports
250 Samples per Second (SPS) and eight channels. However, with the addition of the
Daisy module, it can expand to 16 channels, and with the Wi-Fi shield, the sample rate
can increase to 16 kHz. Of note, the whole electrode montage is configurable in monopo-
lar, bipolar, or sequential modes. The Cyton board is equipped with Python-compatible
drivers (https://github.com/openbci-archive/OpenBCI_Python, accessed on 1 October
2022), which have now been deprecated in favor of a new, board-agnostic family pro-
vided by BrainFlow (https://brainflow.org/, accessed on 1 October 2022). By developing
board-specific drivers, the low-level features of the board will be integrated into their
final version through high-level configurations. Computer-board communication is only
occasionally reliable, and its GUI does not allow for data acquisition under specific param-
eters. However, the hardware and Software Development Kit (SDK) of the OpenBCI board
offer the potential for implementing a complete framework comparable to medical-grade
equipment [31].

https://openbci.com/
https://github.com/openbci-archive/OpenBCI_Python
https://brainflow.org/
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Figure 1. The OpenBCI system is equipped with a Daisy extension board and a WiFi shield for up
to 16 channel support and 8 k SPS. It also includes an EEG cap with conductive gel for improved
conductivity.

Table 3. OpenBCI Cyton configurations using Daisy expansion board and Wi-Fi shield.

OpenBCI Cyton Channels Digital Inputs Analog Inputs Max. Sample Rate Featured Protocol

RFduino 8 5 3 250 Hz Serial
RFduino + Daisy 16 5 3 250 Hz Serial

RFduino + Wi-Fi shield 8 2 1 16 KHz TCP (over Wi-Fi)
RFduino + Wi-Fi shield + Daisy 16 2 1 8 KHz TCP (over Wi-Fi)

2.2. High-Level Acquisition Drivers for OpenBCI

OpenBCI offers two main connection modes to communicate with the computer.
The default connection is serial, where the computer recognizes the board as a serial
device through a USB adapter that utilizes the proprietary RFDuino interface. It contains
a Bluetooth-modified protocol designed to achieve high data transfer rates. With this
interface, the maximum sample rate for eight channels is 250 Hz. Communication between
the computer and the board is based on simple read-and-write commands, where the
computer reads a specified number of bytes from the board or writes a specified number
of bytes to the board. This streamlined communication protocol allows easy integration
with various software applications. In addition to the serial interface, the OpenBCI system
offers the option to increase the sample rate to 16k Hz with a Wi-Fi Shield. Yet, these high
sample rates could be more practical for BCI applications, and it is easier to handle rates in
the 1-2 kSPS. Further, the Wi-Fi connection supports Message Queue Telemetry Transport
(MQTT) and TCP, with the latter being the preferred choice due to its simplicity. The
OpenBCI is based on ADS1299, a 24-bit analog-to-digital converter from Texas Instruments
designed specifically for biopotential measurements. It has been built using the ChipKIT
development platform and its associated firmware. The Python-based SDK for OpenBCI
defines an instruction set based on Unicode character exchange. This instruction set
extends the system’s capabilities when operating in Wi-Fi mode. Besides, the protocols
used for communication with the board are serial for the USB dongle and TCP for the
Wi-Fi interface. Figure 2 illustrates the architecture of the proposed cross-platform drivers,
starting with a foundation built on low-level features supported by OpenBCI’s SDK. The
blue boxes in the figure represent these low-level features, which serve as essential building
blocks for developing more complex functions. The SDK’s low-level features include tools
and functionalities that provide access to raw BCI data and primary signal processing and
feature extraction techniques. At the top layer of the drivers, the main interface, represented
by the green boxes, provides access to a range of high-level elements essential for various
BCI applications. These high-level features include data storage, marker synchronization,
and impedance measurements. For example, the data storage feature ensures a secure
and organized repository of large amounts of data, holding real-time synchronization
of markers. Likewise, the impedance measurement feature is crucial for measuring the
impedance between EEG electrodes and the scalp, ensuring the quality of signals. The
proposed cross-platform drivers aim to provide a consistent and uniform interface across
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different platforms, making it easier for developers to write code once and run it on multiple
platforms with minimal modifications.

– Select a block of binary data.
– Prepend the offset data to the block.
– Find the bytes header 0xa0 and slice the block with this byte as the first element and

the remaining 33 bytes (at this point, the data is a list of arrays with a maximum length
of 33 elements).

– Crop the block of binary data to ensure the length of all elements is 33 and store the
offset to complete the next block.

– Create a matrix of shape (33,N). Now, the data structure on a shape (33,N) must meet
a set of conditions: all first columns must contain a 0xa0 value; the second column
must be incremental, and the last column must be in format 0xcX, holding the same
value. Any row outside of these rules must be removed.

We perform data acquisition and deserialization separately to ensure a suitable struc-
ture. The module implements a multiprocessing queue for accessing data. The transmission
format can be configured as RAW, binary, or formatted using JavaScript Object Notation
(JSON), which has the advantage of already being deserialized, but the disadvantage of
variable package size. Of note, RAW fixes the package size issue but requires a deserial-
ization process. Still, RAW is fixed due to its fast transmission and ease of detecting lost
packets. The primary EEG records are written in 24 bytes, compressing the eight channels
of 24-bit signed data. This conversion is challenging for Python as there is no native 24-bit
signed format. Therefore, a specific format has been implemented to interpret 16 channels
using the same amount of data transmitted. Furthermore, Cyton and Daisy transmissions
are interleaved, with empty blocks filled using the mean of the last two transmissions from
the same board. The abovementioned process is described in Table 4. After acquiring the
binary data, a deserialization process is necessary. This process consists of converting the
bytes into values with physical units, i.e., µV for EEG and g for acceleration. Once the
stream is started, a continuous flow of binary data is stored in a queue-based structure.
Then, samples are processed to extract EEG and auxiliary information. Finally, a few steps
must be implemented to deserialize the binary code package: Figure 3 shows graphically
how a corrupted data set is cleaned and contextualized to deserialize the main structures.
It is worth mentioning that the OpenBCI system allows for the customization of auxiliary
data, which is set to accelerometer measurements by default. However, three signal types
can be utilized: digital, analog, and marker. In marker mode, specific values can be pro-
grammed into the time series, while in digital and analog modes, signals can be inputted
through physical ports. The ability to acquire external signals in addition to EEG signals
is a crucial attribute, as it enables the system to measure latency values. After that, the
presented high-level drivers leverage the OpenBCI configurations, as depicted in Table 5.

Table 4. EEG data package format for 16 channels.

Received Upsampled Board Data Upsampled Daisy Data

sample(3) avg[sample(1), sample(3)] sample(2)
sample(4) sample(3) avg[sample(2), sample(4)]

sample(5) avg[sample(3), sample(5)] sample(4)
sample(6) sample(5) avg[sample(4), sample(6)]

sample(7) avg[sample(5), sample(7)] sample(6)
sample(8) sample(7) avg[sample(6), sample(8)]
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Figure 2. High-level acquisition drivers. Our architecture connects hardware features with the
OpenBCI SDK to access all configuration modes, resulting in a cross-platform driver with low-level
features (represented by blue boxes). External systems will utilize these features to deploy high-level,
context-specific features.

Version February 23, 2023 submitted to Sensors 9 of 23

Raw block of binary data with inconsistent bytes and missing ones.

Block of binary data aligned and reshaped.

Figure 3. Proposed OpenBCI Cyton-based data block deserialization. Data deserialization must guarantee a
data context to avoid overflow in subsequent conversion. The first block of columns, from 2 to 26, contains
the EEG data, and the remaining ones, e.g., 26 to 32, gather the auxiliary data.

Figure 4. Composition of the data block throughout the distributed data acquisition and processing system,.
aA complete latency measurement must consider all systems where data is propagated. An accurate measure
requires feedback and comparisons.

within the framework and others from outside. These services communicate using either Kafka247

or WebSockets, depending on the priority level or the information transmitted. This distributed248

network architecture helps ensure the efficient and reliable operation of the proposed BCI tool.249

Data analysis of the developed BCI-Framework is powered by Python and its extensive collection250

of scientific computing modules. The Python programming has proved suitable for developing251

neuroscience applications /cite[iwanaga2021toward]. Moreover, numerous modules, such as252

MNE7, are specifically designed to explore and analyze human neurophysiological data. The253

procedures in Numpy8 and Scipy9 can be used to implement custom analyses, and Scikit-learn10
254

and TensorFlow11 used to implement machine and deep learning approaches.255

Our framework allows building a BCI system by quickly accessing EEG signals and256

markers without worrying about acquisition, synchronization, or distribution. This approach257

allows real-time analysis to be implemented as a basic Kafka consumer or transformer that can258

7 https://mne.tools/
8 https://numpy.org/
9 https://scipy.org/

10 https://scikit-learn.org/
11 https://www.tensorflow.org/

Figure 3. Proposed OpenBCI Cyton-based data block deserialization. Data deserialization must
guarantee a data context to avoid overflow in subsequent conversion. The first block of columns,
from 2 to 26, contains the EEG data, and the remaining ones, e.g., 26 to 32, gather the auxiliary data.

Table 5. OpenBCI Cyton configurations using Daisy expansion board and a Wi-Fi shield.

OpenBCI Cyton Channels Digital Inputs Analog Inputs Max. Sample Rate Featured Protocol

RFduino 8 5 3 250 Hz Serial
RFduino + Daisy 16 5 3 250 Hz Serial

RFduino + Wi-Fi shield 8 2 1 16 KHz TCP (over Wi-Fi)
RFduino + Wi-Fi shield + Daisy 16 2 1 8 KHz TCP (over Wi-Fi)
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2.3. Distributed System for Fixed Latencies

The real-time capability of the introduced framework is defined based on the trans-
mission of sampling blocks. Remarkably, our approach guarantees that EEG data blocks
of duration P will be ready to use within a time less than P, regardless of the block’s
duration [32]. This definition is necessary for comparing different system arrangements
and assessing the flexibility in sampling rate, number of channels, protocols, and data block
transmission. In addition, latency is expressed as a percentage to simplify the comparison
of system capabilities when designing and developing a BCI. Further, the measurement
process for latency, as shown in Figure 4, requires asynchronous measurements across
multiple systems due to the distributed nature of the proposed interface.

The backbone of our distributed system is Apache Kafka, a robust platform for build-
ing real-time data pipelines and applications. Its ability to manage large amounts of
high-throughput data, its simple protocol using a topic string identifier, and its capability to
handle real-time data streams make it an ideal solution for many applications that require
real-time processing and responsiveness. Hence, using a single server further accelerates
message transmission by eliminating redundant message allocation and triggering. Further-
more, the versatility of Apache Kafka is enhanced by the availability of a Python wrapper
called Kafka-Python (https://kafka-python.readthedocs.io/en/master/, accessed on 1
October 2022). As demonstrated by the real-time streaming of EEG data in a BCI system,
Apache Kafka’s suitability for real-time processing and responsiveness is apparent.

For developing a distributed acquisition, a dedicated operating system only operating
the essential processes and daemons (including the Apache Kafka server) is recommended
using a Single Board Computer (SBC) with a minimal distribution of Linux, such as Arch-
linux ARM or Manjaro ARM Minimal. Upon boot, the system operates as a Real-Time
Protocol (RTP) server and Wi-Fi access point, and the Apache Kafka server starts in the
background. Next, the binary deserializer daemon begins listening for binary data, the
EEG streamer listens for deserialized records, and the Remote Python Call (RPyC) server
starts wrapping the drivers. RPyC is indispensable in this setup as it provides a transpar-
ent, symmetrical Python library for remote procedure calls, clustering, and distributed
computing. It enables the execution of Python code on remote or local computers as if it
were executed locally, making it convenient for both local and remote use. Moreover, RPyC
enables the acquisition server to access the EEG efficiently while allowing the execution of
Python code. Additionally, RPyC facilitates quick computation, even if the processing is
performed remotely. The data can be effortlessly transmitted from the acquisition server to
the processing server, guaranteeing a smooth flow throughout the system. In contrast to
Apache Kafka, which handles large amounts of high-throughput data and provides real-
time processing and responsiveness, RPyC establishes a connection between two Python
processes and remotely access/control objects.

The overall architecture is depicted in Figure 5, showing the components and their
interactions with other message protocols. The architecture includes three data transmission
systems: PyC, Kafka, and Websockets. As highlighted in the yellow box, Kafka is crucial
to maintaining a distributed communication system across the entire architecture. The
green boxes represent other systems for tasks that do not require fast transmission or
communication between terminals. The blue boxes represent all terminals executing specific
tasks on independent computing units. If one terminal requires information from another,
Kafka efficiently and reliably transmits the information, ensuring seamless communication
between the terminals.

https://kafka-python.readthedocs.io/en/master/
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Figure 4. Composition of the data block throughout the distributed data acquisition and processing
system,. A complete latency measurement must consider all systems where data is propagated. An
accurate measure requires feedback and comparisons.

Version February 23, 2023 submitted to Sensors 10 of 23

Figure 5. Distributed system implementation using Apache Kafka. Generation and consumption of real-time
data are depicted, as well as the intermediation of a system that utilizes Websockets for additional tasks.
Blue blocks depict tasks that can be executed independently across different processes or computing devices.
The implementation of Apache Kafka serves as a mediator between various components and enables a
seamless and efficient flow of information. Green blocks represent client-server communication protocols
that are distinct from Apache Kafka.

connect to the EEG stream and consume the data to serve the user’s needs, generate reports,259

execute local commands, or send updated data back to the stream. The visualizations work260

similarly, except that they are limited to Kafka consumers as they are intended to be displayed261

within the BCI-framework interface over HTTP instead of creating a new data stream. Real-time262

visualizations comprise a computational process that manipulates the data to create and update263

static visualizations. The visualization environment automatically serves the real-time EEG264

stream, allowing the user to focus solely on the visualizations. Concerning the interface for265

stimuli delivery, it is the only one that interacts directly with the BCI subject. Neurophysiological266

experiments require a controlled environment to decrease the artifacts in the signal and keep the267

subject focused on his/her task [33,34]. Consequently, the stimuli must be delivered over a remote268

presentation system, which physically separates the subject from the user. The method selected269

to develop the environment with these features is the classic web application, which is based on270

HTML, CSS, and JavasScript Brython-Radiant framework12. Although this is a common feature in271

almost all neurophysiological experiments, after a series of observations and experience acquiring272

databases, we propose a brand new environment for designing, implementing, and configuring273

audio-visual stimuli delivery. Our interface allows the user to design flexible experiments and274

change the parameters quickly and easily without reprogramming the paradigm. Also, since the275

acquisition interface is integrated into the framework, the database is automatically created with276

all the relevant metadata and synchronized markers. Then the user only has to worry about the277

experiment while the database is generated on a second plane.278

Figure 6 outlines our OpenBCI-based framework, which integrates three key components279

into a unified system, offering a distinctive departure from conventional BCI systems where these280

components are often separate and poorly interconnected. The three components of our tool are281

the OpenBCI drivers, the distributed features, and the high-level interface. In a nutshell, our high-282

level interface provides a range of capabilities, including data analysis, real-time visualization,283

stimulus delivery, and an Integrated Development Environment (IDE). This integration results in284

a unified application interface with capabilities that can only be achieved through the synergistic285

relationship between the components. These capabilities include the creation of contextualized286

12 https://radiant-framework.readthedocs.io/

Figure 5. Distributed system implementation using Apache Kafka. Generation and consumption
of real-time data are depicted, as well as the intermediation of a system that utilizes Websockets
for additional tasks. Blue blocks depict tasks that can be executed independently across different
processes or computing devices. The implementation of Apache Kafka serves as a mediator between
various components and enables a seamless and efficient flow of information. Green blocks represent
client-server communication protocols that are distinct from Apache Kafka.

2.4. BCI Framework Interface

The proposed BCI framework is a powerful desktop application designed to provide
a complete EEG-based BCI system on a single, user-friendly platform. The framework is
developed entirely in Python and features a GUI built on PySide6, the latest stable release
of the PySide library. Likewise, our use of open-source libraries and free software helps
ensure the scalability and reconfigurability of the framework, allowing users to adapt
the software to their specific needs quickly. The software is designed with a modular
architecture, enabling almost all components to operate independently and communicate
via Websockets or simple HTTP requests with the main interface. Furthermore, our strategy
is optimized for use with the OpenBCI Cyton board, providing dedicated support for
reliable EEG data acquisition. This optimization allows the main machine running the
framework to allocate all its resources to data visualization, processing, and stimulus
delivery, ensuring smooth data flow throughout the system. We use background services
to run independent tasks, with some processes initiated from within the framework and
others from outside. These services communicate using either Kafka or WebSockets,
depending on the priority level or the information transmitted. This distributed network
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architecture helps ensure the efficient and reliable operation of the proposed BCI tool.
Data analysis of the developed BCI framework is powered by Python and its extensive
collection of scientific computing modules. The Python programming has proved suitable
for developing neuroscience applications. Moreover, numerous modules, such as MNE
(https://mne.tools/, accessed on 1 October 2022), are specifically designed to explore and
analyze human neurophysiological data. The procedures in Numpy (https://numpy.org/,
accessed on 1 October 2022) and Scipy (https://scipy.org/, accessed on 1 October 2022)
can be used to implement custom analyses, and Scikit-learn (urlhttps://scikit-learn.org/,
accessed on 1 October 2022) and TensorFlow (https://www.tensorflow.org/, accessed on 1
October 2022) used to implement machine and deep learning approaches.

Our framework allows building a BCI system by quickly accessing EEG signals and
markers without worrying about acquisition, synchronization, or distribution. This ap-
proach allows real-time analysis to be implemented as a basic Kafka consumer or trans-
former that can connect to the EEG stream and consume the data to serve the user’s needs,
generate reports, execute local commands, or send updated data back to the stream. The
visualizations work similarly, except that they are limited to Kafka consumers as they
are intended to be displayed within the BCI framework interface over HTTP instead of
creating a new data stream. Real-time visualizations comprise a computational process
that manipulates the data to create and update static visualizations. The visualization envi-
ronment automatically serves the real-time EEG stream, allowing the user to focus solely
on the visualizations. Concerning the interface for stimuli delivery, it is the only one that
interacts directly with the BCI subject. Neurophysiological experiments require a controlled
environment to decrease the artifacts in the signal and keep the subject focused on his/her
task [33,34]. Consequently, the stimuli must be delivered over a remote presentation system,
which physically separates the subject from the user. The method selected to develop the en-
vironment with these features is the classic web application, which is based on HTML, CSS,
and JavasScript Brython-Radiant framework (https://radiant-framework.readthedocs.io/,
accessed on 1 October 2022). Although this is a common feature in almost all neurophysio-
logical experiments, after a series of observations and experience acquiring databases, we
propose a brand new environment for designing, implementing, and configuring audio-
visual stimuli delivery. Our interface allows the user to design flexible experiments and
change the parameters quickly and easily without reprogramming the paradigm. Fur-
thermore, since the acquisition interface is integrated into the framework, the database
is automatically created with all the relevant metadata and synchronized markers. Then
the user only has to worry about the experiment while the database is generated on a
second plane.

Figure 6 outlines our OpenBCI-based framework, which integrates three key compo-
nents into a unified system, offering a distinctive departure from conventional BCI systems
where these components are often separate and poorly interconnected. The three com-
ponents of our tool are the OpenBCI drivers, the distributed features, and the high-level
interface. In a nutshell, our high-level interface provides a range of capabilities, including
data analysis, real-time visualization, stimulus delivery, and an Integrated Development
Environment (IDE). This integration results in a unified application interface with capabili-
ties that can only be achieved through the synergistic relationship between the components.
These capabilities include the creation of contextualized databases, real-time classifications,
closed-loop implementations, the design of low-latency neurophysiological paradigms, and
real-time visualization. Finally, multiple configurations and features of our framework hold
online documentation at BCI Framework Documentation (https://docs.bciframework.org/,
accessed on 1 October 2022).

https://mne.tools/
https://numpy.org/
https://scipy.org/
https://www.tensorflow.org/
https://radiant-framework.readthedocs.io/
https://docs.bciframework.org/
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Figure 6. Proposed BCI tool based on OpenBCI (hardware/software) and EEG records. Our approach
implements an end-to-end application. Beyond that, the synergy between this characteristic allows the
achievement of advanced features that merge the data acquisition with the stimuli delivery in a flexible
development environment. The yellow issue is related to the development of custom drivers for OpenBCI;
the green ones refer to the integrations over distributed systems; and the blue issue refers to the high-level
implementations of utilities served through the main interface.
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Figure 6. Proposed BCI tool based on OpenBCI (hardware/software) and EEG records. Our approach
implements an end-to-end application. Beyond that, the synergy between this characteristic allows
the achievement of advanced features that merge the data acquisition with the stimuli delivery in a
flexible development environment. The yellow issue is related to the development of custom drivers
for OpenBCI, the green ones refer to the integrations over distributed systems, and the blue issue
refers to the high-level implementations of utilities served through the main interface.

3. Experimental Setup

We conduct a classical experiment in the BCI field to showcase the capabilities of the
newly proposed OpenBCI-based framework, specifically a Motor Imagery (MI) paradigm.
This experiment aims to demonstrate the benefits of our tool, including data acquisition,
signal processing, and dynamic visualization. The ultimate goal of this test is to establish
a robust database that will support the development of further offline processing stages,
which can then be seamlessly integrated into the software for real-time feedback applica-
tions. Furthermore, by successfully testing the use of our framework in a well-established
experiment, we aim to demonstrate its versatility, reliability, and usefulness in various
BCI tasks.

3.1. Tested BCI Paradigm: Motor Imagery

MI is the act of imagining a motor action without actually performing it. For example,
during an MI task, a participant visualizes in their mind a specific motor action, such as
moving their right hand, without physically carrying it out. The planning and execution of
movements result in the activation of characteristic rhythms in sensorimotor areas, such
as α (8–12 Hz) and β (13–30 Hz) [35]. Investigating the brain dynamics associated with
MI can have significant implications for various fields, including evaluating pathological
conditions, rehabilitation of motor functions, and motor learning and performance [36].
As a result, BCIs that can decode MI-related patterns, usually captured through EEG
signals, and translate them into commands to control external devices, have received much
attention in the literature [35,37]. However, a significant limitation to the widespread
adoption of these systems is that approximately 15–30% of users need help to gain control
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over the interface, as they do not exhibit specific task-related changes in sensorimotor
rhythms during MI responses [38].

For concrete testing, our cue-based MI paradigm consisted of up to two different
motor imagery tasks, represented by a sequence of cues (arrow-shaped) with asynchronous
breaks. This paradigm utilized an arrow pointing to the left and right, which has been well
established and widely applied in previous studies [39,40]. Figure 7 depicts the timeline
of a single MI trial. It highlights the exact moment the system captures an event using
markers, which will be integrated into the EEG signal time series for analysis. This trial
is just one of many that will be administered to participants to build a comprehensive
database of their brain activity during MI tasks using our OpenBCI-based approach.
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3.2. Method Comparison and Quality Assessment

Most BCI experiments are highly dependent on acquisition quality. Indeed, the
acquisition stage is crucial, as the system must perform with high accuracy, such as proper
marker synchronization. During this stage, it is imperative to determine the precise moment
when the participant was exposed to a stimulus by analyzing the EEG signal over time.
Additionally, during the debugging phase of the experiment, several checks must be carried
out to verify electrode placement and communication stability and validate the integrity of
the collected data. These processes can pose challenges to the system. However, the easiest
way to identify and resolve any issues is to visualize the data in real-time, in the time and
frequency domains.

In addition, most approaches require multiple software tools, making it difficult to
compare results. To accurately assess system performance, latency, and jitter are the most
relevant measures [41,42]. Yet, due to varying sampling rates among acquisition systems,
it is necessary to express these quantities as a percentage of the duration of the acquired
data block. For example, if it takes 75 ms to transmit a 100 ms acquisition block, the latency
would be expressed as 75%. Here, latency refers to the time elapsed between the raw EEG
acquired from the board and its availability in the development framework. This analysis
is performed on a fully distributed system with the following conditions:

– OpenBCI acquisition system was housed within a dedicated SBC, specifically the
Raspberry Pi was selected for its ease of use and the ease with which it could be
transformed into a dedicated system [43,44].

– Data are read in a remote computer using the developed drivers.
– Block size is fixed at 100 samples according to latency analysis results.
– Samples per second are fixed at 1000 due to latency analysis results.

Furthermore, the system is designed to register and stream at all times alongside the
primary EEG data. This aspect enables developers to perform latency analysis without
configuring a particular mode. This situation means that the same conditions used in
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an EEG acquisition session can be utilized for latency analysis. Figure 8 illustrates the
experiment infrastructure implemented for this study. A Raspberry Pi card was configured
as both an acquisition server and an access point, providing a direct connection to the
OpenBCI acquisition system and reducing and stabilizing latency. The marker synchroniza-
tion, real-time data visualization, and experimental paradigm configuration systems can
be executed on any node connected to the network, either through a wired connection or
wirelessly via the access point established by the Raspberry Pi. To minimize congestion in
the acquisition data channel, all other nodes in this experiment were connected via a wired
connection.

Version February 23, 2023 submitted to Sensors 13 of 23

an access point, providing a direct connection to the OpenBCI acquisition system and reducing and349

stabilizing latency. The marker synchronization, real-time data visualization, and experimental350

paradigm configuration systems can be executed on any node connected to the network, either351

through a wired connection or wirelessly via the access point established by the Raspberry Pi.352

To minimize congestion in the acquisition data channel, all other nodes in this experiment were353

connected via a wired connection.354

Real-time
visualization

Paradigm
configuration

Marker
synchronization

Acquisition server
Stimuli delivery
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Figure 8. Implemented Motor Imagery experiment. Provided experimental setup utilizes a dedicated
wireless channel for data acquisition and a wired connection for the distributed systems, enclosing
real-time visualization, marker synchronization, paradigm configuration, and stimuli delivery.

4. Results and Discussion
4.1. Impedance Measurement of EEG Electrodes

The impedance of the electrode-skin interface is an essential factor to consider in
biopotential measurements, as it can significantly impact signal quality. Maintaining a
low-impedance electrode skin is recommended to ensure low amplification levels, even
below the resolution of the ADC. Our OpenBCI-based approach uses the ADS1299 ADC
for biopotential measurements, which includes a method for measuring impedance using
lead-off current sources. It involves injecting a small current of 6 nA at 31.2 Hz and
processing the resulting signal to calculate the impedance using Ohm’s law. Nevertheless,
the impedance measurement can be affected by nonstationary signals, such as during
the placement or manipulation of the electrode. Therefore, it is recommended to allow
for rest periods and follow best practices, such as taking short but sufficient signals and
removing nonstationary segments, to improve impedance measurement accuracy. We can
utilize the high-level driver to produce the results of a fundamental experiment where a
10 KOhm potentiometer is manipulated, depicted in Figure 9 that demonstrates how the
measurement impedance fluctuates gently within the device’s range. Regarding actual
skin-electrode impedance measurements, an acceptable range must be determined based
on the electrode impedance and the ADC’s input impedance to reduce the amplitude
variance caused by impedance and maintain comparable data channels.
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Figure 9. Real-time impedance measurement results by varying a 10 KOhm potentiometer.
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4.2. Comparison of Results Based on Latency Analysis

Figure 10 compares four relative timestamps and the block duration for our OpenBCI-
based tool within the tested MI paradigm. The binary time indicates the elapsed time from
when the raw data was acquired to when it was streamed through Kafka. Likewise, the
binary consumed time indicates the elapsed time from when the binary data was consumed
to when it was deserialized. The produced time reflects the transmission duration, which is
the time it takes for EEG data to be inserted into the Kafka stream until the final consumer
reads it. Note that the difference between zero and EEG produced includes the clock offset.
Therefore, the time between binary consumed and generated EEG includes the interval
for deserializing the raw data. In contrast, the time between binary produced and Block
duration represents the latency of the OpenBCI acquisition system when it operates over
the WiFi protocol. Additionally, it is worth mentioning that efficient and accurate EEG data
acquisition is crucial.

The process takes a long time, based on the results of deserialization. As seen in
Figure 11, when the same process was performed for six different block sizes while main-
taining the same 1000 SPS, the latency appeared to be linear for sizes under 1000 samples
and up to 100. When represented as a percentage, the latency stabilized at around 50%.
However, the greater the jitter, the longer the block size. This result suggests that the
optimal configuration for EEG acquisition using the developed drivers is a block size of
100 samples with a jitter of only 8 ms. Figure 10 displays how latency dispersion, or jitter,
increases as the acquired data passes through the different stages of transformation and
transmission. This graph can be used to calculate the time between crucial tasks. The sepa-
ration between the origin (0) and the red line corresponds to the EEG signal transmission
time through Kafka. The distance between the red line and the orange line represents the
deserialization time of the data as they are converted from binary to decimal. Furthermore,
the distance between the orange and green lines represents the binary data’s propagation
time, from when they are generated on the OpenBCI to when they are added to the Kafka
stream, including transmission via the WiFi protocol. The blue line corresponds to the
separation of each reading cycle in each iteration. For this experiment, the overall system
latency can be calculated as the distance from the red line to the green line, approximately
56 ms.

Notably, our BCI stands out from traditional systems by performing experiments
without needing a combination of systems or third-party applications. This limitation
in comparisons between specific experiments, as highlighted in Table 6, underscores the
importance of evaluating overall integrity rather than individual stages. Provided latency
analysis results reveal the superior performance of wired systems in terms of lower jit-
ter than wireless ones. Additionally, the latency of centralized implementations such as
BCI2000 + g.USBamp can vary based on the paradigm used, leading to differing latency
responses even with the same configuration. These findings highlight the need for careful
consideration of the configuration and implementation of BCI to ensure optimal perfor-
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mance and desired outcomes. Nevertheless, our OpenBCI tool offers a suitable sample rate
with an acceptable jitter level, even under a wireless implementation. Moreover, our ap-
proach maintains an acceptable latency for a low-cost, distributed, open-source framework,
providing a cost-effective solution for EEG-based applications.

Figure 10. Latency analysis for a fixed 100 samples block size and 1000 SPS. The latencies show the
elapsed time from reading the packet to the packaging time. The dashed line marks the minimum
latency, and the shade is the standard deviation for all segments.

Figure 11. Latency vs. Block size results. Left: latency is proportional to the block size for small size
values. Right: latency decreases for small block sizes but their standard deviation (jitter) increases for
larger ones. The preferred configuration was set up in 100 samples block size due to the lower jitter.

Table 6. Latency analysis for method comparison results. Latency has been expressed in terms of the
percentage of the block size to make possible the comparison between different configurations.

BCI System Sample Rate Block Size Jitter Communication Distributed Latency

BCI2000 + DT3003 [45] 160 Hz 6.35 ms 0.67 ms Wired No 51.9%
BCI2000 + NI 6024E [45] 25 kHz 40 ms 0.75 ms Wired No 27.5%

BCI2000 + g.USBamp [32] 1200 Hz 83.3 ms 5.91 ms Wired No 14, 30, 48%
OpenViBE + TMSi Porti32 [46] 512 Hz 62.5 ms 3.07 ms Optical MUX No 100.4%

OpenBCI Framework (ours) 1000 Hz 100 ms 5.7 ms Wireless Yes 56

4.3. Sampling Analysis

In turn, for sampling analysis, a 64-minute continuous EEG signal is recorded at a
sample rate of 250 SPS, with a block size of 100 samples and 16 channels. EEG channels
are complemented with auxiliary data configured in signal test mode, which enables a
square signal generator. To facilitate offline analysis, all channels are saved. In particular, to
ensure the accuracy of the sampling rate, it is necessary to reject trials with glitches in the
acquisitions caused by the transmission protocol. Three methods are employed to detect
these issues: (i) analyzing the timestamp vector to detect any deviation in the step that
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indicates missing data; (ii) utilizing the square signal generator feature in the ADS1299 SDK
to detect failed transmissions by observing variations in the pulse train in the auxiliary
data; and (iii) examining the sample indexes, which consist of a looped incremental flag,
to detect missing or duplicated data that will result in repeated or missing values in the
sequence.

Figure 12 compares the three methods for detecting failed transmissions and shows
their effectiveness. As depicted, all three methods effectively identify transmission failure
points in the 64-minute signal. However, the sample index method is preferred due to its
simplicity and efficiency. The missing samples are identified and marked as “BAD: sample”
for further examination. Removing a section of samples surrounding each detection is
recommended to account for the tendency of transmission failure points to cluster. The
latter ensures that all trials containing one of these markers are excluded from the analysis.
After identifying and removing flawed trials, the sample acquisition rate can be calculated.
Figure 13 compares the sampling rate before and after eliminating markers designated
as BAD samples. The left column shows the data without correction for sampling dis-
crepancies, while the right column displays the data after discarding the identified BAD
samples. The data in the right column is more refined and interpretable as it highlights
the period difference between millisecond samples. The figure’s top plot represents the
period difference, with a solid line marking the expected 4 ms (1/250 Hz) and a secondary
line marking 50 ms equally distributed above and below. After removing the samples
surrounding the “BAD: sample” markers, the bottom plot depicts the mean period for each
resulting segment.

Figure 12. Sampling lost detection results. The sampling loss can be detected by analyzing the
timestamp, using a test signal, or analyzing the sample index. Left column shows the complete time
series in blue with a highlighted area. Right column presents a zoomed-in image regarding some
samples irregularities.
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Figure 13. Sampling rate analysis results regarding bad markers removal. The sampling rate analysis
after removing bad markers evidence a data period acquisition close to 4 ms (250 SPS).

4.4. Interface Illustrative Capabilities

Our interface includes several features aimed at designing, developing, and debugging.
Of note, it allows monitoring event marker synchronization within the tested paradigm.
Synchronizing event markers in a distributed execution environment can lead to a slight
delay in the EEG signal from when the stimulus was presented. This offset, which may
not impact many BCI paradigms, can be problematic for such paradigms as Event-Related
Potential and Motor Imagery, requiring differences of less than 10 ms. To address this
issue, we propose synchronizing markers by implementing a Light-Dependent Resistor
(LDR) module connected to pin D11 (or A5) of the OpenBCI and configured for analog
mode acquisition. So, we calculate a single correction to the mean latency during the
experiment, leveraging the low variability of latency designed into the framework. The
main interface incorporates an automatic correction procedure that calculates and corrects
this latency within the system. Corrections are made during the delivery of stimuli, with
only a marker synchronization for the used area. The LDR module continuously senses
changes in the square signal and compares them to the streamed markers. Figure 14
illustrates the calculation performed for a sequence of simulated markers to achieve a mean
system latency of 0 ms. Furthermore, LDR can be applied per event, ensuring a precise
marker located at the moment of each occurrence. It should be noted that the LDR module
has to be continuously connected throughout the experiment. Figure 15 illustrates the
implementation of this trial-based correction approach in a two-class MI recording, e.g.,
left vs. right. The last two plots demonstrate the contrast between global latency and
trial-based correction.
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Figure 14. OpenBCI Framework results for marker synchronization within the real-time interface.

Next, topographic visualization of EEG electrode impedance is presented in Figure 16,
concerning our OpenBCI framework widgets. As seen, it facilitates cap tuning and check-
ing by displaying the impedance value and the exact electrode and channel it belongs
to. Similarly, real-time visualization of the acquired signals is an essential aspect of BCI
experiments, as it enables the detection of any potential issues with the network connection
or specific electrodes. The IDE in our BCI system provides powerful EEG visualization
capabilities, both in the time and frequency domains, as demonstrated in Figure 17. Fur-
thermore, with the IDE, custom visualizations can also be easily created to meet the specific
needs of the experiment.

Furthermore, our IDE features a user-friendly Application Programming Interface
(API), making it easy to create custom visualizations. Hence, users focus more on ma-
nipulating input data than worrying about acquisition parameters or signal transmission.
For example, Figure 18 illustrates the composition of an introductory MI trial and demon-
strates the pipeline system’s stability, ensuring the intervals between T0− T1, T1− T2, and
T2 − T3 remain consistent across all executions, despite fluctuations in view execution. Fi-
nally, Figure 19 shows the IDE interface used to create a simple motor imagery experiment.
The environment includes an area for code editing, a preview of the designed interface, a
file browser, and a debugging console. Once development is complete, this interface can be
executed separately and serve remote stimuli to the patient through a specific IP that can
be deployed through any browser.
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Rise-up detectors

Latencies spotted by the LDR signal

Global latency correction

Specific trial latency correction

Figure 15. Automatic marker synchronization results. The top figure shows the signal generated
by the LDR. The second figure visualizes the latencies in the system. The third figure shows what
happens when all latencies are corrected with the same adjustment value, and the final plot has
adjusted the latencies individually for each marker.
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Figure 16. Interface widget for real-time impedance visualizer. OpenBCI EEG cap for 16 channels is
used within our MI paradigm.

Figure 17. Time and frequency custom data visualizations. On the left side, the signal is filtered from
5 to 45 Hz, and on the right side, the spectrum of the channels is visualized within a bandwidth
ranging from 1 to 100 Hz.
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Figure 18. Stimuli delivery pipeline for MI paradigm. Each trial is composed of views; the pipeline features
define the asynchronous execution of each view at the precise time.

Figure 19. Integrated development interfaces displaying areas for code editing, file explorer, experiment
preview, and debugging area for our OpenBCI Framework

Future work will extend the proposed framework to 32 and 64 EEG channels [47,48].494

This work uses the OpenBCI Cyton board, one of the highest-performing hardware devices.495

However, we want to test upcoming acquisition boards integrating the most recent technology and496

communication protocols. Also, close-loop approaches and advanced machine and deep learning497

algorithms will be tested to study poor skills issues with OpenBCI-based solutions [36,49].498
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Figure 18. Stimuli delivery pipeline for MI paradigm. Each trial is composed of views; the pipeline
features define the asynchronous execution of each view at the precise time.



Sensors 2023, 23, 3763 21 of 24

Figure 19. Integrated development interfaces displaying areas for code editing, file explorer, experi-
ment preview, and debugging area for our OpenBCI Framework

5. Conclusions

We introduced a flexible, scalable, and integral OpenBCI framework for supporting
EEG-based neurophysiological experiments. For such a purpose, the single-board OpenBCI
Cyton was chosen, and a brand new set of drivers was developed to maximize the hardware
benefits of the ADS1299. Our approach supports multiple sampling rates, packaging sizes,
communication protocols, and free electrode placement, making it suitable for EEG data.
Furthermore, an innovative feature for marker synchronization was also added. The system
operates in a distributed manner, which allows for the controlled execution of critical
processes such as acquisition, stimuli delivery, and real-time data analysis. Achieved
results under a motor imagery paradigm demonstrate that the system’s robustness and
stability are maintained through dedicated handling of the OpenBCI hardware. Real-
time streaming is guaranteed within acceptable latency, and jitter ranges for closed-loop
BCI compared to state-of-the-art approaches. The development environment provides a
complete API, automatic background configuration, and a range of easy-to-use widgets for
stimuli delivery, making it an ideal platform for BCI data processing and custom extension
development.

Future work will extend the proposed framework to 32 and 64 EEG channels [47,48].
This work uses the OpenBCI Cyton board, one of the highest-performing hardware devices.
However, we want to test upcoming acquisition boards integrating the most recent technology
and communication protocols. Furthermore, close-loop approaches and advanced machine
and deep learning algorithms will be tested to study poor skills issues with OpenBCI-based
solutions [36,49].
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