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Abstract: The singular value decomposition package (SVDP) is often used for signal decomposition
and feature extraction. At present, the general SVDP has insufficient feature extraction ability due to
the two-row structure of the Hankel matrix, which leads to mode mixing. In this paper, an improved
singular value decomposition packet (ISVDP) algorithm is proposed: the feature extraction ability is
improved by changing the structure of the Hankel matrix, and similar signal sub-components are
selected by similarity to avoid having the same frequency component signals being decomposed into
different sub-signals. In this paper, the effectiveness of ISVDP is illustrated by a set of simulation
signals, and it is utilized in fault diagnosis of bearing data. The results show that ISVDP can effectively
suppress the model-mixing phenomenon and can extract the fault features in bearing vibration signals
more accurately.

Keywords: mode mixing; feature extraction; singular value decomposition package; signal
decomposition; bearing diagnosis

1. Introduction

As one of the key components of mechanical systems, the health of bearings is an
important guarantee for their safe operation [1–3]. When a bearing fails, the bearing
components form a sudden shock pulse through the fault site and cause the bearing and
adjacent components to vibrate, so that the collected vibration signal contains the fault-
specific periodic shock pulse signal [4,5]. Therefore, the bearing vibration signal contains
important information about the health status of the bearing [6–8]. Therefore, in bearing
fault diagnosis based on vibration signals, the core is to extract fault-specific signal features
from vibration signals.

In the field of bearing fault diagnosis, in order to effectively extract the fault features
in the vibration signal, existing research has proposed a variety of signal processing meth-
ods to be adopted to extract the fault signal features from the perspectives of the time
domain [9,10], frequency domain and time–frequency domain, such as correlation analysis
based on the time domain [11], Fourier transform based on the frequency domain [12],
wavelet transform based on the time–frequency domain [13], empirical mode decom-
position [14] and their derivative algorithms [15–18]. Although the above methods can
effectively extract bearing fault features, correlation analysis and Fourier transform have
difficulty effectively dealing with non-stationary and other complex signals. Wavelet trans-
form needs understanding of the signal characteristics in advance to select the appropriate
wavelet basis. Empirical mode decomposition has endpoint effects and model-mixing
phenomena, which limit the use of the above methods to a certain extent.

Singular value decomposition (SVD) is also applied in the field of signal process-
ing [19,20]. Ying et al. [21] realized the feature-space change of unknown source signals by
SVD and then combined it with joint diagonalization to realize the separation of unknown
source signals dominated by random noise. Golafshan et al. [22] applied SVD and the
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denoting process based on the Hankel matrix to the time-domain vibration signal of the
bearing to eliminate the background noise and improve the reliability of the fault-detection
process. Zhang et al. [23] applied SVD to signals under a sliding window and obtained
a time-varying singular value matrix, which was used to enhance the identification of
periodic faults. However, the traditional SVD algorithm is essentially carried out in the
same resolution and hierarchical space when processing signal data [24], and it is difficult to
effectively extract signal features. To solve this problem, Zhao et al. [25] proposed a multi-
resolution singular value decomposition (MSVD) algorithm based on the idea of wavelet
transform. The decomposition results of SVD are divided into different hierarchical spaces,
and the signal of the bearing is decomposed into several approximate signals and detail
signals with different frequencies by the SVD method. Then, in order to further improve
the feature-extraction ability of MSVD, Zhao et al. [26] improved the MSVD and proposed
a singular value decomposition package (SVDP), which shows that the method has the
same decomposition structure as the wavelet packet and is suitable for extracting weak
bearing fault features. Although MSVD and SVDP have been well-applied in bearing signal
processing, Huang et al. pointed out that SVDP has mode mixing after multiple iterations;
that is, a single sub-component signal contains completely different frequency components,
or the same frequency component is decomposed into different sub-component signals.
To solve this problem, Huang et al. proposed the extended singular value decomposition
package (ESVDP) and the fast extended singular value decomposition package (FESVDP)
to solve the model-mixing phenomenon and applied it to railway vehicle bearings [27].
However, the research in this paper found that Huang et al. did not completely solve the
model-mixing phenomenon of SVDP.

To solve the above problems, this paper proposes an improved singular value decom-
position package (ISVDP) algorithm to solve the model-mixing phenomenon in SVDP. On
the one hand, ISVDP improves the feature-extraction ability of the algorithm by changing
the structure of the Hankel matrix in SVDP. On the other hand, the similarity is used to
select similar sub-signals, which further suppresses the model-mixing phenomenon. The
content of this paper is as follows: In Section 2, SVDP and its improved algorithm ESVDP
are introduced. In Section 3, an improved singular value decomposition package algorithm
is proposed to overcome the shortcomings of SVDP and ESVDP algorithms in bearing
feature extraction. Section 4 illustrates the effectiveness of the proposed method through
simulation. Section 5 shows the comparison results of ISVDP and other methods on the
bearing dataset, which verifies the effectiveness of the proposed method. Section 6 is
a summary.

2. Singular Value Decomposition Package and Other Improved Algorithms
2.1. Singular Value Decomposition Package and Other Improved Algorithms

The purpose of a singular value decomposition packet (SVDP) is to use singular value
decomposition to realize signal decomposition similar to that of a wavelet packet. SVDP
can decompose the original one-dimensional bearing signal into a series of component
signals of different layers by performing iterative singular value decomposition on the
constructed two-row Hankel matrix, and feature extraction of the bearing fault signal can
be realized [26]. The method of SVDP is as follows:

Let x(n) be a one-dimensional bearing signal, where n = 1, 2, · · · , N, N is the length
of the signal x(n). The Hankel matrix of signal x(n) is constructed as

H =

(
x(1) x(2) · · · x(N − 1)
x(2) x(3) · · · x(N)

)
(1)

Assuming that the J − 1 layer SVDP decomposition has been performed, the 2J−1

signal Si
J−1 = (xi

J−1,1, · · · , xi
J−1,N) is obtained, where i = 0, 1, · · · , 2J−1 − 1 is the serial

number of the sub-signal, and the Hankel matrix is constructed as
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Hi
J =

(
xi

J−1,1 xi
J−1,2 · · · xi

J−1,N−1
xi

J−1,2 xi
J−1,3 · · · xi

J−1,N

)
(2)

SVD is decomposed into

Hi
J = Ui

JΣ
i
J(V

i
J )

T
(3)

where Ui
J = (ui

J1, ui
J2), Ui

J ∈ R2×2 and Vi
J = (vi

J1, · · · , vi
J(N−1)), Vi

J ∈ R(N−1)×(N−1) are

left and right singular matrices, Σi
J = [diag(σi

j1, σi
j2), O] is a diagonal matrix and σi

J1, σi
J2

are the approximate singular values and the detail singular values obtained by the Si
J−1

decomposition of the J layer signal, respectively. The approximate matrix Hi
J1 and the

detail matrix Hi
J2 corresponding to the singular values are expressed asHi

J1 = σi
J1ui

J1(v
i
J1)

T

Hi
J2 = σi

J2ui
J2(v

i
J2)

T
(4)

where ui
J1, ui

J2 ∈ R2×1, vi
J1, vi

J2 ∈ R(N−1)×1. The diagonal averaging method in the singu-
lar spectrum analysis is used for the approximate matrix Hi

J1 and the detail matrix Hi
J2,

respectively, to obtain the two component signals S2i
J and S2i+1

J of the signal Si
J−1 at the

J layer [28]. Using the above process, specifying the decomposition level J, SVDP can
decompose the signal into 2J sub-signals. When the number of decomposition layers J = 3,
the decomposition structure of SVDP is shown in Figure 1.
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（Original Signal）

Figure 1. Schematic diagram of SVDP.

2.2. Extended Singular Value Decomposition Package

Huang et al. pointed out that when performing SVDP decomposition on bearing fault
signals with multiple resonance bands, there is obvious mode mixing between component
signals, which reduces the extraction effect of bearing fault signal features. In addition,
Huang et al. showed that as the number of rows of the Hankel matrix increases, the aggre-
gation of singular values on the resonance band becomes worse, and for the singular values
after the decomposition of the Hankel matrix, the sub-signal components corresponding to
the adjacent singular values have the same frequency. Accordingly, Huang et al. improved
SVDP by constructing an even-numbered Hankel matrix larger than two rows and merging
the sub-signal components corresponding to adjacent singular values, and they proposed
the Extended Singular Value Decomposition Package (ESVDP) and the Fast Extended
Singular Value Decomposition Package (FESVDP) to improve the feature extraction ability
of bearing fault signals; the methods of ESVDP and FESVDP are as follows:

Let x(n) be a one-dimensional bearing signal, where n = 1, 2, · · · , N, and N is the
length of the signal x(n). The 2k-row Hankel matrix is constructed as

A =


x(1) x(2) · · · x(N − 2k + 1)
x(2) x(3) · · · x(N − 2k + 2)

...
...

. . .
...

x(2k) x(2k + 1) · · · x(N)

 (5)
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where k ∈ N∗, k ≥ 2 is the number of sub-signals. Using the same method as in Section 2.1,
2k signal sub-components are obtained, and the 2k− 1-th and 2k-th signal sub-components
are combined to obtain the k sub-signal Dk

J , and then the above steps are repeated until the
specified number of decomposition layers J is reached. The signal in the extended singular
value decomposition package is decomposed into k sub-signals each time, and a total of
(kJ − 1)/(k− 1) sub-signals are obtained. Therefore, in order to reduce the calculation
cost, FESVDP is proposed on the basis of ESVDP. FESVDP only retains the first sub-signal
in each decomposition at the J = 2 layer and later. When K = 3, J = 3, the decomposition
structure of ESVDP and FESVDP is shown in Figure 2. The subcomponents marked red
constitute FESVDP.

（Original Signal）1
0D

1
1D 2

1D 3
1D

1
2D 2

2D 3
2D 4

2D 5
2D 6

2D 7
2D 8

2D 9
2D

1
3D 2

3D 3
3D 10

3D 11
3D 12

3D 20
3D19

3D 21
3D

Figure 2. Schematic diagram of ESVDP and FESVDP (the red subcomponents).

3. Improved Singular Value Decomposition Package
3.1. The Deficiency of SVDP and ESVDP in Bearing Feature Extraction

The core idea of SVDP is to construct a two-row Hankel matrix and perform singular
value iterative decomposition on it. Therefore, SVDP can only get two singular values and
the corresponding sub-signals at a time. Further, since the second-row vector of the Hankel
matrix is only one datum later than the first-row vector, the two row vectors are highly
correlated. At this time, the signals corresponding to multiple resonance bands are mainly
concentrated in the approximate signals corresponding to larger singular values. Therefore,
mode mixing occurs after SVDP decomposition [27].

The core idea of ESVDP is that the increase of the rank of the Hankel matrix makes the
aggregation of singular values in the resonance band worse, and the purpose of separating
multiple resonance frequency bands can be achieved by increasing the number of rows
of the Hankel matrix. Further, another core idea of ESVDP is that the sub-signals corre-
sponding to the two adjacent singular values have the same frequency, and the purpose of
reducing mode mixing is achieved by superimposing the sub-signals corresponding to the
two adjacent singular values. However, Treichler [29] pointed out that the Hankel matrix is
composed of sine or cosine signals, and the singular value of the matrix is

σ1, σ2 =
a
2

√[
L± sin(LωT)

sin(ωT)

]
(6)

where σ1, σ2 are the singular values of the matrix, a is the signal amplitude, ω is the signal
frequency, T is the sampling interval and L is the number of columns of the Hankel matrix.
According to Equation (6), one frequency corresponds to two singular values, but the two
adjacent singular values do not always correspond to one frequency. Therefore, ESVDP
does not completely solve the mode-mixing phenomenon existing in SVDP.

3.2. Improved Singular Value Decomposition Package

It can be seen from Section 3.1 that ESVDP does not completely solve the modal-mixing
phenomenon existing in SVDP. Therefore, in order to solve the modal-mixing phenomenon
existing in VDP, this paper proposes an improved singular value decomposition package
(ISVDP). The algorithm is as follows:
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Let x(n) be a one-dimensional bearing signal, where n = 1, 2, · · · , N; N is the length
of the signal x(n). Construct the Hankel matrix as

X =


x(1) x(2) · · · x(L)
x(2) x(3) · · · x(L + 1)

...
...

. . .
...

x(m) x(m + 1) · · · x(N)

 (7)

where N = m + L− 1. Let L > m; through the SVD decomposition of Equation (7), the
Hankel matrix X can be expressed as

X = UΣV =
m

∑
i=1

σiuivT
i =

m

∑
i=1

Xi (8)

where U = [u1, u2, · · · um] ∈ Rm×m and V = [v1, v2, · · · , vL] ∈ RL×L are left and right
singular matrices, and ui, i = 1, · · · , m and vj, j = 1, · · · , L are left and right singular vectors
corresponding to singular values, respectively. Σ = [Λ O], Λ = diag(σ1, σ2, · · · , σm) is a
diagonal matrix, σ1 · · · , σm is a singular value, O is a zero matrix, Xi = σiuivT

i , i = 1, · · · , m
is a submatrix. Reconstruct the submatrix Xi as

Ĉi =



1
d− 1

d−1

∑
l=1

x̂l,d−l f or 2 ≤ d ≤ m− 1

1
m

m

∑
l=1

x̂l,d−l f or m ≤ d ≤ L + 1

1
m + L− d + 1

m

∑
l=d−L

x̂l,d−l f or L + 2 ≤ d ≤ m + L

(9)

where x̂i,j is the i-th row and j-th column element of the submatrix Xi.
In order to further suppress the model-mixing effect and improve the feature-extraction

ability of bearing faults, this paper selects sub-signals of the same frequency by measuring
the similarity between sub-signals. The similarity measure function based on the Pearson
correlation coefficient is

ryz =

N
∑

n=1
(y(n)− y)(z(n)− z)√

N
∑

n=1
(y(n)− y)2(z(n)− z)2

(10)

where y and z are the mean values of y(n) andz(n), respectively. According to Equation (10),
the related reconstructed sub-signal component is Ĉi, i = 1, · · · , m the related reconstructed
sub-signal component is Ci, i = 1, · · · , s, and s, s ≤ m is the number of sub-signals. The
sub-signal Ci selected by the Pearson correlation coefficient mainly contains one frequency.
Therefore, when the decomposition level is J ≥ 2, each sub-signal Ci retains only the
first sub-signal after decomposition. The above process is repeated for each sub-signal Ci
according to the decomposition layer J. The decomposition structure of ISVDP is shown in
Figure 3.

3.3. Parameter Selection of ISVDP

The proposed ISVDP includes two preset parameters, namely the number of rows of the
Hankel matrix and the number of decomposition layers. If the number of rows of the Hankel
matrix is greater than or equal to the number of resonance frequency bands of bearing signals
for the same number of decomposition layers, more rows leads to better ability to extract the
resonance frequency bands of bearing signals, but the aggregation becomes worse. When the
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number of rows of the matrix is the same, more decomposition layers leads to a narrower
frequency band of the bearing signal, but there is a risk of losing effective features. Therefore,
according to reference [27] and practical experience, the range of Hankel matrix rows is from
4 to 20, and the number of decomposition layers is from 3 to 10.

（Original Signal）X

0

1C
1

1C 1

sC

0

2C 1

2C 2

sC

0

3C 1

3C 3

sC

（Original Signal）X

0

1C
1

1C 1

sC

0

2C 1

2C 2

sC

0

3C 1

3C 3

sC

Figure 3. Schematic diagram of ISVDP.

3.4. Application of ISVDP in Fault Diagnosis

ISVDP decomposes the bearing fault signal containing multiple resonance bands into
multiple sub-signals and performs envelope analysis on each sub-signal to realize the fault
diagnosis of the bearing by combining the envelope diagram of the sub-signal. The process
flow diagram of ISVDP is shown in Figure 4.
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Figure 4. Flowchart of ISVDP on bearing fault diagnosis.
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4. Simulation Analysis
4.1. Simulation Parameters

In order to verify the effectiveness of ISVDP in bearing diagnosis, we implemented
the bearing fault signal model of Reference [27]. The simulation model of a bearing fault
signal is

x(t) = x1(t) + x2(t) + x3(t) + x4(t) + ξ(t) (11)

where the component signals xj(t), j = 1, 2, 3 are the bearing outer ring fault signal, the
connecting shaft signal connected to the bearing, and the external impact signal. The
component signals xj(t), j = 1, 2, 3 are

xj(t) =
Mj−1

∑
n=0

Bije
−β j(t−

n
∑

i=0
∆Tij)

cos[2π fR,j(t−
n

∑
i=0

∆Tij)]u(t−
n

∑
i=0

∆Tij) (12)

where Bij is the amplitude of the i-th fault shock of the signal xj(t), β j is the structural
attenuation coefficient, fR,j is the resonance frequency of the signal xj(t), Mj is the number
of shocks in the signal xj(t), u(t) is the unit step function, ∆Tij is the interval between
the i− 1-th and i-th shocks of the signal xj(t)—where the impact interval ∆Tij of the first
component signal x1(t) and the second component signal x2(t) obeys Gaussian distribution,
that is {∆Tij} ∼ N(Tp,j, σ2

∆,j)—Tp,j = f−1
j is the mean, f j is the feature frequency of bearing

fault, σ∆,j is the standard deviation of time interval fluctuation, and σ∆,j/Tp,j < 2%. The
impact interval ∆Tij of the third component signal x3(t) is ∆T13 = 0.2 s, ∆T23 = 0.8 s. The
other simulation parameters are shown in Table 1. The harmonic interference signal x4(t) is

x4(t) = 0.2 sin(4π frt) + 0.1 sin(6π frt) + 0.1 sin(8π frt) (13)

where fr = 10.29 Hz is the harmonic interference frequency; ξ(t) is white Gaussian noise
with a standard deviation of 0.22. The sampling frequency is 10 KHz.

Table 1. Parameters of the simulation signal.

j Bij βj fR,j (Hz) Tp,j (s) Mj σ∆,j/Tp,j

1 1 1000 3100 0.012 167 1%
2 5 1200 1400 0.097 21 0.5%
3 5 1200 2000 - 3 -

FESVDP is a fast decomposition algorithm of ESVDP, so this paper uses SVDP, FESVDP,
Empirical Mode Decomposition (EMD), Variational Mode Decomposition (VMD) and
ISVDP to process the simulation signal x(t). To verify the effectiveness of the method in
this paper, the number of decomposition layers and the number of Hankel matrix rows of
FESVDP in [27] are used. There are 3 decomposition layers and 16 Hankel matrix rows.
The parameters of EMD and VMD are the default values of the functions in MATLAB.

4.2. Results Analysis

The waveform diagram of signal x(t) is shown in Figure 5, and the spectrum diagram
and envelope diagram of signal x(t) are shown in Figure 6. In the Fourier spectrum shown
in Figure 6a, the resonance band centered at fR,j, j = 1, 2, 3 is not obvious. In the envelope
spectrum shown in Figure 6b, the feature frequency f1 = 83.33 Hz of the bearing fault is
covered by other peaks.

In order to effectively express the decomposition effect of each algorithm and save
the layout of the article, the first six component signals after the SVDP, FESVDP, EMD and
ISVDP decomposition simulation signals and the first four component signals after VMD
decomposition simulation signals are selected to make the time–frequency domain diagram
and envelope diagram, respectively, of the component signal. Figures 7–11 are the time–
frequency diagrams of the component signals after the simulation signal is decomposed by
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SVDP, FESVDP, EMD, VMD and ISVDP, respectively. It can be seen that compared with
Figures 8 and 11, the frequency band in each component signal in Figures 7, 9 and 10 are
wider, and multiple component signals contain the same frequency components, which
indicates that SVDP cannot effectively extract signal features. From Figure 8a,f, it can be
clearly seen that although the frequency bands in each component signal after FESVDP
decomposition are narrow, there are two frequency bands in the same component signal, so
there is still mode mixing after FESVDP decomposition of the bearing signal. From Figure 11,
it can be seen that the frequency band of each component signal after ISVDP decomposition
is narrow and one component signal contains only one frequency band. Therefore, ISVDP
can effectively extract signal features and effectively suppress modal mixing.

Figure 5. The simulated signal: (a) harmonic interference; (b) impulse responses excited by defects in
the bearing; (c) the synthesis signal.

Figure 6. The simulated signal: (a) frequency spectrum; (b) envelope spectrum.
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Figure 7. Decomposition results of SVDP with m = 16 and J = 3: (a–f) time–frequency diagram of
1st to 6th subcomponents, respectively.
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Figure 8. Decomposition results of FESVDP with m = 16 and J = 3: (a–f) time–frequency diagram of
1st to 6th subcomponents, respectively.
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Figure 9. Decomposition results of EMD with m = 16: (a–f) time–frequency diagram of 1st to 6th
subcomponents, respectively.
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Figure 10. Decomposition results of VMD with m = 16: (a–d) time–frequency diagram of 1st to 4th
subcomponents, respectively.
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Figure 11. Decomposition results of ISVDP with m = 16 and J = 3: (a–f) time–frequency diagram of
1st to 6th subcomponents, respectively.

Figures 12–16 are the envelopes of the sub-signals after SVDP, FESVDP, EMD, VMD
and ISVDP decomposition, respectively. It can be seen that the frequency bands in the
envelope spectrum of FESVDP and ISVDP are narrower compared to SVDP, EMD and
VMD, which corresponds to the time–frequency spectrum. Figures 12a, 13a and 16a are the
envelope diagrams of harmonic interference signals. It can be seen that SVDP, FESVDP and
ISVDP can effectively separate harmonic signals. However, it is difficult to distinguish the
characteristic frequency of harmonic interference signals in Figures 14 and 15. Therefore,
EMD and VMD are difficult to effectively separate harmonic signals. In addition, it can be
seen from Figures 12d,f, 13c,d, 15b,c and 16c are envelope diagrams of bearing faults. It
can be seen that the Four methods can effectively decompose the characteristic frequency
f1 = 83.33 Hz of bearing faults, but EMD is difficult to effectively extract the characteristic
frequency of bearing fault. However, the envelope spectra of Figure 12d,f contain fault
characteristic frequencies, the envelope spectra of Figure 13c,d contain fault characteristic
frequencies, the envelope spectra of Figure 15b,c contain fault characteristic frequencies
and the envelopes of Figure 13a,f are mixed with other frequency information, which
indicates that both SVDP, FESVDP and VMD have mode mixing. This is because when
SVDP iteratively decomposes, each signal can only get two sub-signals, and the signal
information is mainly concentrated in the approximate signal, resulting in sub-signals with
the same frequency appearing in different sub-signal components. The FESVDP is due to
the combination of two adjacent sub-signal components with different frequencies, which
artificially causes mode mixing. VMD is due to the small number of decomposed modes,
which causes the VMD to decompose the signal insufficiently, resulting in mode aliasing.
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Figure 12. Decomposition results of SVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.

Figure 13. Decomposition results of FESVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.
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Figure 14. Decomposition results of EMD with m = 16: (a–f) envelop of 1st to 6th
subcomponents, respectively.
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Figure 15. Decomposition results of VMD with m = 16: (a–d) envelop of 1st to 4th
subcomponents, respectively.
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Figure 16. Decomposition results of ISVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.

5. Experimental Verification
5.1. Data Description

The experimental drive end bearing data of Case Western Reserve University in the
United States was used [30], and the test bearing was SKF6205-2RS deep groove ball bearing.
The mixed signal is composed of two inner race fault data. The sampling frequency is
12 KHz. To further weaken the fault feature, 13 dB noise is superimposed on the mixed
signal. The parameters of the inner race fault are shown in Table 2. The number of
decomposition layers and the number of rows of the Hankel matrix of SVDP, FESVDP and
ISVDP are 3 and 16, respectively. The parameters of EMD and VMD are the default values
of the functions in MATLAB.

Table 2. Structural parameters of rolling bearing.

Status Fault Size of Samples Motor Load Approx. Motor Speed

Inner Race 1 0.1778 (mm) 0 (HP) 1797 (rpm)
Inner Race 2 0.7112 (mm) 3 (HP) 1730 (rpm)

5.2. Test Results and Analysis

The waveform diagram and envelope diagram of the mixed signal are shown in
Figures 17 and 18. The main frequencies of inner race fault 1 and inner race fault 2 are
102 Hz, 162 Hz, 106 Hz and 123 Hz respectively. It can be seen from Figure 18c that the
envelope peak of inner race fault 1 is almost covered by inner race fault 2.
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Figure 17. The Waveform of Composite Signal.
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Figure 18. The Envelope Diagram of Composite Signal.

In order to effectively express the decomposition effect of each algorithm and save the
layout of the article, the first six component signals after the SVDP, FESVDP, and ISVDP
decomposition simulation signals and the first four component signals after EMD and
VMD decomposition simulation signals are selected to make the time–frequency domain
diagram and envelope diagram of the component signal respectively. Figures 19–23 are
the time–frequency diagrams of the sub-components after SVDP, FESVDP, EMD, VMD
and ISVDP decomposition, respectively. From Figures 19, 21 and 22, it can be seen that the
frequency band of each component signal after SVDP, EMD and VMD decomposition is
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wider, and multiple frequency bands are distributed in different component signals. This
shows that SVDP, EMD and VMD algorithms are difficult to effectively extract bearing fault
features, and there is modal mixing. However, in Figures 20 and 23, the frequency band
of each component signal decomposed by FESVDP and ISVDP is narrow, therefore, both
FESVDP and ISVDP can extract bearing fault features better. Besides, it can be clearly seen
from Figure 20f that the component signal after the FESVDP bearing signal contains two
frequency bands. Therefore, there is still modal mixing after the FESVDP decomposes the
bearing signal. However, the above phenomenon does not appear in Figure 23, indicating
that ISVDP can effectively extract signal features, and can effectively suppress the modal
mixing phenomenon.

Figures 24–28 are the envelope diagrams of the sub-components after SVDP, FESVDP,
EMD, VMD and ISVDP decomposition, respectively. It can be seen that the spectral peaks
in the envelope spectra of FESVDP and ISVDP are narrower compared to SVDP, EMD and
VMD, which corresponds to the time–frequency diagram. In Figures 24b–d, 25b,c, 26a,c
and 27b the characteristic frequency of inner race fault 1 and the characteristic frequency of
inner race fault 2 are in the same envelope diagram. This shows that SVDP, FESVDP, EMD
and VMD cannot effectively separate inner race fault 1 and inner race fault 2. In addition,
it can be seen from Figure 27 that although compared with SVDP, FESVDP and EMD,
VMD can relatively effectively separate inner race fault 1 and inner race fault 2, and has a
relatively good ability to extract bearing fault features, but the characteristic frequency of
inner race fault 2 appears in the two separated signals after VMD decomposition. Therefore,
SVDP, FESVDP, EMD and VMD can not effectively separate inner race fault 1 and inner
race fault 2 and there is modal mixing in the decomposed component signals. However,
from Figure 28, it can be seen that ISVDP can effectively separate the inner race fault 1 and
the inner race fault 2, and the separated features do not appear in the two separate signals
after ISVDP decomposition. Therefore, ISVDP has better bearing fault feature extraction
ability and can effectively suppress modal nixcing.
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Figure 19. Decomposition results of SVDP with m = 16 and J = 3: (a–f) time–frequency diagram of
1st to 6th subcomponents, respectively.
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Figure 20. Decomposition results of FESVDP with m = 16 and J = 3: (a–f) time–frequency diagram
of 1st to 6th subcomponents, respectively.
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Figure 21. Decomposition results of EMD with m = 16: (a–d) time–frequency diagram of 1st to 4th
subcomponents, respectively.
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(c) Component Signal 3
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Figure 22. Decomposition results of VMD with m = 16: (a–d) time–frequency diagram of 1st to 4th
subcomponents, respectively.
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Figure 23. Decomposition results of ISVDP with m = 16 and J = 3: (a–f) time–frequency diagram of
1st to 6th subcomponents, respectively.
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Figure 24. Decomposition results of SVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.
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Figure 25. Decomposition results of FESVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.
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Figure 26. Decomposition results of EMD with m = 16: (a–d) envelop of 1st to 4th
subcomponents, respectively.

0 2000 4000 6000
Frequency(Hz)

0

0.1

0.2

0.3

A
m

p
lit

u
d

e(
m

/s
2 )

(a) Component Signal 1

0 2000 4000 6000
Frequency(Hz)

0

0.2

0.4

0.6

A
m

p
lit

u
d

e(
m

/s
2 )

(b) Component Signal 2

0 2000 4000 6000
Frequency(Hz)

0

0.05

0.1

0.15

0.2

0.25

A
m

p
lit

u
d

e(
m

/s
2 )

(c) Component Signal 3

0 2000 4000 6000
Frequency(Hz)

0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d

e(
m

/s
2 )

(d) Component Signal 4

0 200 400
0

0.02

0.04

0.06

0 200 400
0

0.05

0.1

0 200 400
0

0.02

0.04

0.06

0 200 400
0

0.02

0.04

0.06

0.08

102
102

106

106
106

162
164

123
123

Figure 27. Decomposition results of VMD with m = 16: (a–d) envelop of 1st to 4th
subcomponents, respectively.
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Figure 28. Decomposition results of ISVDP with m = 16 and J = 3: (a–f) envelop of 1st to 6th
subcomponents, respectively.

In summary, the results of the five algorithms in simulation and experiment are shown
in Table 3. It can be seen that the ISVDP proposed in this paper can extract bearing fault
features more effectively and suppresses modal aliasing, while SVDP and EMD are the
worst in extracting bearing fault features and suppressing modal aliasing.

Table 3. Comparison of the results of five algorithms in simulations and experiments.

Simulation Experiment

SVDP
1. Reduce harmonic interference;

2. Extract fault features;
3. Mode mixing

1. Inner race faults 1 and 2 cannot be separated;
2. Mode mixing

FESVDP
1. Reduce harmonic interference;

2. Extract fault features;
3. Mode mixing

1. Inner race faults 1 and 2 cannot be separated;
2. Mode mixing

EMD
1. Harmonic interference exists;

2. Fault features cannot be extracted;
3. Mode mixing

1. Inner race faults 1 and 2 cannot be separated;
2. Mode mixing

VMD
1. Harmonic interference exists;

2. Extract fault features;
3. Mode mixing

1. Partial separation of inner race faults 1 and 2;
2. Mode mixing

ISVDP
1. Reduce harmonic interference;

2. Extract fault features;
3. Restrain modal mixing

1. Effective separation of inner race faults 1 and 2;
2. Restrain modal mixing

6. Conclusions

In this paper, in order to suppress the modal-aliasing phenomenon existing in the
SVDP extraction of bearing signal fault features and to improve the feature extraction ability
of SVDP, an improved singular value decomposition package algorithm is proposed. The
feature extraction ability of SVDP is improved by changing the structure of the Hankel ma-
trix in SVDP and using similarity to select signal sub-components, and the modal-aliasing



Sensors 2023, 23, 3759 22 of 23

phenomenon is effectively suppressed. The effectiveness of the ISVDP method is veri-
fied by simulations and experiments. The results show that ISVDP can effectively extract
fault features. Compared with SVDP and FESVDP, ISVDP has the following advantages:
(1) ISVDP can effectively suppress the model-mixing phenomenon; (2) ISVDP can extract
fault features more effectively and improve the accuracy of fault diagnosis.

ISVDP can extract the fault features of bearing signals without relying on prior knowl-
edge and can effectively suppress modal aliasing. However, ISVDP needs to determine the
number of rows of the Hankel matrix and the number of decomposition layers, especially
the number of rows of the Hankel matrix. Since the process of signal conversion into the
Hankel matrix in ISVDP is the same as that of signal conversion into a trajectory matrix in
singular spectrum analysis, it is one of the future research methods of ISVDP to determine
the number of rows of the Hankel matrix by referring to the method of determining the
dimensions of the trajectory matrix in singular spectrum analysis.
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