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Abstract: Robotic manipulation challenges, such as grasping and object manipulation, have been
tackled successfully with the help of deep reinforcement learning systems. We give an overview
of the recent advances in deep reinforcement learning algorithms for robotic manipulation tasks in
this review. We begin by outlining the fundamental ideas of reinforcement learning and the parts
of a reinforcement learning system. The many deep reinforcement learning algorithms, such as
value-based methods, policy-based methods, and actor–critic approaches, that have been suggested
for robotic manipulation tasks are then covered. We also examine the numerous issues that have
arisen when applying these algorithms to robotics tasks, as well as the various solutions that have
been put forth to deal with these issues. Finally, we highlight several unsolved research issues and
talk about possible future directions for the subject.
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1. Introduction

Industry 4.0’s embrace of artificial intelligence (AI) has drastically changed the in-
dustrial sector by allowing machines to operate autonomously, increasing productivity,
lowering costs, and improving product quality [1]. In order to make decisions quickly
and efficiently during the manufacturing process, artificial intelligence (AI) technology
analyzes enormous amounts of data produced by machines and processes. In the next five
years, its total market value is expected to triple [2]. Robotics is one of the markets that is
anticipated to expand at the fastest rates. With the concept of robot manipulation proposed
in 1962 [3], the idea of a robot is to mimic human behavior and tackle complex tasks. A
branch of robotics called robotic manipulation is focused on developing robots that can
manipulate items in their environment. Robotic manipulation seeks to develop robotic
systems that can carry out a variety of activities that call for the manipulation of things,
such as putting together goods in a factory, picking and placing items in a warehouse, or
performing surgery in a hospital. Robotic manipulation systems typically consist of a robot
arm, a gripper or end-effector, and a control system that coordinates the movement of
the robot arm and gripper. The gripper is in charge of grabbing and manipulating items,
while the robot arm is in charge of transferring them to the target area in the environment.
Figure 1 shows a classic robotic manipulation workflow. Moreover, Matt Mason provided
a thorough and in-depth description of manipulation in the introduction of his 2018 re-
view paper [4]. Robotic manipulation is used in various fields such as manufacturing,
agriculture, healthcare, logistics, space exploration, education, and research. It entails
using robots to carry out activities including assembling, planting, harvesting, operating,
managing goods, and performing experiments. In a variety of tasks, robotic manipulation
can boost productivity, cut human costs, increase accuracy, and enhance safety. In the
upcoming years, its application is anticipated to increase across a range of industries. In the
manufacturing sector, robots are used for tasks including component assembly, welding,

Sensors 2023, 23, 3762. https://doi.org/10.3390/s23073762 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073762
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-1075-2420
https://orcid.org/0000-0002-5439-1137
https://doi.org/10.3390/s23073762
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073762?type=check_update&version=1


Sensors 2023, 23, 3762 2 of 35

painting, and packaging. They have the ability to work carefully and diligently, increasing
productivity and decreasing costs. In the healthcare sector, robots may assist with tasks
including surgery, rehabilitation, and geriatric care. They can support healthcare personnel
by letting them focus on more challenging tasks while the robot handles the basic tasks.
In space exploration, robots are used to complete activities including sample gathering,
structure construction, and equipment repair. They can operate in environments that are
too dangerous or challenging for people, such as deep space or the ocean floor. However,
the interaction between robotic manipulator arms and objects designed for humans re-
mains a challenge. Up to now, no robots can easily achieve intelligent operations such as
handwashing dishes, peeling a pineapple, or rearranging furniture.

Figure 1. Classic robotic manipulation workflow.

A subfield of artificial intelligence called deep reinforcement learning combines rein-
forcement learning and deep learning, a technique for training artificial neural networks [5].
Robots are programmed with a set of rules and instructions that specify how they should
interact with items in their surroundings in conventional methods of robotic manipulation.
This approach is effective for simple activities, but it becomes more challenging as the
difficulty of the tasks increases. Robots may manipulate objects in their surroundings using
a process called deep reinforcement learning, which allows them to make mistakes and
learn from them. Deep reinforcement learning provides a more flexible and adaptable
method, allowing robots to learn from experience and change their behavior [6,7]. For
instance, the robot receives positive reinforcement if it successfully picks up and moves
an object to the desired location. If it drops the object or fails to transfer it to the desired
location, a negative reward is provided. Because it has the capacity to correlate some activi-
ties with good results and other actions with undesirable outcomes, over time, the robot
develops a strategy for accomplishing the task at hand [8]. Robotic manipulation using
deep reinforcement learning has the potential to change a variety of industries, including
healthcare and manufacturing. Allowing robots to learn from experience and adjust to
changing situations enables them to perform tasks that are too difficult or dangerous for
humans to complete. As research in this area advances, we can expect to see more capable
and advanced robots that can manipulate objects more precisely and effectively.

RL has been successfully applied to a wide range of problems in various fields, includ-
ing game-playing, recommendation systems, and finance. One successful use of RL is in
the game of Go [9], where DeepMind’s AlphaGo program defeated the world champion
Lee Sedol in 2016 to attain unparalleled success. In addition to its application in finance
to improve trading tactics and portfolio management, RL has been used to create recom-
mendation systems that can learn to give individualized suggestions depending on user
behavior [10]. Moreover, RL has been used for complicated issues in which conventional
rule-based systems or supervised learning approaches fall short, including those in the
domains of natural language processing [11], drug discovery [12], and autonomous driving
[13], among others. Creating algorithms that can precisely detect and distinguish objects in
images or video streams is one of the primary issues in computer vision. By giving agents
performance-based feedback in the form of rewards or penalties, RL can be utilized to teach
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agents to recognize objects [6]. As RL algorithms are capable of learning from experience
and adapting to shifting settings, they provide a promising solution to a wide range of
difficult issues in several industries.

In this survey, we will examine the key concepts and algorithms that have been
developed for DRL in the context of robotic manipulation. This will include a review of
techniques for reward engineering, such as imitation learning and curriculum learning,
as well as approaches to hierarchical reinforcement learning. We will also discuss the
various network architectures that have been used in DRL for robotic manipulation and
the challenges associated with transferring learned policies from simulation to the real
world. Finally, we will review both value-based and policy-based DRL algorithms and
their relative strengths and limitations for robotic manipulation tasks. The contributions of
the paper are:

• A tutorial of the current RL algorithms and reward engineering methods used in
robotic manipulation.

• An analysis of the current status and application of RL in robotic manipulation in the
past seven years.

• An overview of the current main trends and directions in the use of RL in robotic
manipulation tasks.

The rest of the paper is organized as follows. The methodology used to find and choose
relevant publications is described in Section 2. In Section 3, we introduce the key RL concepts
and state-of-the-art algorithms. Next, Section 4 continues by describing the learning methods
for DRL. In Section 5, we discuss the current neural network architectures in RL. In Section 6,
we take a deep dive into the applications and implementations of robotic manipulation. Then,
we describe the existing challenges and future directions with respect to previous work. The
final paragraph of Section 7 provides a summary of the knowledge obtained.

2. Search Methodology

Since RL is more adaptable in highly dynamic and unstructured environments than
more traditional or other AI control approaches, there has been a recent increase in interest
in using RL to operate robotic manipulators [14]. These techniques have demonstrated
impressive results in enabling robots to learn complex tasks and operate in dynamic
environments. Moreover, the growing interest in robotic manipulation in reinforcement
learning has been stimulated by the expanding availability of affordable and efficient
robotic hardware, as well as the rising demand for automation across a variety of industries.
Applications of this technology include manufacturing, logistics, healthcare, and home
automation, among others. So, the purpose of this review is to present an overview of the
major works using RL in robotic manipulation tasks and to analyze the future directions of
this topic. In order to achieve this goal, a thorough review of the literature is conducted,
and the content of more than 150 articles in relevant fields is searched and reviewed.

Given the enormous amount of literature on the subject, looking for papers on rein-
forcement learning for robotic manipulation can be a difficult task. Start by identifying the
relevant keywords for the search, such as “reinforcement learning”, “robotic manipulation”,
“manipulation tasks”, “control policies”, “deep learning”, etc. These keywords will help
narrow down the search to the most relevant papers. Use a specialized search engine such
as Google Scholar, IEEE Xplore, or ArXiv to search for papers related to reinforcement
learning for robotic manipulation. These search engines allow for filtering the results from
2015 to 2022. This period’s start was chosen because of the release of the RL and the deep
neural network using the AlphaGo program [15]. This innovation has made a significant
contribution to the rapid growth of RL.

Meanwhile, studies that were not appropriate for the scope of this review had to be
excluded even though they were relevant to the field of RL. Studies that are outdated or do
not contribute to the current state of the field should be excluded. Additionally, the authors
decided to exclude papers that are poorly written or that have significant methodological
flaws. An overview of the specified search criteria can be found in Table 1.
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Table 1. An overview of the specified search criteria.

Criteria Description

Keywords “reinforcement learning” AND “robotic manipulation” AND “manipulation
tasks” AND “control policies”

Search engine Google Scholar, IEEE Xplore, or ArXiv
Time period Between 2015 and the present

Publication type Academic conference paper and journal articles
Relevance Exclude studies that are not appropriate for the scope of the review
Outdated Exclude old papers that are no longer relevant to the current state of the field
Quality Exclude poorly written or methodologically flawed papers

3. Key Concepts and Algorithms of Reinforcement Learning

Reinforcement learning is a strategy that encourages an agent to take action and inter-
act with an environment in order to maximize the total rewards. The agent–environment
interaction process is shown in Figure 2. The agent takes action and receives feedback from
the environment in the form of rewards or punishments. The agent uses this feedback to
adjust its behavior and improve its performance over time.

Figure 2. Block diagram of typical RL.

An autonomous agent observes the state s(t) at a time step t and then interacts with
the environment using an action a(t), reaching the next state s(t + 1) in the process. Once a
new state has been achieved, the agent receives a reward correlated with that state r(t + 1).
The agent’s goal is to find an optimal policy, i.e., the optimal action in any given state.
Unlike other types of machine learning—such as supervised and unsupervised learning—
reinforcement learning can only be thought about sequentially in terms of state-action pairs
that appear one after the other.

RL assesses actions by the outcomes, i.e., the states, they achieve. It is goal-oriented
and seeks to learn sequences of actions that will lead an agent to accomplish its goal or
optimize its objective function. An example of the RL objective function is:

t=∞

∑
t=0

γtr(s(t), a(t)) (1)

This objective function measures all of the rewards that we will receive from running
through the states while exponentially increasing the weight γ.

Two important concepts of RL are Monte Carlo learning, which is a naive idea in
which the agent interacts with the environment and learns about the states and rewards,
and temporal difference (TD) learning, i.e., updating the value at every time step rather
than being required to wait to update the values until the end of the episode.

Although it is difficult to make a standardized classification of RL algorithms due
to their wide modularity, many current studies tend to divide them into value-based,
policy-based, and actor–critic algorithms (see Figure 3).
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Figure 3. Types of RL algorithms.

3.1. Markov Decision Process and RL

A Markov decision process (MDP) is defined as a tuple 〈S, A, r, T, γ〉 where S stands
for a set of states; A stands for actions; r, S × A → R denotes the function specifying
a reward of taking an action in a state; T : S × A × S → R denotes the state transition
function; and γ stands for the discount factor implying that a reward obtained in the future
is worth a smaller amount than an immediate reward. Solving an MDP involves finding a
policy that determines the optimal action for each state, with the goal of maximizing the
long-term discounted expected reward. This policy should be optimal with respect to the
MDP’s reward structure and discount factor.

3.2. Value-Based RL
3.2.1. Q-Learning

Q-learning [16] is a value-based TD method of reinforcement learning that uses Q-
values (also called state-action values) to iteratively develop the actions of the learning
agent. Q-learning learns the Bellman action-value function Q(s, a), which estimates how
good it is to take an action at a given state.

Q(s, a) = r(s, a) + γ max
a

Q
(
s′, a

)
. (2)

The Bellman action-value equation describes how to calculate the Q-value for an action
taken from a particular state, s. It is calculated as the sum of the immediate reward for
the current state and the discounted optimal Q-value for the next state, denoted by γ. In
Q-learning, the Q-value is updated using the following rule: The new Q-value is equal to
the old Q-value plus the temporal difference error. This update can be framed as trying to
minimize a loss function, such as the mean squared error loss:

L =

(
r + γ max

a′
Q
(
s′, a′; θ′

)
−Q(s, a; θ)

)2
. (3)

3.2.2. SARSA

The SARSA [17] algorithm is a policy-based variant of the well-known Q-learning
algorithm. Unlike Q-learning, which is an off-policy technique that learns the Q-value
using a greedy approach, SARSA is an on-policy technique that uses the action taken by
the current policy to learn the Q-value. To update Q-values, we use:

Q(s, a) = Q(s, a) + α
[
R + γQ

(
s′, a′

)
−Q(s, a)

]
. (4)

SARSA is a type of on-policy reinforcement learning algorithm, meaning that it learns
the value of actions based on the policy that is currently being followed. In SARSA, the
next action, a′, is chosen using the same epsilon-greedy policy as the action that led to
the current state, s′. One advantage of this approach is that SARSA is able to learn a near-
optimal policy while still allowing for some exploration. However, if the goal is to learn the
optimal policy, it may be necessary to carefully tune the decay rate of the epsilon value in
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the epsilon-greedy action selection process. On the other hand, Q-learning is an off-policy
algorithm that learns the optimal policy directly. While this can be more efficient in certain
cases, it also has a higher per-sample variance and can be more difficult to converge when
used with neural networks.

3.2.3. Deep Q-Learning (DQN)

One problem with traditional Q-learning is that the size of the Q-table grows expo-
nentially with the number of states and actions, making it impractical for many problems.
To address this, deep Q-learning (DQN) was introduced by Mnih et al. [18], which uses
a neural network to approximate the Q-values. As a universal function approximator,
the neural network is able to capture the relationships between states and actions more
efficiently than the Q-table.

However, one issue with using a neural network to learn the Q-values is that the
update rule (Equation (4)) depends on the values produced by the network itself, which
can make convergence difficult. To address this, the DQN algorithm introduces the use
of a replay buffer and target networks. The replay buffer stores past interactions as a list
of tuples, which can be sampled to update the value and policy networks. This allows
the network to learn from individual tuples multiple times and reduces dependence on
the current experience. The target networks are time-delayed copies of the policy and
Q-networks, and their parameters are updated according to the following equations:

θQ′ ← τθQ + (1− τ)θQ′ (5)

θµ′ ← τθµ + (1− τ)θµ′ (6)

where θµ′ and θQ′ denote the parameters of the policy and Q-networks, respectively.
Figure 4 shows the overall workflow of a deep Q-network.

Figure 4. Flowchart of DQN.

3.2.4. Double Deep Q-Learning (Double DQN)

One issue with the DQN algorithm is that it tends to overestimate the true rewards,
leading to inflated Q-values. To address this, the double DQN algorithm [19] introduces a
modification to the Bellman equation used in DQN. Instead of using the same equation,
the action selection and action evaluation are decoupled in the following way:

Q(s, a; θ) = r + γQ
(
s′, argmaxa′ Q

(
s′, a′; θ

)
; θ′
)

(7)

Here, the main neural network, θ, determines the best next action, a′, while the target
network is used to evaluate this action and compute its Q-value. This simple change has
been shown to reduce overestimations and lead to better final policies.
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3.2.5. Dueling Deep Q-Learning (Dueling DQN)

The dueling DQN algorithm introduced by Wang et al. [20] seeks to improve upon
traditional DQN by decomposing the Q-values into two separate components: the value
function, V(s), and the advantage function, A(s, a). The value function represents the
expected reward for a given state, s, while the advantage function reflects the relative
advantage of taking a particular action, a, compared to other actions. By combining these
two functions, it is possible to compute the full Q-values for each state-action pair.

To implement this decomposition, the dueling DQN algorithm introduces a neural
network with two separate output layers, one for the value function and one for the
advantage function. These outputs are then combined to produce the final Q-values. This
modification allows the network to learn more efficiently in situations where the exact
values of individual actions are not as important, as it can focus on learning the value
function for the state.

3.3. Policy-Based RL

Policy gradient (PG) methods are widely used reinforcement learning algorithms that
are particularly well-suited to situations with continuous action spaces [21]. The goal of an
RL agent using a PG method is to maximize the expected reward, J(πθ) = E

τ∼πa
[R(τ)], by

adjusting the policy parameters, θ. A standard approach to finding the optimal policy is to use
gradient ascent, in which the policy parameters are updated according to the following rule:

θt+1 = θt + α∇J(πθt) (8)

where α is the learning rate, and∇J(πθ) is the policy gradient. This gradient can be further
expanded and reformulated as:

∇J(πθ) = E
τ∼πθ

[
T

∑
t=0
∇θ log πθ(at | st)R(τ)

]
. (9)

In PG methods, the policy function, which maps states to actions, is learned explicitly
and actions are selected without using a value function.

3.3.1. Vanilla Policy Gradient (VPG)

In RL, it is often more important to understand the relative advantage of a particular
action, rather than its absolute effectiveness. The advantage function, Aπ(s, a), captures this
idea by measuring how much easier it is to take a specific action, a, in a state s, compared
to randomly selecting an action according to the policy, π, considering that the policy will
be followed indefinitely thereafter. Mathematically, the advantage function is defined as:

Aπ(s, a) = Qπ(s, a)−Vπ(s) (10)

where Qπ(s, a) is the action-value function, and Vπ(s) is the state-value function for the
policy π. Using this definition, the vanilla policy gradient (VPG) algorithm [21] can be
written as:

∇J(πθ) = E
τ∼πθ

[
T

∑
t=0
∇θ log πθ(at | st)Aπ(s, a)

]
(11)

Figure 5 describes the general workflow of the vanilla policy gradient.
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Figure 5. Flowchart of vanilla policy gradient.

3.3.2. Trust Region Policy Optimization (TRPO)

In policy gradient methods, we aim to optimize a policy objective function, such as
the expected cumulative reward, using gradient descent. These methods are well-suited
for continuous and large state and action spaces but can be sensitive to the learning rate. A
small learning rate may result in vanishing gradients, while a large learning rate may cause
exploding gradients. Trust region policy optimization (TRPO) [22] was introduced as a
solution to this problem, by constraining the optimization of a policy to a trust region. This
region is defined as the area in which local approximations of the function are accurate,
and the maximum step size is determined within it. The trust region is then iteratively
expanded or shrunk based on how well the new approximation performs.

The policy update in TRPO is given by the following optimization problem, which
uses the Kullback–Leibler (KL) divergence between the old and new policies as a measure
of change:

∇J(πθ) = E
τ∼πθ

[
πθ(at | st)

πθold (at | st)
Ât
]

(12)

subject to E
τ∼πθ

[KL[πθold (· | st), πθ(· | st)]] ≤ δ (13)

where δ is the size of the trust region, and the KL divergence between the old and new
policies must be less than δ. This optimization problem can be solved using the conjugate
gradient method.

3.3.3. Proximal Policy Optimization (PPO)

Proximal policy optimization (PPO) [23] is an algorithm that aims to address the
overhead issue of TRPO by incorporating the constraint into the objective function as a
penalty. Instead of adding a separate constraint, the KL divergence between the old and
new policies is subtracted from the objective function and multiplied by a constant C. This
allows for the use of simple stochastic gradient descent to optimize the function:

E
τ∼πθ

[
πθ(at | st)

πθold (at | st)
Ât
]
− C ·KLπθold (πθ) (14)

One challenge of PPO is choosing the appropriate value for C. To address this, the
algorithm updates C based on the magnitude of the KL divergence. If the KL divergence
is too high, C is increased, and, if it is too low, C is decreased. This allows for effective
optimization over the course of training.

3.4. Actor–Critic

Actor–critics [24] are RL algorithms that combine elements of both value-based and
policy-based methods. In this approach, the actor, a policy network, proposes an action
for a given state, while the critic, a value network, evaluates the action based on the state-
action pair. The critic uses the Bellman equation to learn the Q-function, and the actor is
updated based on the Q-function to train the policy. This allows the actor–critic approach
to take advantage of the strengths of both value-based and policy-based methods. Figure 6
illustrates the network architecture of the actor–critic.
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Figure 6. Flowchart of actor–critic.

3.4.1. Advantage Actor–Critic (A2C)

In the advantage actor–critic (A2C) algorithm [25], the critic is trained to estimate
the advantage function instead of the Q-function. This allows the evaluation of an action
to consider not only its success but also how much better it is compared to other actions.
Using the advantage function can help reduce the high variance of policy networks and
improve the stability of the model.

3.4.2. Asynchronous Advantage Actor–Critic (A3C)

The asynchronous advantage actor–critic (A3C) algorithm [25], released by Deep-
Mind in 2016, is a highly efficient and effective reinforcement learning algorithm that has
outperformed other methods, such as DQN, on many tasks. A key feature of A3C is its
asynchronous nature, which permits multiple independent agents (networks) with their
own weights to interact with different copies of the environment in parallel, allowing for
more efficient exploration of the state-action space. A3C has proven to be a robust and
reliable method, achieving high scores on standard reinforcement learning tasks.

3.4.3. Deep Deterministic Policy Gradient (DDPG)

Deep deterministic policy gradient (DDPG) [26] is a reinforcement learning tech-
nique that combines both deep Q-learning (DQN) [27] and deterministic policy gradients
(DPG) [28]. DDPG is an actor–critic technique, it uses two neural networks: a deterministic
policy network and a critic (Q) network. The policy network simply performs gradient
ascent to solve Equation (4). Note that the critic parameters are frozen as constants. The
critic network is updated similarly to Equation (3). Nevertheless, in DDPG, the updated
Q-values are calculated by the Bellman Equation (2) with the target Q-network and target
policy network. Then, we minimize the mean squared error loss between the original
Q-value and the updated Q-value:

L =
1
N ∑

i

(
Qold −

(
r(s, a) + γ max

a
Qtarget

(
s′, a

)))2
(15)

Since the policy is deterministic, it suffered from inefficient exploration when the
agent was to explore the environment. To improve the DDPG policy, the authors added
Ornstein–Uhlenbeck noise [29] to the selected actions during training. However, more
recent research implies that uncorrelated, zero-mean Gaussian noise is effective. Figure 7
shows the updated rule of the deep deterministic policy gradient.
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Figure 7. Flowchart of Deep Deterministic Policy Gradient.

3.4.4. Twin Delayed Deep Deterministic Policy Gradients (TD3)

Twin delayed deep deterministic policy gradients (TD3) [30] are the successor to DDPG.
Although DDPG is capable of providing excellent results, it has its drawbacks. Similar to
many RL algorithms, training DDPG can be unstable and heavily reliant on finding the
correct hyperparameters for the current task. This is caused by the algorithm continuously
overestimating the Q-values of the critic (value) network. These estimation errors build up
over time and can lead to the agent falling into a local optimum or experiencing catastrophic
forgetting. TD3 addresses this issue by focusing on reducing the overestimation bias seen
in previous algorithms.

TD3 has three main features that help to solve the aforementioned problems. Firstly,
TD3 uses two critic networks instead of one, and it uses the smaller of the two Q-values
as the targets in the Bellman error loss functions. This helps to reduce overestimation by
ensuring that the Q-value targets are more conservative. Secondly, TD3 updates the policy
(and target networks) less frequently than the Q-function, which is called twin delay. The
paper suggests one policy update for every two Q-function updates. This helps to reduce
over-fitting and improve the stability of the algorithm. Finally, TD3 adds noise to the target
action to make it harder for the policy to exploit Q-function errors by smoothing out Q
along changes in the action. This helps to improve the robustness of the algorithm and
reduce its reliance on hyperparameter tuning.

3.4.5. Soft Actor–Critic (SAC)

Developed jointly by UC Berkeley and Google [31], soft actor–critic (SAC) is a cutting-
edge reinforcement learning algorithm. It employs a maximum entropy approach in which
the goal is to determine the optimal policy that maximizes both the expected long-term
reward and the long-term entropy [32]. The objective function for this maximum entropy
RL is displayed below:

J(πθ) = Eπθ

[
T−1

∑
t=0

γtR(st, at) + αH(π(. | st))

]
(16)

The maximum entropy reinforcement learning objective is used to encourage explo-
ration. This is achieved by promoting policies that assign equal probabilities to actions
that have similar or almost equal Q-values, which leads to higher entropy. By explicitly
encouraging exploration in this way, SAC is able to effectively explore the state-action
space and find optimal policies.

SAC makes use of three networks: a state value function V parameterized by ψ,
a policy function parameterized by φ, and a final network that represents a soft state-action
value function parameterized by θ. We train the state value network by minimizing the
following error:

Est∼D

[
1
2

(
Vψ(st)−Eat∼πφ

[
Qθ(st, at)− log πφ(at | st)

])2
]

(17)
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The loss function implies that across all of the states that we sampled from our
experience replay buffer, we need to decrease the squared difference between the prediction
of our value network and the expected prediction of the Q-function minus the entropy of
the policy function π. We train the soft Q-network by minimizing the following error:

JQ(θ) = E(st ,at)∼D

[
1
2
(
Qθ(st, at)− Q̂(st, at)

)2
]

(18)

where
Q̂(st, at) = r(st, at) + γEst+1∼p

[
Vψ̄(st+1)

]
(19)

In simple words, training is performed by minimizing the squared difference between
the predicted Q-value and the reward plus the discounted expectation of the state-value of
the next state. Finally, policy network learning is based on:

Jπ(φ) = ESt∼D
[
DKL

(
πφ(· | st)‖ exp(Qθ(st, ·))

)]
(20)

attempting to make the distribution of our policy function look more similar to the distri-
bution of the exponentiation of our Q-function.

After the discussion of RL algorithms, there are two possible approaches for finding
the optimal policy: on-policy and off-policy. These two terms are used to describe how, in a
general sense, the agent learns and behaves during the training phase, as well as the two
main ways that an agent can go about learning/behaving. Table 2 shows categories of the
different RL algorithms.

Table 2. Categories of different RL algorithms.

Methods Value-Based Policy-Based Actor–Critic

On-Policy Monte Carlo
Learning/ SARSA REINFORCE(PG) A2C/ A3C/ TRPO/ PPO

Off-Policy Q-learning/ DQN
Double/ Dueling DDPG/ TD3/ SAC

While RL has proven to be a powerful approach to solving a wide range of problems,
there are several different algorithms that have been developed to address different types
of environments and learning objectives. In this context, it is important to understand the
strengths and limitations of these algorithms in order to make informed decisions about
which algorithm to use for a particular application. Table 3 describes the strengths and
limitations of the different RL algorithms.

Table 3. The strengths and limitations of different RL algorithms.

RL Algorithm Strengths Limitations

Q-Learning
Straightforward and easy to use, capable of

handling discrete state and action spaces,
eventually converges to the best possible policy

Suffers from slow convergence, difficulty using in
continuous action spaces

SARSA Manages stochastic environments and policies Slow convergence and difficulty using in continuous
action areas

Deep Q-Networks
(DQN)

Handle high-dimensional state spaces, directly
learns from sensory data

Difficulty using in continuous action spaces,
overestimation of Q-values
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Table 3. Cont.

RL Algorithm Strengths Limitations

Policy Gradient
Handles continuous action spaces, learns

stochastic policies, optimizes non-differentiable
objective functions

High variance in gradients, sensitive to
hyperparameters

Actor–Critic

Combines the advantages of policy gradient
and value-based approaches, handles
continuous and discrete action spaces,

concurrently updates policy and value function

Difficult to balance exploration and exploitation, high
variance in gradients

DDPG
Handles continuous action spaces and
high-dimensional state spaces, learns

deterministic policies,
Instability, overestimation bias

TD3 Same as DDPG and solves overestimation bias Instability, careful tuning of hyperparameters

SAC Same as TD3 and optimizes
entropy-regularized objectives

Computationally expensive, careful tuning of
hyperparameters

4. Reward Engineering
4.1. Imitation Learning

In imitation learning, the goal is to learn a policy that can mimic the behavior of an
expert. The expert’s behavior is represented as a set of demonstrations, which can be used
to train the policy. The policy is typically learned by minimizing the distance between
the expert’s behavior and the policy’s behavior, using a distance measure such as the KL
divergence or the maximum mean discrepancy. The advantage of imitation learning is that
it does not require a reward function to be specified, which can be difficult or infeasible in
some cases. However, it may not generalize well to situations that are different from those
encountered by the expert. The classification of imitation learning can be seen in Figure 8.

Figure 8. Classification of imitation learning [3].

4.1.1. Behavior Cloning

One popular algorithm for imitation learning is behavior cloning, where the goal is
to learn a policy that can mimic the expert’s behavior. This can be achieved by collecting
a dataset of expert demonstrations and using it to train a supervised learning algorithm
to predict the expert’s actions given the current state. The learned policy can then be
used to execute the desired behavior in the environment. Another approach is inverse
reinforcement learning, where the goal is to learn the reward function that the expert is
optimizing, and then use this reward function to train a policy using RL techniques. This
allows the agent to not only mimic the expert’s behavior but also adapt and improve
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upon it. An important example of behavior cloning is ALVINN [33], a vehicle equipped
with sensors that has learned to map the sensor inputs into steering angles and drive
autonomously. Dean Pomerleau initiated this research in 1989, and it was also the first
implementation of imitation learning in general.

4.1.2. Direct Policy Learning

In direct policy learning (DPL), the goal is to learn a policy that can replicate the
expert’s behavior as closely as possible. This is achieved through an iterative process
where the policy is trained using supervised learning on a dataset of demonstrations
provided by the expert. The trained policy is then implemented in the environment and
evaluated through interactions with the expert. Any additional data collected during
these interactions are then added to the training dataset, and the process is repeated until
the policy converges to a satisfactory level of performance. RL-teacher [34] is a specific
implementation of DPL that allows for the learning of novel behaviors without the need
for a pre-defined reward function or the ability for the expert to demonstrate the desired
behavior directly.

4.1.3. Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) [35] is a kind of imitation learning in which we
are given a policy or a history of behavior from an agent and use reinforcement learning to
try to discover a reward function that explains the behavior. IRL, similar to RL, is seen as an
issue as well as a category of techniques. However, there are two issues with discovering a
reward function that is best for observed behavior. First, for most observations of behavior,
there are many fitting reward functions. Many degenerate solutions exist in the set of
solutions, such as providing a reward of 0 to all states. Second, the IRL algorithms are
based on the assumption that the observed behavior is ideal. This is similar to over-fitting
in supervised learning.

IRL is a useful tool for understanding the motivations behind an agent’s behavior, but
it can be difficult to apply it in practice due to the ambiguities mentioned above. In order
to address these issues, researchers have proposed various techniques, such as maximum
entropy IRL [36] and Bayesian IRL [37]. These approaches aim to overcome the ambiguities
of IRL by incorporating additional assumptions or constraints, such as assuming that the
reward function is smooth or that the agent is rational. Despite these efforts, IRL remains
an active area of research and is not yet a widely used technique in practical applications.

4.1.4. Generative Adversarial Imitation Learning (GAIL)

Generative adversarial imitation learning (GAIL) [38] combines IRL with generative
adversarial networks (GAN). GAIL’s purpose is to train generators that behave similarly
to given experts. Meanwhile, the discriminators may be used as reward functions for RL,
which determines whether the actions match those of experts. GAIL can learn from a small
number of expert trajectories. GAIL is capable of handling difficult issues and generalizes
effectively to unknown scenarios. GAIL is not exactly IRL because GAIL learns the policy,
rather than the reward function, directly from the data.

4.1.5. Goal-Conditioned Imitation Learning (GCIL)

Goal-conditioned imitation learning (GCIL) [39] is a combination of the GAIL and
hindsight experience replay (HER) [40] algorithms. GCIL utilizes the benefits of both
algorithms, such as the ability of GAIL to quickly learn from a few demonstrations at the
start of a task and the ability of HER to generalize and learn new tasks through hindsight
relabeling. In a goal-reaching task, the data distribution includes states, actions, and
attempted goals. HER improves the data distribution by replacing the initially desired
goals with the actually achieved goals since a robot’s failure to achieve a desired goal
is still a success in terms of achieving the goal it actually reached. By optimizing this
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non-parametric data distribution, GCIL can improve the efficiency and effectiveness of
imitation learning.

4.2. Curriculum Learning

Curriculum learning [41] is a training method in which the complexity of the data
samples used increases gradually over time. The original formulation of curriculum
learning was based on the idea that it mirrors the natural way in which people learn.
While it may seem that curriculum learning is solely about increasing the complexity of the
training experience, it is also about leveraging the knowledge gained from simpler tasks to
reduce the exploration needed in more complex tasks through generalization.

Teacher–student curriculum learning (TSCL) [42] is a method for automating the
process of curriculum learning in reinforcement learning. It involves using two RL agents:
a student and a teacher. The student is responsible for learning and completing tasks, while
the teacher is responsible for selecting appropriate sub-tasks to help the student learn more
effectively. By gradually increasing the complexity of the tasks presented to the student, the
teacher helps the student learn more efficiently and effectively. TSCL is a useful approach
for tackling difficult tasks that may not be able to be learned directly by breaking them
down into smaller sub-tasks that can be learned more easily.

Differently from the teacher–student framework, in asymmetric self-play [43], the two
agents can perform very different tasks. The two agents Alice and Bob both train on the
main task directly. Alice’s role is to propose challenging goals for Bob to achieve, while
Bob’s role is to try to reach those goals. This interaction between Alice and Bob creates
an automated curriculum of progressively more challenging tasks, and, because Alice has
already completed the task before presenting it to Bob, it is guaranteed to be achievable.
Asymmetric self-play is a method for goal discovery in which the two agents work together
to find and achieve new goals within the main task.

4.3. Hierarchical Reinforcement Learning

Hierarchical reinforcement learning (HRL) [44] is a computational approach that
allows an agent to learn how to perform tasks at different levels of abstraction. It involves
multiple sub-policies working together in a hierarchical framework, rather than just one
policy trying to accomplish the overall goal. This method has several benefits, such as
improved exploration and sampling efficiency, and can also be used for transfer learning,
where low-level policies or sub-policies can be reused for multiple tasks. For example, if an
agent has learned how to make coffee, it can reuse that knowledge when learning how to
make a cappuccino by separating the process into making coffee and then warming and
frothing the milk. HRL can, therefore, speed up the learning process for new tasks.

5. Network Architecture

Neural networks are function approximators that are particularly effective for deep
reinforcement learning when the state space or action space is too large to be fully known.
One type of neural network commonly used in deep reinforcement learning is the multi-
layer perceptron (MLP), which consists of an input layer, a hidden layer, and an output
layer. Each node in the hidden and output layers is a neuron with a nonlinear activation
function, except for the input nodes. MLPs are trained using the supervised learning
technique of backpropagation. One drawback of MLPs is that they are fully connected,
meaning that each perceptron is connected to every other perceptron. This can lead to
a large number of parameters and redundant information in high dimensions, making
them inefficient.

5.1. Convolutional Neural Network

Convolutional neural networks (CNNs) [45] are particularly useful for deep reinforce-
ment learning tasks that involve image input, such as playing video games or navigating
through a visual environment. They are designed to process data with a grid-like topology,
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such as an image, and can learn to recognize patterns and features within the data through
the use of convolutional layers. Convolutional layers apply a set of filters to the input data,
which extract important features and compress the information. These features are then
passed through pooling layers, which reduce the dimensionality of the data and make the
network more robust to small changes in the input. The output of the CNN can then be
used as input for a value or policy function in a reinforcement learning algorithm.

5.2. Recurrent Neural Network

A recurrent neural network (RNN) [46] is a type of artificial neural network that has
connections between units that form a directed cycle. Essentially, an RNN is a loop that
updates an internal state at each step while processing a sequence of inputs. One of the
main features of an RNN is the hidden state, which remembers information about the
sequence and is used as part of the input computation at the next time step. This allows an
RNN to process sequential data, such as time series or natural language. RNNs also have
the advantage of using the same parameters for each input, reducing the complexity of the
model compared to other types of neural networks.

An LSTM (long short-term memory network) [47] is a type of recurrent neural network
that is designed to overcome the problem of vanishing gradients in traditional RNNs.
Gradients contain important information, and, if they vanish over time, important localized
information can be lost. This is an issue when using RNNs for tasks such as natural
language processing, for which it is important to remember information from earlier in the
sequence. LSTMs address this problem by introducing “gates” with trained parameters
that control the output and forgetting of the LSTM module. This helps the LSTM remember
cell states and preserve important information for long periods of time. LSTMs are a more
general version of gated recurrent units (GRUs), which are another type of recurrent neural
network designed to handle long-term dependencies.

5.3. Graph Neural Network

A graph neural network (GNN) [48] is a type of neural network that takes a graph
structure as input and utilizes the structural information of the graph for learning. GNNs
are particularly useful for processing data that are represented in the form of a graph, as
graphs can easily represent the elements and relationships within the data, making them
easy to model and structure. GNNs are typically composed of smaller neural networks
that represent either a node or an edge in the graph, and these smaller networks work
together by passing messages to one another. GNNs are effective at exploiting knowledge
graphs, such as social networks with billions of nodes representing users, photos, videos,
and edges showing their relationships. These nodes and edges can contain a lot of hidden
information, which a GNN can use to predict user behavior.

There are several different architectures for graph neural networks (GNNs) that can
induce different inductive biases on the problem being solved. Graph convolution networks
(GCN) [49] are a way to combine the embeddings of a graph node with its neighbors in a
way that learns weights through averaging. In the first layer of a GCN, a node’s embeddings
are weighted and averaged with its first-degree neighbors, and, in the second layer, the
output for the first layer corresponding to each node is weighted and averaged with
its second-degree neighbors, and so on. GraphSAGE [50] is a representation learning
technique that is suitable for dynamic graphs and is capable of predicting the embedding of
a new node without requiring a re-training procedure. It does this by learning aggregator
functions that can induce the embedding of a new node given its features and neighborhood.
The GatedGCN [51] architecture is an anisotropic message-passing-based GNN that uses
residual connections, batch normalization, and edge gates. Graph attention networks
(GATs) [52] are a type of anisotropic graph convolutional network that leverage an attention
mechanism to learn the relative importance of neighboring nodes. By utilizing a learned
self-attention weight, GATs can measure the strengths of the connections between nodes,
allowing for more effective graph convolution operations.



Sensors 2023, 23, 3762 16 of 35

6. Deep RL for Robotic Manipulation

Robotic manipulation is a classic application area for RL. Many industries, including
manufacturing, supply chain, and healthcare, benefit from robotic manipulation and can
benefit from the use of RL. However, robotic manipulation presents several challenges
for RL, including high dimensionality, the need to deal with real-world examples, under-
modeling (models that do not capture the full dynamics of the system), and uncertainty in
reward and goal specification [53]. RL provides tractable approaches to addressing these
challenges in robotics, including representing the state-action space through discretization,
approximating the value function, and using pre-structured policies. RL can also make
use of prior knowledge, such as demonstrations and task structuring, to guide exploration.
Additionally, models such as mental rehearsal can help address simulation bias and deal
with real-world stochasticity and optimization efficiency with simulation samples.

In the following, we discuss sim-to-real, reward engineering, value-based learning,
and policy-based learning for robotic manipulation.

6.1. Sim-to-Real

Training a robot in simulation is often easier than training it in the real world, as RL
algorithms often require a large number of samples and exploration can be risky for both
the robot and the environment. However, simulators may not always accurately reflect
reality, making it challenging to transfer policies trained in simulation to the real world,
a process known as sim-to-real transfer. Table 4 show the list of research papers about
sim-to-real implementation relative to the RL algorithms and learning techniques that they
used. Peng et al. [54] proposed using dynamics randomization to train recurrent policies in
simulation and deploy them directly on a physical robot, achieving good performance on an
object-pushing task without calibration. However, this approach does not consider visual
observations. OpenAI [55] has suggested using proximal policy optimization (PPO) with
LSTMs to learn the dexterity of in-hand manipulation for a physical Shadow Dexterous
Hand, using the learned policy to perform object reorientation and transferring the policy
directly to the physical hand. This work shares code with OpenAI Five, a system used to
play the game Dota 2.

Table 4. A list of papers about sim-to-real implementation relative to RL Algorithms and learn-
ing techniques.

Methods RL Algorithms Learning Techniques

Learning by playing and solving sparse reward tasks from scratch [56] Q-learning and
DDPG

Scheduled auxiliary control
and hierarchical RL

Leveraging demonstrations for deep reinforcement learning on robotics
problems with sparse rewards [57] DDPG Demonstration and

reward shaping

Reinforcement learning for robotic manipulation using simulated
locomotion demonstrations [58] DDPG and HER Simulated demonstrations

and behavior cloning

Robotic manipulation with reinforcement learning, state representation
learning, and imitation learning [59] PPO and DQN State representation learning

(SRL)

Disentangled attention intrinsic regularization for safe and efficient
bimanual manipulation [60] SAC Attention mechanism

Motion planner augmented reinforcement learning for robot manipulation
in obstructed environments [61] SAC Motion planning augment

action space re-scaling

Open-source multi-goal reinforcement learning environment for robotic
manipulation [62] DDPG and HER Human-prior-based

curriculum learning
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Table 4. Cont.

Methods RL Algorithms Learning Techniques

Improved learning of robot manipulation tasks via tactile intrinsic
motivation [63] DDPG and CPER Intrinsic motivation and

tactile feedback

Residual policy learning [64] DDPG and HER Residual policy learning

Learning to control a low-cost manipulator using data-efficient
reinforcement learning [65]

Model-based
approach Transfer learning

Towards practical multi-object manipulation using relational
reinforcement learning [66] SAC and HER Sequential curriculum

learning

Data-efficient deep reinforcement learning for dexterous
manipulation [67] DDPG and A3C Reward shaping

Sim-to-real robot learning from pixels with progressive nets [68] A3C Transfer learning

Overcoming exploration in reinforcement learning with
demonstrations [69] DDPG and HER Imitation learning

Asymmetric self-play for automatic goal discovery in robotic
manipulation [70] PPO Asymmetric self-play

A framework for efficient robotic manipulation [71] SAC Imitation learning

Robotic arm control and task training through deep reinforcement
learning [72] DQN and TRPO Curriculum learning

Method of robot grasping based on reinforcement learning [73] DQN Priority experience replay

Residual learning from demonstration: adapting dmps for contact-rich
manipulation [74] PPO Behavior cloning

Learning insertion primitives with discrete-continuous hybrid action
space for robotic assembly tasks [75] Multi-pass DQN Transfer learning

Offline meta-reinforcement learning for industrial insertion [76] A2C Demonstration

Impedance control and parameter optimization of surface polishing robot
based on reinforcement learning [77] PG Dynamic matching and

linearization

Robotic architectural assembly with tactile skills: Simulation and
optimization [78] TD3 Transfer learning

Manipulation planning from demonstration via goal-conditioned prior
action primitive decomposition and alignment [79] DAPG Imitation learning and

hierarchical RL

Reinforcement learning with vision-proprioception model for robot planar
pushing [80] SAC Variational autoencoder

Object manipulation system based on image-based reinforcement
learning [81] SAC Transfer learning

Augmenting reinforcement learning with behavior primitives for diverse
manipulation tasks [82] MAPLE Hierarchical RL

Evaluation of variable impedance and hybrid force/motion controllers for
learning force tracking skills [83]

Model-based
PILCO [84] Hybrid force/motion control

Context meta-reinforcement learning via neuromodulation [85] SAC Meta-RL

Safe learning in robotics: from learning-based control to safe
reinforcement learning [86] PPO Model predictive safety

certification [87]

Prioritized hindsight with dual buffer for meta-reinforcement
learning [88] SAC Prioritized hindsight with

dual experience replay

Object detection-based one-shot imitation learning with an RGB-D
camera [89] PG Auto-encoder and object

detection network

Retinagan: an object-aware approach to sim-to-real transfer [90] Q2-OPT GAN and imitation learning
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Rusu et al. [68] proposed using progressive networks [91] to address the sim-to-real
transfer problem. Progressive networks incorporate lateral connections to link the layers
of previously trained network columns with each new column. This approach facilitates
transfer learning, domain adaptation, and compositionality. In such networks, columns
can have different capacities and structures, allowing the column intended for simulation
to have greater capacity than the one designed for reality. The latter can be initialized from
the former, enabling exploration and rapid learning from limited real data. Rusu et al. [68]
utilized the MuJoCo physics simulator to train the first column for a reaching task with
a simulated Jaco robot. They then used RGB images from a real Jaco robot to train the
second column. To handle dynamic tasks, such as dynamic targets, the authors suggested
incorporating a third column that utilizes proprioception features, including joint angles
and velocities for the arms and fingers.

Sadeghi et al. [92] introduced a convolutional recurrent neural network for teaching
a robot arm to perceive and manipulate desired objects from different viewpoints. The
method utilizes previous movements as a means of selecting actions for reaching the target,
rather than assuming known dynamics or requiring calibration. To learn the controller,
the authors proposed using simulated demonstration trajectories in conjunction with
reinforcement learning. While supervised demonstration learning often yields a policy that
focuses solely on achieving the goal in the short term, RL aids in the development of a
more long-term policy by assessing the action-value function to determine if the goal is
attainable. Additionally, the visual layers are fine-tuned using a limited number of realistic
images, which enhances the transfer performance.

Gu et al. [93] showed that a deep reinforcement learning algorithm based on off-policy
training of deep Q-functions can be scaled to handle complex 3D manipulation tasks. Moreover,
this approach is capable of effectively training deep neural network policies for use on physical
robots. The authors utilized a normalized advantage function algorithm that enabled them
to achieve training times appropriate for real-world robotic systems. Sun et al. [94] presented
reinforcement learning for mobile manipulation (ReLMM), a system for autonomously learning
mobile manipulation skills in the real world with minimal human intervention and without
instrumentation. The authors applied stationary and autonomous curricula for grasping policy.
Ding et al. [95] showed that using feedback from tactile sensor arrays located at the gripper for
learning and controlling can improve grasping stability and significantly enhance the perfor-
mance of robotic manipulation tasks, particularly for door-opening. This was demonstrated in
both simulation and reality settings.

6.2. Reward Engineering
6.2.1. Imitation Learning

In their discussion of reinforcement learning (RL) and the enduring issue of exploration
in environments with few rewards, Nair et al. [69]. They suggest a technique that makes
use of demonstrations to get around this issue and successfully learn in long-horizon, multi-
step robotics tasks with continuous control, offering a speedup of an order of magnitude
over RL on simulated robotics tasks and being able to solve problems that cannot be solved
by RL or behavior cloning alone.

Duan et al. [96] introduced one-shot imitation learning as a supervised learning tech-
nique for scenarios with numerous tasks. The authors trained a neural network using pairs
of demonstrations for a subset of tasks. Specifically, they utilized the first demonstration as
input, and a state sampled from the second demonstration to predict the corresponding
action. The authors incorporated soft attention to process the sequences of states and
actions in a demonstration, as well as vector components for block locations (similar to
those used in block stacking experiments) to enhance generalization to previously unseen
conditions and tasks in the training data.

Finn et al. [97] and Yu et al. [98], independently, introduced one-shot meta-imitation learn-
ing approaches for constructing vision-based policies. These approaches fine-tune policies
end-to-end from a single demonstration, using model-agnostic meta-learning (MAML) [99] to



Sensors 2023, 23, 3762 19 of 35

pre-train on a broad range of demonstrations from different environments. In general, learn-
ing from raw pixels necessitates a considerable amount of data. Wang et al. [100] proposed
a method for robust imitation of diverse behaviors by combining the benefits of one-shot
imitation learning with GAIL. The authors used a variational autoencoder on demonstration
trajectories to learn semantic policy embeddings, which can be learned on a 9 DoF Jaco robot
arm and result in the smooth interpolation of reaching behavior.

Riedmiller et al. [56] proposed a new learning method called scheduled auxiliary
control (SAC-X) that supports the agent during learning and preserves the ability to learn
from sparse rewards. The key idea behind SAC-X is to use active scheduling and execution
of auxiliary policies, which allows the agent to efficiently explore the environment and
excel at sparse reward RL. Andrychowicz et al. [40] studied a novel approach to dealing
with sparse rewards called hindsight experience replay (HER). The idea behind HER is
to replay each episode with a different goal than the one the agent was initially trying to
achieve, using the final state of the episode as the new goal.

SPARTN is a technique developed by Zhou et al. [101] that enhances robot policies
for eye-in-hand cameras by introducing artificial perturbations to visual displays. It does
not need further professional oversight or environmental interaction because it generates
corrected noise using neural radiance fields. SPARTN performs better than competing
techniques in both virtual and actual grasping studies, and it does so without the need for
depth sensors.

Li et al. [102] investigate how imitation learning for successful robotic manipulation is
affected by demonstrator force input. Their study reveals that immersive demonstrations
performed using force feedback may open up safer and speedier dexterous manipulation
policies. It does this by using a feedback glove and a robot arm to depict fingertip-level
and palm-level forces, respectively. As a result of force feedback, demonstrator fingertip
and palm forces were dramatically decreased, resulting in less variance in forces and faster
execution of recorded trajectories, according to the results. According to their study’s
findings, force feedback may be essential for imitation learning to occur successfully during
robotic manipulation.

Tong et al. [103] discuss the difficulty of manipulating thin items with a robot, particu-
larly when substantial, nonlinear deformations are created. Deep neural network models
are trained using a data-driven framework that combines physically realistic simulation
and machine learning. The end result is a control framework that is resistant to changes in
the paper’s shape and substance. Real-world tests show that, even when handling paper
items of different materials and forms, the framework may significantly increase the robotic
manipulation performance in comparison to natural paper folding procedures.

For visual imitation learning, Zhang et al. [104] suggest a three-phased progressive
learning technique. The method is tested on a robotic pouring job and is found to offer
a number of advantages over current end-to-end imitation learning systems, including
a higher success rate and the capacity to generalize to other domains with less human
demonstration data. The proposed approach, in the authors’ opinion, may be extensively
applied to many commercial or domestic robotic manipulation applications including deep
imitation learning.

Yi et al. [105] describe an autonomous grasping strategy for complex-shaped items
utilizing a high-DoF robotic manipulation system made up of a four-fingered robotic hand
with 16 DoFs and a 7 DoF manipulator. The system gathers data on human demonstrations
using a virtual reality controller equipped with 6D position tracking and individual capaci-
tive finger sensors. It then uses a ResNet, K-means clustering, and a point-set registration
method to infer the object’s gripping stance. Five items are used to evaluate the system,
and the results look good.

For robot manipulation, Wang et al. [106] provide an adaptive imitation architecture
that lowers the number of human demonstrations needed to learn new tasks. In order to
learn a specific class of complicated contact-rich insertion tasks based on the trajectory
profile of a single task instance belonging to the task class, the system uses dynamic
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movement primitives in a hybrid trajectory and force learning framework. The method
has been demonstrated to be more generalizable in both simulation and actual hardware
environments, safer, and more sample-efficient.

For the purpose of downstream policy learning in robotic manipulation tasks, Von
Hartz et al. [107] describe a technique for learning visual keypoints via dense correspon-
dence. The method uses raw camera observations to learn picture keypoints, making
policy learning more effective while addressing the issue of computationally expensive and
data-intensive policy learning. The method’s adaptability and efficiency are demonstrated
through evaluations of a variety of manipulation tasks and comparisons to other visual
representation learning methodologies.

6.2.2. Behavior Cloning

Plappert et al. [70] developed a single, goal-conditioned policy capable of solving vari-
ous robotic manipulation tasks, including those with novel goals and objects. Asymmetric
self-play was utilized for goal discovery, in which two agents, Alice and Bob, engaged
in a game where Alice suggested difficult goals and Bob attempted to accomplish them.
This technique enabled the identification of highly diverse and intricate goals without any
human input.

In robotic learning challenges, Zhou et al. [108] investigate the potential for a third-
person visual imitation of manipulation trajectories that is proven by embodiments that
are distinct from the mimicking agent but lack access to actions. The authors provide a
technique for developing manipulator-independent representations (MIR) that are ideal for
cross-embodiment visual imitation with RL and are primarily concerned with the change
in the environment. Cross-domain alignment, temporal smoothness, and actionability are
attributes of the MIRs. With complicated robot control, the suggested technology enables
agents to mimic motions from a range of embodiments with notable visual and dynamical
variances, including a simulation-to-reality gap.

In order to increase the effectiveness of robotic manipulation task learning, Jung et al. [109]
present a unique hybrid imitation learning (HIL) framework that combines behavior cloning (BC)
and state cloning (SC) methodologies in a mutually beneficial way. The HIL framework provides
stochastic state recovery to guarantee stable learning of policy networks, pre-trained dynamics
networks to boost SC efficiency, and an adaptive loss mixing mechanism to efficiently blend
BC and SC losses. The HIL framework demonstrated a roughly 2.6 times greater performance
improvement than pure BC and a roughly four times faster training time than pure SC imitation
learning in studies involving complex robotic manipulation tasks. It was superior to the BC+RL
hybrid learning approach as well.

A new balancing controller for bipedal robots based on a behavior cloning model is
presented by Bong et al. [110]. The controller first predicts the wrench needed to keep the
bipedal robot balanced using two deep neural networks trained on data from human-operated
balancing devices and then utilizes robot dynamics to compute joint torques for both legs. The
created controller showed an improved performance in comparison to traditional techniques
in terms of resistance to balance loss during simulation and practical tests on a bipedal lower-
body robotic system. The created controller produces a better balancing motion for the robot,
making it appropriate for usage in a variety of human-scale scenarios.

An imitation learning method that takes into account the diversity in expert presen-
tations is presented by Shafiullah et al. [111]. In particular, the work suggests a novel
model, dubbed the Behavior Transformer, that extracts k modes from the noisy expert
demonstrations using k-means clustering. The transformer-based approach’s capacity to
forecast complicated multi-modal distributions is utilized by the behavior transformer.
Their study evaluates the suggested model’s performance in a number of tasks, such as
Franka Kitchen, Block Pushing, and CARLA.

Piche et al. [112] suggest combining supervised learning and offline reinforcement
learning (RL) to teach robotic abilities using a dataset gathered by people with varying
levels of experience. The suggested technique makes use of return data and implicit models
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to develop robotic abilities through behavior cloning (BC). The work demonstrates that
when learning robotic abilities from fixed datasets, implicit models can perform as well as or
better than explicit methods. Their study also shows that the suggested strategy works well
for tasks requiring high-dimensional manipulation and movement. The article provides a
unified framework by demonstrating the tight connections between the suggested implicit
technique and other well-known RL via supervised learning methods.

Transformers may be used in robotic manipulation jobs, which frequently need costly
and restricted data, according to Shridhar et al. [113]. The authors suggest PerAct, a
language-conditioned behavior-cloning agent that outputs discretized actions after using a
perceiver transformer to encode language objectives and RGB-D voxel observations. PerAct
offers a powerful structural prior for quickly learning 6 DoF actions since it operates on
voxelized 3D observations and actions. In just a few demos per task, the authors show
how PerAct can teach a single multi-task transformer to perform 18 RLBench tests and
seven real-world tasks. PerAct performs better than 3D ConvNet baselines and other
image-to-action agents, according to the results, for a variety of tabletop activities.

When learning from expert datasets, Wang et al. [114] use conventional behavioral
cloning to outperform cutting-edge offline RL algorithms. By filtering the expert data and
performing BC on the subset, a semi-supervised classification strategy is employed to en-
hance the outcomes while learning from mixed datasets. To make use of the environment’s
geometric symmetry, simple data augmentation is also performed. The BC policies that
were submitted outperformed the mean return of the corresponding raw datasets, and the
policies that were trained on the filtered mixed datasets almost equaled the results of the
policies that were trained on the expert datasets.

6.2.3. Hierarchical RL

Finn et al. [115] investigated inverse reinforcement learning, or inverse optimal control,
for control applications. The authors suggested employing nonlinear cost functions, such
as neural networks, to introduce structure to the cost via informative features and effective
regularization. Additionally, the authors proposed approximating MaxEnt, as proposed by
Ziebart and colleagues [116], using samples for learning in high-dimensional continuous
environments where the dynamics are unknown.

Li et al. [117] suggest utilizing reinforcement learning from demonstrations and
temporal logic to handle the problem of learning tasks with complicated temporal structures
and lengthy horizons (TL). Based on the TL job specification, the technique creates intrinsic
incentives, creating a policy with an understandable and hierarchical structure. The method
is tested on a variety of robotic manipulation tasks, showing that it can handle challenging
situations and outperform baselines.

For the autonomous learning and enhancement of numerous gripping methods,
Osa et al. [118] suggest a hierarchical policy search strategy. The technique makes use
of human examples to establish the grasping strategies before automatically compiling a
database of grasping actions and object point clouds to describe the grasp location and
policy as a bandit issue. The framework uses reinforcement learning to grasp items that are
hard and malleable and exhibits great accuracy while grabbing objects that were not before
seen. The suggested method solves the problem of building a comprehensive training
dataset and enables a robotic system to learn and enhance its grasping technique on its own.

To tackle problems with scarce rewards, Zhang et al. [119] suggest using a hierarchical
reinforcement learning system that can learn choices independently of the task. HIDIO pro-
motes option learning at a lower level that is independent of the job at hand, in contrast to
other systems that design low-level tasks or pre-define rules. These choices are discovered
using an inherent entropy reduction objective that is dependent on the sub-trajectories of
the options. In studies on robotic manipulation and navigation tasks, HIDIO outperforms
two cutting-edge hierarchical RL approaches and ordinary RL baselines in terms of success
rates and sampling efficiency.
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6.2.4. Generative Adversarial Imitation Learning (GAIL)

In order to make the computation fully differentiable in policy imitation problems,
Baram et al. [120] offer a novel approach called model-based generative adversarial imita-
tion learning (MGAIL). As a result, policies may be trained utilizing the precise gradient of
the discriminator, leading to more competent policies with relatively fewer expert samples
and environmental interactions. The technique outperforms the most recent algorithms in
tests conducted on both discrete and continuous action domains.

Merel et al. [121] suggest utilizing generative adversarial imitation learning to train
controllers for high-dimensional humanoid bodies. The technique enables training of
general neural network policies to generate movement patterns similar to those of humans
from a small number of demonstrations, without access to actions, and even when the
demonstrations originate from a body with diverse and unidentified physical attributes.
Motion capture data are used to create sub-skill rules, which may then be utilized to perform
tasks when commanded by a higher-level controller. Compared to pure reinforcement
learning with straightforward reward functions, the method produces movement behaviors
that are more varied and human-like.

In order to robustly learn desirable policies even from subpar demonstrations,
Tsurumine et al. [122] propose goal-aware generative adversarial imitation learning (GA-
GAIL), which uses a second discriminator to distinguish the goal state in parallel with
the first discriminator that indicates the demonstration data. To accomplish stable policy
learning from two discriminators, GA-GAIL uses the entropy-maximizing deep P-network
(EDPN) as a generator. The suggested technique learned cloth manipulation policies with-
out a task-specific reward function design when it was successfully applied to two real
robotic fabric manipulation challenges.

According to Zolna et al. [123], adversarial imitation tasks are performed poorly
because the discriminative networks have the propensity to focus on qualities that are
unrelated to the job at hand. They suggest task-relevant adversarial imitation learning
(TRAIL), which uses limited discriminator optimization to learn instructive rewards, to
overcome this. TRAIL performs better than traditional GAIL at difficult pixel manipulation
tasks by mimicking human operators without using any task incentives. The findings
further demonstrate that TRAIL significantly outperforms baseline imitation agents with
comparable performances, including those taught by behavior cloning and standard GAIL.

6.2.5. Curriculum Learning

Abstract demonstrations and adaptive exploration are two deep reinforcement learn-
ing (DRL) exploration techniques that Yang et al. [124] offer. These two elements are
inspired by human experiences. A2 breaks down a challenging activity into manageable
parts and suggests the right learning sequences for each part. Throughout training, the
agent adaptively explores its surroundings, responding more deterministically for sub-
tasks that it has learned and more stochastically for those that it has not. In grid-world and
robotic manipulation tasks, A2 enables common DRL algorithms (DQN, DDPG, and SAC)
to learn more effectively and steadily.

In order to overcome the difficulty of planning and building a bridge without a
blueprint, Li et al. [125] suggest a bi-level strategy. The system uses deep reinforcement
learning and curriculum learning to acquire a bridge blueprint policy in a physical simulator.
In order to provide real-robot motion control, a motion-planning-based policy is built for
low-level control. This policy may be immediately merged with a learned blueprint policy
for actual bridge construction without tuning. It is shown that the bi-level robot system is
capable of using blocks to build a variety of bridges with various architectural styles.

6.2.6. Transfer Learning

The KOVIS approach, developed by Puang et al. [126] employs an eye-in-hand stereo
camera system and a deep neural network that has been trained only in a simulated
environment to carry out delicate robotic manipulation tasks. Two networks, a keypoint
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network and a visual servoing network, that were trained end-to-end and under self-
supervision make up KOVIS. The suggested technique demonstrates its efficacy in both
simulated and real-world situations by achieving zero-shot sim-to-real transfer to robotic
manipulation tasks such as grabbing, peg-in-hole insertion with 4 mm clearance, and M13
screw insertion.

Using inputs from a single camera, Yuan et al. [127] provide a sim-to-real learning
approach for vision-based assembly jobs that addresses safety constraints and sample
efficiency problems in training robots in the real world. The system contains a force control
transfer mechanism to close the reality gap as well as a domain adaptation technique
based on cycle-consistent generative adversarial networks (CycleGAN). The suggested
framework may be effectively applied to a genuine peg-in-hole arrangement after being
taught in a simulated environment.

A new technique for predicting domain randomization distributions for secure sim-to-
real transfer of reinforcement learning policies in robotic manipulation is introduced by
Tiboni et al. [128] as DROPO. Unlike earlier research, DROPO only needs a small, offline
dataset of trajectory data that has been acquired in advance, and it directly represents
parameter uncertainty using a likelihood-based method. The article shows how DROPO
can recover dynamic parameter distributions during simulation and identify a distribution
that can account for unmodeled phenomena. Two zero-shot sim-to-real transfer scenarios
were used to test the method, which demonstrates effective domain transfer and enhanced
performance over earlier approaches.

The Kalman Randomized-to-Canonical Model, a zero-shot sim-to-real transferable vi-
sual model predictive control (MPC) technique, is presented by Yamanokuchi et al. [129].
The suggested system utilizes the KRC model to extract intrinsic characteristics and dynamics
that are task-relevant from randomized pictures. Via a block-mating task in simulation and a
valve-rotation task in both the real world and simulation, the effectiveness of the technique is
assessed. The findings demonstrate that KRC-MPC may be utilized in a zero-shot way across
a range of real domains and activities without the need for any actual data collection.

For robot manipulators, there are multiple reward engineering strategies available. Figure 9
shows the trend for reward engineering used in robotic manipulation from 2015 to 2022.
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Figure 9. The trend of published papers using different reward engineering in robotic manipulation.
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6.3. RL Techniques
6.3.1. Q-Learning

The difficulty of modifying robot learning systems to new surroundings, objects, and
perceptions is covered by Julian et al. [130]. Their paper offers a framework for fine-tuning
previously acquired behaviors through Q-learning, which promotes continual adaptation.
Their method has been demonstrated to be successful in a scenario of continuous learning
and results in significant performance increases with little data. Experiments on simulated
manipulation tasks and a genuine robotic grasping system that has been pre-trained on
580,000 grasps provide support for the findings.

6.3.2. Deep Q-Network

Due to the number of samples necessary for precise estimations, learning continuous
control in high-dimensional, sparse reward environments, such as robotic manipulation,
is a difficult challenge. For these tasks, Rammohan et al. [131] recommend value-based
reinforcement learning, more especially RBF-DQN. For robotic manipulation tasks, they
show that RBF-DQN converges more quickly than existing state-of-the-art algorithms, such
as TD3, SAC, and PPO, and that RBF-DQN is also amenable to improvement methods,
such as HER and PER. The authors contend that compared to policy gradient approaches,
value-based systems may be more susceptible to data augmentation and replay buffer
sampling strategies.

The use of equivariant neural networks in Q-learning and actor–critic reinforcement
learning is investigated by Wang et al. [132]. Equivariant models are suited to robotic
manipulation issues because they enforce symmetry in their convolutional layers and
can considerably increase sampling efficiency when learning an equivariant or invariant
function. The authors suggest equivariant variations of the DQN and SAC algorithms that
take advantage of this structure and show through tests that they can be more sample-
efficient than rival algorithms on certain robotic manipulation challenges.

Manipulation question answering (MQA), a novel task proposed by Deng et al. [133], re-
quires the robot to manipulate the surroundings in order to answer a question. The suggested
system consists of a QA module and a manipulation module that generates manipulation
actions for the robot to interact with the environment using a deep Q-network (DQN) model.
In order to verify the efficacy of the suggested framework, the authors additionally create a
fresh dataset in a simulation environment that includes a range of object models, situations,
and related question–answer pairs. They also carry out comprehensive tests.

A deep reinforcement learning (RL) framework for pick-and-place tasks in crowded
industrial contexts is proposed by Imtiaz et al. [134]. Using a deep Q-network (DQN) made
up of three fully convolutional networks (FCN) based on the DenseNet-121 architecture,
the issue is handled as a Markov decision process (MDP). After each forward pass, prizes
are distributed based on the affordance maps that the FCNs produce for each action.
The suggested framework outperforms a baseline deep learning technique and a ResNet
architecture-based approach, according to experiments, and achieves promising results in a
variety of challenging cases.

A pushing policy is suggested by Sarantopoulos et al. [135] to remove a known target
object from a mass of unrelated objects in a crowded environment. The method learns
the best push policies using deep Q-learning (DQN), and a split DQN is suggested to
increase the learning rate and modularity. The comprehensive feature selection ensures
that the learned rules perform well in both simulated and actual contexts. The algorithm’s
modularity enables the insertion of additional primitives without having to completely
retrain the model.

6.3.3. Proximal Policy Optimization

Chen et al. [59] aimed to address multiple robotic manipulation tasks, such as grasping,
button-pushing, and door-opening, using reinforcement learning (RL), state representation
learning (SRL), and imitation learning. To achieve this, the authors built simulated environ-
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ments in PyBullet and explored three different learning-style methods using wrapped PPO
and DQN algorithms from the OpenAI baseline. These methods were successfully applied
to solve diverse missions in the self-constructed environments.

By storing recovery actions in a separate safety buffer and utilizing k-means clustering to
choose the optimum recovery action when coming across comparable situations, Hsu et al. [136]
provide a method for assuring safety in deep reinforcement learning (RL). Six robotic control
tasks including navigation and manipulation are used to assess the proposed safety-aware RL
algorithm. The results demonstrate that it outperforms numerous baselines in both discrete and
continuous control problems, increasing safety throughout both the training and testing phases.

Iriondo et al. [137] provide a technique for picking items up in a mobile manipulator in
unstructured regions. For such activities, conventional path planning and control become
difficult. In this work, a controller for the robot base is trained using a deep reinforcement
learning (DRL) technique. This controller directs the platform to a location where the arm
may plan a route up to the item. The effectiveness of the DRL technique is assessed using
two DRL algorithms (DDPG and PPO), which are contrasted, and a specific robotic job.

6.3.4. Trust Region Policy Optimization

A technique for training a neural network policy in simulation and applying it to a cutting-
edge legged system, such as the ANYmal robot, is presented by Hwangbo et al. [138]. The method
provides quick, automated, and economical data-generating processes. The quadrupedal robot
demonstrates locomotion abilities that are beyond those of other techniques: ANYmal is able to
correctly and effectively obey high-level body velocity commands, run faster than before, and
recover from falls even in complicated configurations.

Clegg et al. [139] investigate the application of reinforcement learning to create robotic
dressing aides that can predict human movements. The robot offers a client an open
sleeve of a medical gown, and the individual puts their arm into the sleeve, according
to the researchers’ models of human behavior during dressing assistance. The system
develops a model of human behavior using the TRPO algorithm that can effectively train
for three distinct robot-assisted dressing procedures and can insert the arm into the sleeve.
The purpose of the project is to simulate how individuals may aid with dressing.

6.3.5. Deep Deterministic Policy Gradient

Vecerik et al. [57] developed a model-free reinforcement learning approach for real
robotics with sparse rewards by using demonstrations and extending the deep deterministic
policy gradient (DDPG) algorithm. Both demonstrations and actual interactions were used
to populate a replay buffer, and a prioritized replay mechanism [140] automatically adjusted
the sampling ratio between demonstrations and transitions. Kilinc et al. [58] proposed a
novel framework for robotic manipulation that does not rely on human demonstrations. They
framed every robotic manipulation task as a locomotion task from the perspective of the
manipulated object and used a physics simulator to obtain an object locomotion policy. This
policy was then used to generate simulated locomotion demonstration rewards (SLDRs),
which enable the learning of the robot manipulation policy. Yang et al. [62] developed a Py-
bullet engine re-implementation of the OpenAI multi-goal robotic manipulation environment
with additional APIs for joint control, customizable camera goals and image observations, and
on-hand camera access. The authors also created a series of challenging robotic manipulation
tasks with sparse rewards, long horizons, and multi-step and multi-goal objectives to inspire
new goal-conditioned reinforcement learning algorithms. Vulin et al. [63] tackled the chal-
lenge of exploration in deep reinforcement learning for robotic manipulation by introducing
an intrinsic reward based on the sum of forces between the robot’s force sensors and manip-
ulation objects, encouraging physical interaction. They also proposed a contact-prioritized
experience replay sampling scheme that prioritizes contact-rich episodes and transitions.

Residual policy learning (RPL) [64] is a method for improving policies using model-
free deep reinforcement learning. It allows the gradient to backpropagate through the value
of the next state, rather than treating it as a black box. RPL has been shown to consistently
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and substantially improve initial controllers. DDPG, a reinforcement learning algorithm,
can be made more efficient and robust for complex continuous control tasks through two
extensions proposed by Popov et al. [67]: decoupling the frequency of network updates
from the environment interaction and using an asynchronous version that allows data
collection and network training to be distributed over multiple computers. Nair et al. [69]
developed a system that combines demonstrations with reinforcement learning to solve
multi-step tasks, which can be useful for tasks with sparse rewards or other exploration
challenges. However, this method may not be sample efficient for more difficult tasks.

Using a TriFinger robot that won Phase 1 of the Real Robot Challenge (RRC) 2021,
Wang et al. [141] present a deep reinforcement learning (DRL) approach for manipulating
a cube. They then expand this approach to a more challenging manipulation task where
the robot must maintain the cube in a specific orientation. The learning of the DRL agent
(DDPG) in the original work was guided by a mix of goal-based sparse rewards and
distance rewards with hindsight experience replay (HER), and the acquired techniques
were transferred to the expanded task using a knowledge transfer (KT) approach. The
longer job was learned and performed by the agent with an enhanced performance during
evaluation thanks to the KT approach.

Hindsight goal ranking (HGR), a technique introduced by Luu et al. [142], prioritizes
the replay experience for reinforcement learning by sampling more frequently on the states
visited in an episode with a bigger temporal difference (TD) error. To increase the learning
effectiveness for robotic manipulation tasks, HGR is paired with deep deterministic policy
gradient (DDPG), an off-policy model-free actor–critic technique. The findings demonstrate
that, across all activities, HGR considerably accelerates learning more quickly than the
prior techniques.

Eppe et al. [143] provide a generic goal-masking technique that permits deep rein-
forcement learning curriculum learning (DRL). The strategy focuses on improving the
goal sampling process to enhance the learning performance by predicting the level of goal
complexity. The findings demonstrate that, for DDPG approaches, objectives with medium
difficulty levels are adequate, but combining DDPG with HER benefits from a “reach for the
stars” strategy in which challenging goals are selected more often. The method performs
better than conventional goal sampling in a variety of robotic object manipulation issues.

Sehgal et al. [144] suggest using a genetic algorithm (GA) to determine the ideal
parameters for the deep deterministic policy gradient (DDPG) algorithm in combination
with hindsight experience replay in order to optimize the learning process of reinforcement
learning (RL) agents in robotic manipulation tasks (HER). Five robotic manipulation tasks,
including fetch-reach, slide, push, pick and place, and door-opening, are subject to the
method’s application. According to the experimental findings, the suggested solution
outperforms the original algorithm in terms of the learning performance both quickly
and effectively. For six robotic manipulation tasks, FetchReach, FetchSlide, FetchPickAnd-
Place, DoorOpening, and AuboReach [145], they also suggest using a genetic algorithm
(GA) technique to fine-tune the hyperparameters of deep deterministic policy gradient
(DDPG) along with Hindsight Experience Replay (HER). The performance of the suggested
GA+DDPG+HER approach is significantly higher than that of the current methods, result-
ing in a reduction in learning time. The experimental findings demonstrated the usefulness
of the suggested approach in accelerating reinforcement learning agents’ learning rates.

6.3.6. Twin Delayed Deep Deterministic Policy Gradients

The approach put out by Nair et al. [146] will allow an autonomous agent to develop
a wide range of general-purpose skill repertoires for attaining user-specified goals during
testing. The approach combines unsupervised representation learning and reinforcement
learning of goal-conditioned policies. In order to envision objectives and try to attain them,
the agent goes through a self-supervised practice phase. To increase sample effectiveness,
a retroactive goal relabeling technique is suggested. A visual representation is learned to
sample objectives, manipulate sensory inputs, and calculate a reward signal. The algorithm
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outperforms earlier methods and is effective enough to work on unprocessed picture
observations and objectives for practical robotic systems.

In order to reduce tracking inaccuracy and optimize the communication burden
between a physical device and its digital model in the metaverse, Meng et al. [147] offer a
co-design framework. The system uses the restricted deep reinforcement learning (DRL)
algorithm KC-TD3, which makes use of expert knowledge to maximize the sampling rate
and prediction horizon. In comparison to previous methods, the framework achieves
a superior trade-off between the average MSE and the average communication load on
a prototype consisting of a robotic arm and its digital model. With the use of expert
knowledge, the suggested method also achieves a higher convergence time, stability, and
final policy performance.

6.3.7. Soft Actor–Critic

Zhang et al. [60] propose a novel intrinsic regularization method for training a policy
for bimanual manipulation tasks involving multiple objects. The goal is for the agents
to learn how to allocate a workload and avoid domination and conflict. They use a self-
attention architecture to combine the embedded representations of the agents and objects
and compute an intrinsic loss based on attention probabilities to encourage the agents to
focus on different sub-tasks. Yamada et al. [61] present a flexible framework that combines
motion planning and reinforcement learning for efficient learning of continuous robot
control in cluttered environments. The framework combines a model-free RL approach
with a sampling-based motion planner that requires minimal task-specific knowledge. The
RL policy learns when to use the motion planner and when to take a single-step action
through reward maximization.

Zhan et al. [71] present a framework that combines demonstrations, unsupervised
learning, and RL to efficiently learn complex tasks in the real world using only image input.
They are able to solve a variety of tasks using the same hyperparameters and with only
sparse rewards. Using only 10 demonstrations, their method allows a single robotic arm to
learn manipulation policies from pixels. The low amount of supervision required makes
this approach promising for efficiently applying RL to real robots.

Reinforcement learning is used by Li et al. [148] to solve the problem of automating
instrument delivery in vascular intervention surgery. Existing reinforcement learning
techniques are constrained by the non-linear connection between manipulation commands
and instrument movements in actual vascular robotic systems. The research suggests DSAC-
AE, a discrete soft actor–critic algorithm enhanced with an additional reconstruction job, as a
solution to this issue. The algorithm is used in a robot-assisted clinical scenario with dispersed
sample collection and parameter updating, proving its capacity to pick up manipulation
techniques for vascular robotic systems after 50k sampling steps in less than 15 h.

The application of equivariant neural network models in on-robot policy learning
for robotic manipulation tasks is investigated by Wang et al. [149]. Without using a
model, simulator, or offline dataset, equivariant SAC is used to learn policies solely on a
physical robotic system. The results demonstrate the capability to fully learn non-trivial
manipulation tasks through on-robot encounters in less than an hour or two of wall clock
time after exploring a number of iterations of the method.

To improve the robustness of deep reinforcement learning policies in robotic manip-
ulation tasks, Jian et al. [150] present an adversarial skill learning method based on soft
actor–critic (SAC). It is determined that the algorithm is resilient to both internal and
external disturbances in both simulation and real-world contexts.

There are lots of RL techniques for robot manipulators to apply. Figure 10 categorizes the
research papers by using different RL algorithms in robotic manipulation from 2015 to 2022.
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Figure 10. The trend of published papers using different RL algorithms in robotic manipulation.

6.3.8. GNN

Graph neural networks (GNNs) can be used as the network architecture for reinforcement
learning problems in relational environments. Table 5 features a list of papers about GNN
implementation relative to RL algorithms and learning techniques. Janisch et al. [151] proposed
a deep RL framework based on GNNs and auto-regressive policy decomposition that is well-
suited to these types of problems. They demonstrate that their approach, which uses GNNs,
can solve problems and generalize to different sizes without any prior knowledge.

Table 5. A list of papers about GNN implementation relative to RL algorithms and learning techniques.

Reference Papers RL Algorithms Learning Techniques

[152] DQN and GNN Evaluate on OTN routing map
[125] Blueprint policy and PPG Curriculum learning
[151] GNN and A2C Behavior cloning
[153] PPO Imitation learning
[66] GNN and SAC Sequential curriculum learning
[154] Model-based method Imitation learning
[155] MDP and GAT Hierarchical imitation learning
[156] PG and GCN GAIL
[157] PPO and GCN Relational Inductive Bias

To address the issue of limited generalization in current DRL-based networking solu-
tions, Almasan et al. [152] present a deep reinforcement learning (DRL) agent including
graph neural networks (GNN). The proposed GNN-based DRL agent can learn and gener-
alize over diverse network topologies since GNNs are built to generalize over networks of
various sizes and architectures. The agent outperforms cutting-edge methods in topologies
not seen during training in a routing optimization use case in optical networks.

Richard Li et al. [66] present a reinforcement learning system that can stack six blocks
without any demonstrations or task-specific assumptions. They use the soft actor–critic
(SAC) algorithm as their base learning algorithm because it is more robust to hyperparam-
eter choices and random seeds than other off-policy learners such as deep deterministic
policy gradient (DDPG). They find that training a policy represented by an attention-
based graph neural network (GNN) enables successful curriculum learning in multi-object
manipulation tasks.
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Yunfei Li et al. [125] study a challenging assembly task in which a robot arm must
build a feasible bridge based on a given design. The authors divide the problem into two
steps. First, they use an attention-based neural network as a “blueprint policy” to assemble
the bridge in a simulation environment. Then, they implement a motion-planning-based
policy for real-robot motion control.

Lin et al. [153] present a method for robot manipulation using graph neural networks
(GNNs). The authors propose a GNN-based approach for solving the object grasping
problem, in which the robot must select a suitable grasping pose for a given object. The
approach combines a graph representation of the object with a GNN to learn a grasp quality
function, which predicts the success of a grasp based on the object’s geometry and the
robot’s kinematics. The authors evaluate their method on a dataset of synthetic objects and
a real-world grasping task and demonstrate that it outperforms previous approaches in
terms of both efficiency and interpretability.

According to the review above, it appears that deep reinforcement learning has been
effectively used for a range of robotic manipulation tasks, such as grasping, pushing, and
door-opening. For these tasks, a variety of strategies have been put forth to increase the
sample efficiency of RL, including the use of demonstrations, supplemental incentives, and
experience replay. It has also been demonstrated that other techniques, such as model-free
approaches, residual learning, and asymmetric self-play, are useful for robotic manipulation.
Overall, it seems that there is still a lot of opportunity for future study in this field, especially
in terms of figuring out how to learn complicated manipulation tasks with scarce incentives
more effectively and in terms of applying learned rules from a simulation to the real world.

6.4. Future Directions

In the field of robotic manipulation, there are numerous potential future avenues for
deep reinforcement learning algorithms:

Improving sample efficiency: Currently, most deep reinforcement learning algorithms
for robotic manipulation require a large number of samples to learn a task. One future
direction is to develop algorithms that can learn from fewer samples or to find ways to
reuse the samples more efficiently.

Transfer learning: The development of algorithms that can transfer information from
one job to another or from one robot to another is another path for transfer learning. Robots
would be able to learn new tasks more quickly and simply as a result of this.

Real-time control: Many current deep reinforcement learning algorithms are too slow
for real-time control of robots. Improving the speed of these algorithms would allow them
to be used in a wider range of applications.

Safe exploration: Robots must be capable of safely exploring their surroundings in
order to avoid harming themselves or their surroundings, as well as to learn from their
mistakes. Future research should focus on creating algorithms that really can balance the
demand for exploration with the necessity for safety.

Integrating with other learning paradigms: Another approach is to develop algorithms
that integrate supervised and unsupervised learning, including reinforcement learning,
with other learning paradigms. This could make it possible for robots to learn more difficult
jobs that need a mix of learning methods.

7. Conclusions

In this survey, we have provided an overview of deep reinforcement learning algo-
rithms for robotic manipulation. We have discussed the various approaches that have been
taken to address the challenges of learning manipulation tasks, including sim-to-real, re-
ward engineering, value-based, and policy-based approaches. We have also highlighted the
key challenges that remain in this field, including improving sample efficiency, developing
transfer learning capabilities, achieving real-time control, enabling safe exploration, and
integrating with other learning paradigms. One of the key strengths of the survey is its
comprehensive coverage of the current state-of-the-art in DRL and exploring a wide range
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of techniques and applications for robotic manipulation. The survey does not, however,
go into great depth on all strategies due to space considerations. Nevertheless, the survey
can greatly benefit researchers and practitioners in the field of robotics and reinforcement
learning by providing insights into the advantages and limitations of various algorithms
and guiding the development of new approaches. Overall, this survey serves as a valuable
resource for understanding the current landscape of deep reinforcement learning in robotic
manipulation and can inspire further research to advance the field.

Future research in this field should concentrate more on overcoming these difficulties
and figuring out how to improve the performance and efficiency of deep reinforcement
learning algorithms for robotic manipulation tasks. By achieving this, we can get one step
closer to developing intelligent robots that can adjust to different surroundings and learn
novel abilities on their own. It is likely that as the area of RL for robotic manipulations
develops, we will witness the creation of increasingly more sophisticated algorithms and
methodologies that will allow robots to perform increasingly difficult manipulation tasks.
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68. Rusu, A.A.; Večerík, M.; Rothörl, T.; Heess, N.; Pascanu, R.; Hadsell, R. Sim-to-real robot learning from pixels with progressive

nets. In Proceedings of the Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 262–270.
69. Nair, A.; McGrew, B.; Andrychowicz, M.; Zaremba, W.; Abbeel, P. Overcoming exploration in reinforcement learning with

demonstrations. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
Australia, 21–26 May 2018; pp. 6292–6299.

70. OpenAI; Plappert, M.; Sampedro, R.; Xu, T.; Akkaya, I.; Kosaraju, V.; Welinder, P.; D’Sa, R.; Petron, A.; Pinto, H.P.d.O.; et al.
Asymmetric self-play for automatic goal discovery in robotic manipulation. arXiv 2021, arXiv:2101.04882.

71. Zhan, A.; Zhao, P.; Pinto, L.; Abbeel, P.; Laskin, M. A Framework for Efficient Robotic Manipulation. arXiv 2020, arXiv:2012.07975.
72. Franceschetti, A.; Tosello, E.; Castaman, N.; Ghidoni, S. Robotic arm control and task training through deep reinforcement

learning. In Intelligent Autonomous Systems 16, Proceedings of the 16th International Conference IAS-16, Singapore, 29–31 July 2020;
Springer: Berlin/Heidelberg, Germany, 2022; pp. 532–550.

73. Lu, L.; Zhang, M.; He, D.; Gu, Q.; Gong, D.; Fu, L. A Method of Robot Grasping Based on Reinforcement Learning. J. Phys. Conf. Ser.
2022, 2216, 012026.

74. Davchev, T.; Luck, K.S.; Burke, M.; Meier, F.; Schaal, S.; Ramamoorthy, S. Residual learning from demonstration: Adapting dmps
for contact-rich manipulation. IEEE Robot. Autom. Lett. 2022, 7, 4488–4495.



Sensors 2023, 23, 3762 33 of 35

75. Zhang, X.; Jin, S.; Wang, C.; Zhu, X.; Tomizuka, M. Learning insertion primitives with discrete-continuous hybrid action space for
robotic assembly tasks. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia,
PA, USA, 23–27 May 2022; pp. 9881–9887.

76. Zhao, T.Z.; Luo, J.; Sushkov, O.; Pevceviciute, R.; Heess, N.; Scholz, J.; Schaal, S.; Levine, S. Offline meta-reinforcement learning for
industrial insertion. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA,
23–27 May 2022; pp. 6386–6393.

77. Ding, Y.; Zhao, J.; Min, X. Impedance control and parameter optimization of surface polishing robot based on reinforcement
learning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 216–228.

78. Belousov, B.; Wibranek, B.; Schneider, J.; Schneider, T.; Chalvatzaki, G.; Peters, J.; Tessmann, O. Robotic architectural assembly
with tactile skills: Simulation and optimization. Autom. Constr. 2022, 133, 104006.

79. Lin, N.; Li, Y.; Tang, K.; Zhu, Y.; Zhang, X.; Wang, R.; Ji, J.; Chen, X.; Zhang, X. Manipulation planning from demonstration via
goal-conditioned prior action primitive decomposition and alignment. IEEE Robot. Autom. Lett. 2022, 7, 1387–1394.

80. Cong, L.; Liang, H.; Ruppel, P.; Shi, Y.; Görner, M.; Hendrich, N.; Zhang, J. Reinforcement learning with vision-proprioception
model for robot planar pushing. Front. Neurorobot. 2022, 16, 829437.

81. Kim, S.; Jo, H.; Song, J.B. Object manipulation system based on image-based reinforcement learning. Intell. Serv. Robot. 2022, 15, 171–177.
82. Nasiriany, S.; Liu, H.; Zhu, Y. Augmenting reinforcement learning with behavior primitives for diverse manipulation tasks. In

Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022;
pp. 7477–7484.

83. Anand, A.S.; Myrestrand, M.H.; Gravdahl, J.T. Evaluation of variable impedance-and hybrid force/motioncontrollers for learning force
tracking skills. In Proceedings of the 2022 IEEE/SICE International Symposium on System Integration (SII), Online, 9–12 January 2022;
pp. 83–89.

84. Deisenroth, M.; Rasmussen, C.E. PILCO: A model-based and data-efficient approach to policy search. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011; pp. 465–472.

85. Ben-Iwhiwhu, E.; Dick, J.; Ketz, N.A.; Pilly, P.K.; Soltoggio, A. Context meta-reinforcement learning via neuromodulation. Neural Netw.
2022, 152, 70–79.

86. Brunke, L.; Greeff, M.; Hall, A.W.; Yuan, Z.; Zhou, S.; Panerati, J.; Schoellig, A.P. Safe learning in robotics: From learning-based
control to safe reinforcement learning. Annu. Rev. Control. Robot. Auton. Syst. 2022, 5, 411–444.

87. Wabersich, K.P.; Zeilinger, M.N. Linear model predictive safety certification for learning-based control. In Proceedings of the
2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 7130–7135.

88. Beyene, S.W.; Han, J.H. Prioritized Hindsight with Dual Buffer for Meta-Reinforcement Learning. Electronics 2022, 11, 4192.
89. Shao, Q.; Qi, J.; Ma, J.; Fang, Y.; Wang, W.; Hu, J. Object detection-based one-shot imitation learning with an RGB-D camera. Appl. Sci.

2020, 10, 803.
90. Ho, D.; Rao, K.; Xu, Z.; Jang, E.; Khansari, M.; Bai, Y. Retinagan: An object-aware approach to sim-to-real transfer. In

Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021;
pp. 10920–10926.

91. Rusu, A.A.; Rabinowitz, N.C.; Desjardins, G.; Soyer, H.; Kirkpatrick, J.; Kavukcuoglu, K.; Pascanu, R.; Hadsell, R. Progressive
neural networks. arXiv 2016, arXiv:1606.04671.

92. Sadeghi, F.; Toshev, A.; Jang, E.; Levine, S. Sim2real view invariant visual servoing by recurrent control. arXiv 2017,
arXiv:1712.07642.

93. Gu, S.; Holly, E.; Lillicrap, T.; Levine, S. Deep reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Marina Bay Sands,
Singapore, 29 May–3 June 2017; pp. 3389–3396.

94. Sun, C.; Orbik, J.; Devin, C.; Yang, B.; Gupta, A.; Berseth, G.; Levine, S. Fully Autonomous Real-World Reinforcement Learning
for Mobile Manipulation. arXiv 2021, arXiv:2107.13545.

95. Ding, Z.; Tsai, Y.Y.; Lee, W.W.; Huang, B. Sim-to-Real Transfer for Robotic Manipulation with Tactile Sensory. arXiv 2021,
arXiv:2103.00410.

96. Duan, Y.; Andrychowicz, M.; Stadie, B.C.; Ho, J.; Schneider, J.; Sutskever, I.; Abbeel, P.; Zaremba, W. One-shot imitation learning.
arXiv 2017, arXiv:1703.07326.

97. Finn, C.; Yu, T.; Zhang, T.; Abbeel, P.; Levine, S. One-shot visual imitation learning via meta-learning. In Proceedings of the
Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 357–368.

98. Yu, T.; Finn, C.; Xie, A.; Dasari, S.; Zhang, T.; Abbeel, P.; Levine, S. One-shot imitation from observing humans via domain-adaptive
meta-learning. arXiv 2018, arXiv:1802.01557.

99. Finn, C.; Abbeel, P.; Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the
International Conference on Machine Learning, Stockholm, Sweden, 6–11 August 2017; pp. 1126–1135.

100. Wang, Z.; Merel, J.; Reed, S.; Wayne, G.; de Freitas, N.; Heess, N. Robust imitation of diverse behaviors. arXiv 2017, arXiv:1707.02747.
101. Zhou, A.; Kim, M.J.; Wang, L.; Florence, P.; Finn, C. NeRF in the Palm of Your Hand: Corrective Augmentation for Robotics via

Novel-View Synthesis. arXiv 2023, arXiv:2301.08556.
102. Li, K.; Chappell, D.; Rojas, N. Immersive Demonstrations are the Key to Imitation Learning. arXiv 2023, arXiv:2301.09157.



Sensors 2023, 23, 3762 34 of 35

103. Tong, D.; Choi, A.; Terzopoulos, D.; Joo, J.; Jawed, M.K. Deep Learning of Force Manifolds from the Simulated Physics of Robotic
Paper Folding. arXiv 2023, arXiv:2301.01968.

104. Zhang, D.; Fan, W.; Lloyd, J.; Yang, C.; Lepora, N.F. One-Shot Domain-Adaptive Imitation Learning via Progressive Learning
Applied to Robotic Pouring. arXiv 2022, arXiv:2204.11251.

105. Yi, J.B.; Kim, J.; Kang, T.; Song, D.; Park, J.; Yi, S.J. Anthropomorphic Grasping of Complex-Shaped Objects Using Imitation
Learning. Appl. Sci. 2022, 12, 12861.

106. Wang, Y.; Beltran-Hernandez, C.C.; Wan, W.; Harada, K. An adaptive imitation learning framework for robotic complex
contact-rich insertion tasks. Front. Robot. 2022, 8, 414.

107. von Hartz, J.O.; Chisari, E.; Welschehold, T.; Valada, A. Self-Supervised Learning of Multi-Object Keypoints for Robotic Manipulation.
arXiv 2022, arXiv:2205.08316.

108. Zhou, Y.; Aytar, Y.; Bousmalis, K. Manipulator-independent representations for visual imitation. arXiv 2021, arXiv:2103.09016.
109. Jung, E.; Kim, I. Hybrid imitation learning framework for robotic manipulation tasks. Sensors 2021, 21, 3409.
110. Bong, J.H.; Jung, S.; Kim, J.; Park, S. Standing Balance Control of a Bipedal Robot Based on Behavior Cloning. Biomimetics 2022,

7, 232.
111. Shafiullah, N.M.M.; Cui, Z.J.; Altanzaya, A.; Pinto, L. Behavior Transformers: Cloning k modes with one stone. arXiv 2022,

arXiv:2206.11251.
112. Piche, A.; Pardinas, R.; Vazquez, D.; Mordatch, I.; Pal, C. Implicit Offline Reinforcement Learning via Supervised Learning. arXiv

2022, arXiv:2210.12272.
113. Shridhar, M.; Manuelli, L.; Fox, D. Perceiver-actor: A multi-task transformer for robotic manipulation. arXiv 2022, arXiv:2209.05451.
114. Wang, Q.; McCarthy, R.; Bulens, D.C.; Redmond, S.J. Winning Solution of Real Robot Challenge III. arXiv 2023, arXiv:2301.13019.
115. Finn, C.; Levine, S.; Abbeel, P. Guided cost learning: Deep inverse optimal control via policy optimization. In Proceedings of the

International Conference on Machine Learning, New York City, NY, USA, 19–24 June 2016; pp. 49–58.
116. Zhao, X.; Xia, L.; Zhang, L.; Ding, Z.; Yin, D.; Tang, J. Deep reinforcement learning for page-wise recommendations. In Proceedings

of the 12th ACM Conference on Recommender Systems, Vancouver, BC, Canada, 2 October 2018; pp. 95–103.
117. Li, X.; Ma, Y.; Belta, C. Automata guided reinforcement learning with demonstrations. arXiv 2018, arXiv:1809.06305.
118. Osa, T.; Peters, J.; Neumann, G. Hierarchical reinforcement learning of multiple grasping strategies with human instructions.

Adv. Robot. 2018, 32, 955–968.
119. Zhang, J.; Yu, H.; Xu, W. Hierarchical reinforcement learning by discovering intrinsic options. arXiv 2021, arXiv:2101.06521.
120. Baram, N.; Anschel, O.; Caspi, I.; Mannor, S. End-to-end differentiable adversarial imitation learning. In Proceedings of the

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 390–399.
121. Merel, J.; Tassa, Y.; TB, D.; Srinivasan, S.; Lemmon, J.; Wang, Z.; Wayne, G.; Heess, N. Learning human behaviors from motion

capture by adversarial imitation. arXiv 2017, arXiv:1707.02201.
122. Tsurumine, Y.; Matsubara, T. Goal-aware generative adversarial imitation learning from imperfect demonstration for robotic

cloth manipulation. Robot. Auton. Syst. 2022, 158, 104264.
123. Zolna, K.; Reed, S.; Novikov, A.; Colmenarejo, S.G.; Budden, D.; Cabi, S.; Denil, M.; de Freitas, N.; Wang, Z. Task-relevant

adversarial imitation learning. In Proceedings of the Conference on Robot Learning, London, UK, 8–11 November 2021; pp.
247–263.

124. Yang, X.; Ji, Z.; Wu, J.; Lai, Y.K. Abstract demonstrations and adaptive exploration for efficient and stable multi-step sparse
reward reinforcement learning. In Proceedings of the 2022 27th International Conference on Automation and Computing (ICAC),
Bristol, UK, 1–3 September 2022; pp. 1–6.

125. Li, Y.; Kong, T.; Li, L.; Li, Y.; Wu, Y. Learning to Design and Construct Bridge without Blueprint. arXiv 2021, arXiv:2108.02439.
126. Puang, E.Y.; Tee, K.P.; Jing, W. Kovis: Keypoint-based visual servoing with zero-shot sim-to-real transfer for robotics manipulation. In

Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Online, 25 October–24 December
2020; pp. 7527–7533.

127. Yuan, C.; Shi, Y.; Feng, Q.; Chang, C.; Liu, M.; Chen, Z.; Knoll, A.C.; Zhang, J. Sim-to-Real Transfer of Robotic Assembly with
Visual Inputs Using CycleGAN and Force Control. In Proceedings of the 2022 IEEE International Conference on Robotics and
Biomimetics (ROBIO), Xishuangbanna, China, 5–9 December 2022; pp. 1426–1432.

128. Tiboni, G.; Arndt, K.; Kyrki, V. DROPO: Sim-to-Real Transfer with Offline Domain Randomization. arXiv 2022, arXiv:2201.08434.
129. Yamanokuchi, T.; Kwon, Y.; Tsurumine, Y.; Uchibe, E.; Morimoto, J.; Matsubara, T. Randomized-to-Canonical Model Predictive

Control for Real-World Visual Robotic Manipulation. IEEE Robot. Autom. Lett. 2022, 7, 8964–8971.
130. Julian, R.; Swanson, B.; Sukhatme, G.S.; Levine, S.; Finn, C.; Hausman, K. Efficient adaptation for end-to-end vision-based robotic

manipulation. In Proceedings of the 4th Lifelong Machine Learning Workshop at ICML, Online, 13–18 July 2020.
131. Rammohan, S.; Yu, S.; He, B.; Hsiung, E.; Rosen, E.; Tellex, S.; Konidaris, G. Value-Based Reinforcement Learning for Continuous

Control Robotic Manipulation in Multi-Task Sparse Reward Settings. arXiv 2021, arXiv:2107.13356.
132. Wang, D.; Walters, R. So (2) equivariant reinforcement learning. In Proceedings of the International Conference on Learning

Representations, Online, 25–29 April 2022.
133. Deng, Y.; Guo, D.; Guo, X.; Zhang, N.; Liu, H.; Sun, F. MQA: Answering the question via robotic manipulation. arXiv 2020,

arXiv:2003.04641.



Sensors 2023, 23, 3762 35 of 35

134. Imtiaz, M.B.; Qiao, Y.; Lee, B. Prehensile and Non-Prehensile Robotic Pick-and-Place of Objects in Clutter Using Deep Reinforce-
ment Learning. Sensors 2023, 23, 1513.

135. Sarantopoulos, I.; Kiatos, M.; Doulgeri, Z.; Malassiotis, S. Split deep q-learning for robust object singulation. In Proceedings of
the 2020 IEEE International Conference on Robotics and Automation (ICRA), Online, 31 May–31 August 2020; pp. 6225–6231.

136. Hsu, H.L.; Huang, Q.; Ha, S. Improving safety in deep reinforcement learning using unsupervised action planning. In Proceedings
of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 5567–5573.

137. Iriondo, A.; Lazkano, E.; Susperregi, L.; Urain, J.; Fernandez, A.; Molina, J. Pick and place operations in logistics using a mobile
manipulator controlled with deep reinforcement learning. Appl. Sci. 2019, 9, 348.

138. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, eaau5872.

139. Clegg, A.; Yu, W.; Tan, J.; Kemp, C.C.; Turk, G.; Liu, C.K. Learning human behaviors for robot-assisted dressing. arXiv 2017,
arXiv:1709.07033.

140. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
141. Wang, Q.; Sanchez, F.R.; McCarthy, R.; Bulens, D.C.; McGuinness, K.; O’Connor, N.; Wüthrich, M.; Widmaier, F.; Bauer, S.;

Redmond, S.J. Dexterous robotic manipulation using deep reinforcement learning and knowledge transfer for complex sparse
reward-based tasks. Expert Syst. 2022, e13205. https://doi.org/10.1111/exsy.13205.

142. Luu, T.M.; Yoo, C.D. Hindsight Goal Ranking on Replay Buffer for Sparse Reward Environment. IEEE Access 2021, 9, 51996–52007.
143. Eppe, M.; Magg, S.; Wermter, S. Curriculum goal masking for continuous deep reinforcement learning. In Proceedings of the 2019 Joint

IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), Norway, 19–22 August 2019;
pp. 183–188.

144. Sehgal, A.; La, H.; Louis, S.; Nguyen, H. Deep reinforcement learning using genetic algorithm for parameter optimization. In Proceedings
of the 2019 Third IEEE International Conference on Robotic Computing (IRC), Naples, Italy, 25–27 February 2019; pp. 596–601.

145. Sehgal, A.; Ward, N.; La, H.; Louis, S. Automatic parameter optimization using genetic algorithm in deep reinforcement learning
for robotic manipulation tasks. arXiv 2022, arXiv:2204.03656.

146. Nair, A.V.; Pong, V.; Dalal, M.; Bahl, S.; Lin, S.; Levine, S. Visual reinforcement learning with imagined goals. arXiv 2018,
arXiv:1807.04742. https://doi.org/10.48550/arXiv.1807.04742.

147. Meng, Z.; She, C.; Zhao, G.; De Martini, D. Sampling, communication, and prediction co-design for synchronizing the real-world
device and digital model in metaverse. IEEE J. Sel. Areas Commun. 2022, 41, 288–300.

148. Li, H.; Zhou, X.H.; Xie, X.L.; Liu, S.Q.; Gui, M.J.; Xiang, T.Y.; Wang, J.L.; Hou, Z.G. Discrete soft actor-critic with auto-encoder on
vascular robotic system. Robotica 2022, 41, 1115–1126.

149. Wang, D.; Jia, M.; Zhu, X.; Walters, R.; Platt, R. On-robot learning with equivariant models. In Proceedings of the Conference on
Robot Learning, Auckland, New Zealand, 14–18 December 2022.

150. Jian, P.; Yang, C.; Guo, D.; Liu, H.; Sun, F. Adversarial Skill Learning for Robust Manipulation. In Proceedings of the 2021 IEEE
International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 2555–2561.
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