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Abstract: The human-centric and resilient European industry called Industry 5.0 requires a long
lifetime of machines to reduce electronic waste. The appropriate way to handle this problem is to
apply a diagnostic system capable of remotely detecting, isolating, and identifying faults. The authors
present usage of HTTP/1.1 protocol for batch processing as a fault diagnosis server. Data are sent by
microcontroller HTTP client in JSON format to the diagnosis server. Moreover, the MQTT protocol
was used for stream (micro batch) processing from microcontroller client to two fault diagnosis
clients. The first fault diagnosis MQTT client uses only frequency data for evaluation. The authors’
enhancement to standard fast Fourier transform (FFT) was their usage of sliding discrete Fourier
transform (rSDFT, mSDFT, gSDFT, and oSDFT) which allows recursively updating the spectrum
based on a new sample in the time domain and previous results in the frequency domain. This
approach allows to reduce the computational cost. The second approach of the MQTT client for
fault diagnosis uses short-time Fourier transform (STFT) to transform IMU 6 DOF sensor data into
six spectrograms that are combined into an RGB image. All three-axis accelerometer and three-axis
gyroscope data are used to obtain a time-frequency RGB image. The diagnosis of the machine is
performed by a trained convolutional neural network suitable for RGB image recognition. Prediction
result is returned as a JSON object with predicted state and probability of each state. For HTTP, the
fault diagnosis result is sent in response, and for MQTT, it is send to prediction topic. Both protocols
and both proposed approaches are suitable for fault diagnosis based on the mechanical vibration of
the rotary machine and were tested in demonstration.

Keywords: image recognition; HTTP; MQTT; feature extraction; convolutional neural network;
time–frequency domain; short-time Fourier transform; sliding discrete Fourier transform

1. Introduction

Modern factories, cites, and households are equipped with an increasing number
of electromechanical systems, which consume energy and have limited lifetimes. The
appropriate maintenance of these devices can increase their useful life, which is cost-
effective and environmentally friendly, reducing the number of electronic waste. In the
literature, the term “electronic trash” or “trash” can also be found [1–3], but more often it is
“electronic waste”, “e-waste” [4,5] or WEEE (Waste Electrical and Electronic Equipment) [6–8].
Maintenance of industrial machines is more demanding due to the complexity of electrical
and mechanical parts. Perspective maintenance allows to avoid the unwanted stoppage of
the production cycle and prevents unwanted damages of equipment. Deep understanding
of available tools and the application of fault diagnosis is more demanding with the number
of scientific articles already published in the field. Under keyword “fault diagnosis”, Google
Scholar lists nearly 1.6 million articles. Limitation of results to “industrial machines” with
operator AND gives 1.6 thousand articles. Another aspect of modern factories, cities, and
households is increasing capability of exchange data through the global Internet network,
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which is named IoT (Internet of Things) or more narrowly, IIoT (Industrial Internet of
Things) for industrial interconnections. Another term is Industry 4.0 which “describes
the organization of production processes based on technology and devices autonomously
communicating with each other along the value chain” [9,10]. However, the new term
“Industry 5.0” was introduced towards a sustainable, human-centric and resilient European
industry [8]. The publication database with the keyword “fault diagnosis” and “IoT” gives
almost 12.3 thousand publications in the field. Therefore, both areas of fault diagnosis and
IoT are popular and a growing field in the research area. The review of the patent database
gives a new view on IoT and fault diagnosis. Since January 2020, the IPC (International
Patent Classification) has been extended with the subclass G16Y titled “information and
communication technology specially adapted for the internet of things”. Additionally,
subgroup G16Y40/00 “IoT characterized by the purpose of the information processing” is
dedicated to maintenance and management. Further detailed classification symbols are
G16Y40/10 for detection; monitoring, G16Y40/20 analytics; diagnosis and G16Y40/40
maintenance of things. The Espacenet patent search gives nearly 2.8 thousand patents in a
search by classification symbols G16Y40/10, G16Y40/20, and G16Y40/40. In the following
sections, the author makes efforts to present a brief review of fault diagnosis and IoT,
however, due to the large number of articles and patents, the limited pages of articles, and
the limited time resources of the author, some aspects were omitted.

The manuscript is organized as follows: In chapter 2, general structure of the data
collection system with local and Internet connectivity is described, which gives a view of
the communication aspects of the fault diagnosis system with IoT for batch and stream data
processing; in chapter 3, in detail are described IoT protocols such as HTTP (Hypertext
Transfer Protocol) and MQTT (Message Queuing Telemetry Transport) for batch and stream
data processing and their usage for data ingestion and data routing in the fault diagnosis
system; in chapter 4, the structure of the fault diagnosis system from the signal processing
point of view is presented; in chapter 5, different feature extraction methods that can be
used for diagnosis in frequency domain such as FFT (fast Fourier transform) algorithms
(radix-2 and radix-4), STFT (short-time Fourier transform), and group of algorithms of
SDFT (sliding discrete Fourier transform) are explained; in chapter 6, a demonstration
rig with MQTT connectivity is presented with dataset description in the time domain,
frequency domain, and time–frequency domain. Based on preliminary selected single-axis
data (gyroscope Z axis) in frequency domain features calculated by SDFT, a classifier was
trained and tested which is an enhancement and reduction of computation requirements
in comparison to features calculated by STFT; in Chapter 7, a proposed concept of usage
3-axis acceleration and 3-axis gyroscope sensor to create RGB (red, green, and blue) images
from six time–frequency domain features which can be recognized by CNN (convolutional
neural network) is presented and verified. The proposed approach proves that CNN can be
successfully used in multispectrogram recognition which are organized into RGB images
for fault diagnosis without the need for preliminary selection of the vibration axis. The
proposed recognition of the RGB six-spectrogram and enhanced usage of SDFT instead of
STFT was compared with other available methods and the results are shown in Table 1.
CNN is used in vision-based recognition and vision applications [11–14]. Therefore, CNN
can be applied to recognize specially prepared time–frequency images, as shown in the
proposed method.

Table 1. Comparison of proposed and enhanced methods.

IoT
Connectivity

Types of Fault and
Labels Signal or Sensor Features

Extraction Method Features Classificator Article

MQTT and HTTP

demonstration of fan
blades’ imbalance

(normal, fan off, fan
with fault)

3-axis
accelerometer

and 3-axis
gyroscope

SDFT or STFT at six
axis

RGB image made
of six

time–frequency
domain data

CNN Proposed
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Table 1. Cont.

IoT
Connectivity

Types of Fault and
Labels Signal or Sensor Features

Extraction Method Features Classificator Article

MQTT and HTTP

demonstration of fan
blades’ imbalance

(normal, fan off, fan
with fault)

preliminary
selected one axis

of 3-axis
accelerometer

and 3-axis
gyroscope

SDFT at one axis
enhanced to STFT

frequency
domain data

classical
classifier Enhanced

Not specified
bearing (normal,

inner ring, outer ring,
ball)

vibration one-axis STFT color spectrogram
of one signal CNN [15]

Not specified

bearing normal and
four faulty states (ball,
inner ring, outer ring,

inner + outer)

3-axis
accelerometer

frequency transform
with weight map

frequency
domain for each

axis
CNN [16]

Not specified
blades non-damaged
and two fault (5% and

15% broken blades)

from one axis to
3-axis of angular

velocity

WPT (wavelet packet
transform)—wavelet
name not specified

third level of
WPT

decomposition

LSTM (long and
short-term
memory)

[17]

Not specified bearing (normal,
outer, ball, inner)

raw data is
one-dimensional

signal;
sensor is not

specified

CWT (continuous
wavelet transform),

STFT

CWT, time
domain, and

frequency
domain features

aggregation

MIMTNet
(multiple—input,

multiple—task
CNN)

[18]

2. General Structures of Data Collection and Processing for Fault Diagnosis

The IoT maintenance system is based on measurements delivered in time series to
the cloud. The most important part is to prepare data pipelines for fast transmission from
sensors to the fault diagnosis server. At low level, analogue sensors are handled by ADC
(analogue-to-digital converter). However, modern sensors are equipped with ADC and
communication interfaces. Therefore, the sensor is connected to thing (microcontroller
or microcomputer) by communication interface like SPI (Serial Peripheral Interface), I2C
(Inter-Integrated Circuit), UART (universal asynchronous receiver-transmitter) or another
device-specific communication interface. In the first stage of buffer, the classical producer–
consumer application is applied between the sensor and the thing (microcontroller) where
the sensors are equipped with internal buffers of several samples. The sensor is a producer
of data and the thing is a consumer. The next stage is the use of data by microcontroller
internal algorithms. The next stage of buffering is a producer–consumer application where
the microcontroller is a data producer and the consumer is a cloud (server)-based fault
diagnosis system. In each stage of data processing, the producer–consumer uses buffer for
data. The general structure of the buffer-connected data pipelines is presented in Figure 1.
Modern buffers offer routing to selected destinations which lead to processing in chain
by micro services which are easy to modify compared to change in one large service. The
collected data can be processed by the fault diagnosis system in two general ways, (a) batch
processing or (b) stream processing. Batch processing is performed with data collected in a
time window, but not often. Data stream processing is similar to batch processing but is
performed repetitively in micro batch and can use the result of the previous micro batch
result in the current micro batch processing.
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The general structure of data pipelines presented does not explain which protocol is
used by the thing to ingest data to the cloud. Data collected in the thing network called OT



Sensors 2023, 23, 3755 4 of 22

(Operational Technology) are ingested into the cloud in the IT (Information Technology) net-
work by the bridge system (Figure 2). OT part of the network is very wide. In IIoT, fieldbus
interfaces can be CAN (Controller Area Network), RS232 (Recommended Standard 232),
RS485 (Recommended Standard 485), industrial Ethernet, HART (Highway Addressable
Remote Transducer), and other physical layers. The main fieldbus technologies used in
industry are presented in the IEC (International Electrotechnical Commission) 61784-1:2019
standard [19]. The 2019 standard groups communication technologies into 19 CPF (Com-
munication Profile Families). The CPFs are divided into 24 profiles: Foundation™ Fieldbus
H1 (31.25 kbit/s), HSE (High-speed Ethernet); ControlNet, Ethernet/IP™, DeviceNet®,
Profibus DP (Decentralized Peripherals) and PA (Process Automation), P-NET®, WorldFIP®

which has 3 profiles, Interbus® which has 3 profiles, CC-Link (Control and Communication
Link) which has 3 profiles, HART®, WirelessHART®, SERCOS (acronym for SErial Realtime
COmmunications System) I and II, and Mechatrolink-II and M-III. Each CPF profile has
described the physical layer, the data link layer, and the application layer of the OSI-ISO
(Open System Interconnection—Open Source Initiative) model (Figure 3). The IT network
has adopted well the network and transport layer by IPv4 (Internet Protocol version 4) [20],
IPv6 (Internet Protocol version 6) [21] and connectionless UDP (User Datagram Proto-
col) [22], and connection-oriented TCP (Transmission Control Protocol) [23], respectively.
Layers above the transport layer are described in the next section. The link layer used by
physical and data is Ethernet defined by standard 802.3-2022 [24] approved on 13 May 2022.
The physical layer allows for the use of operation over coaxial, twisted pair, or fiber optic
cables, or electrical backplanes. The Ethernet standard covers speeds of operation from 1
Mb/s to 400 Gb/s.
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3. Internet of Things Protocols for Batch and Stream Processing of Fault Diagnosis

The protocols used in the presentation layer in OSI-ISO model (Figure 3) are generally
responsible for ensuring the security of transmission in three main aspects: authentication,
confidentiality, and integrity of data. The fault diagnosis server side of the channel is
always authenticated, and the client (microcontroller) side is optionally authenticated.
Confidentiality means that the data sent over the channel after establishment is only visible
to the endpoints. Integrity means that data sent over the channel after establishment cannot
be modified by attackers without detection. The latest version of TLS (Transport Layer
Security) is 1.3 [25] presented in 2018. The layer allows us to use asymmetric cryptography
or symmetric cryptography with a pre-shared key. The highest level in the reference model
is the application layer, where the HTTP (Hypertext Transfer Protocol) and MQTT (Message
Queuing Telemetry Transport) protocols are widely used in IoT applications. The text-based
HTTP protocol was widely used in version 1.1 [26] developed in 1997 [27]. HTTP/1.1 can
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be upgraded to the WebSocket protocol [28], which is useful for established connections
to exchange data streams in a bidirectional manner. The next version 2.0 of HTTP was
shown in 2015 [29], where the protocol was changed to binary encoding instead of text.
The newest version 3.0 of HTTP was introduced in June 2022 [30]. HTTP/3 uses a new
transport layer protocol QUIC (Quick UDP Internet Connections) [31] standardized in 2021
instead of TCP. The QUIC transport protocol uses UDP and TLS to provide a stream of
binary frames between client and server. Streams can be intended by the client or server
as unidirectional or bidirectional. The HTTP/1.1 protocol can be adopted in the batch
processing of faults as the request–response principle (Figure 1). The connection is closed by
the fault diagnosis server after the response has been sent to the client request. HTTP/1.1
upgraded to WebSocket, HTTP/2, and HTTP/3 are suitable for the stream processing
principle (Figure 1) because the connection is not closed after the server sends the response.
The HTTP server can be implemented on the microcontroller (thing) or on the remote
computer (cloud), see Figure 4.
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Fault diagnosis as batch processing with HTTP/1.1 request–response header is shown
in Figure 5. The microcontroller acts as an HTTP client which sends sensor-collected data
in JSON (JavaScript Object Notation) format of 4294 character length by the POST method.
The server path is / . . . /predict.php in the request line. The HTTP server responds 200 OK
in the status line, which means that the data were processed correctly and machine state
prediction is given in the response message body in JSON format. Presented response
contains predicted class “prediction”:“idle” and probability “score” of each class as array in
order: normal, idle, and fault.

Data from the application layer are encapsulated by lower layer headers. Figure 6
presents the encapsulation of HTTP/1.1 response from server to client. Data from HTTP/1.1
layer are put into the field payload of TCP and the header of TCP needs to be filled. The
default TCP port is 80 for the HTTP/1.1 server.
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The data segment is then a payload for IPv4, and the IPv4 header needs to be filled.
The IPv4 header field upper-layer protocol is set to 6. The destination address and the
source address must be known. The last encapsulation is into an Ethernet frame where the
data packet is a payload of the Ethernet frame, and the header of the Ethernet needs to
field. The hardware MAC (media access control address) destination address and source
address need to be known. If only the IPv4 destination address is known before sending
the Ethernet frame, the MAC destination address must be resolved by the ARP (Address
Resolution Protocol) [32].

The other application layer protocol adopted for IoT applications is MQTT in
version 3.1.1 [33] published in 2015 and version 5.0 [34] updated in 2019. MQTT pro-
vides client–server publish/subscribe messaging (Figure 7). The client connects to the
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server (broker) and subscribes to the topic. Messages published by other clients to the same
topic will be pushed to all clients subscribed to this topic by the broker (server). MQTT use
TCP at transport layer which establishes a connection as long as the client requires. The
default destination TCP port of the broker is 1883.
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Figure 7. MQTT 3.1 client–server architecture.

The three step TCP handshake from the 52432 client port to the 1883 server port is
presented in Figure 8 to establish the connection. After successful subscription, the MQTT
microcontroller client send messages to other clients through the broker. The topic can be
treated as a buffer name in the producer–consumer architecture. The designed fault diag-
nosis system consists of two MQTT clients subscribed to topics: sensor/IMU6DOF/raw and
sensor/IMU6DOF/predict. The microcontroller MQTT client writes sensor data to the topic
sensor/IMU6DOF/raw, and the MATLAB MQTT client retrieves those samples in JSON for-
mat. Received samples are transformed into features by digital signal processing methods,
which are then evaluated by the classification algorithm. The prediction of classification
algorithm is transformed into JSON (e.g., {“prediction”:“idle”,“score”:[0,0.9999999955,4.5E-
9]}) and sent to sensor/IMU6DOF/predict topic.
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MQTT can be used in either stream and batch data processing (Figure 1) of a fault
diagnosis system. It is important to note that all messages are sent throughout the broker,
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which leads to central-oriented messaging with routing possibilities. Many clients who
subscribed to the same topic received the same data. Therefore, clients can perform different
micro services on the same data stream like feature extraction, data storage in a database,
or visualization of data stream. This leads to transmission of one-to-many (one-point to
multiple points) messages. In contrast to MQTT, WebSocket allows only point-to-point
data streaming without the built-in message routing mechanism.

Another protocol used in IoT applications is CoAP (Constrained Application Protocol),
defined in 2014 [35]. The protocol is dedicated to 8-bit microcontrollers with limited
RAM (random access memory) and ROM (read-only memory). CoAP typical applications
include smart energy and building automation. The direct quote from study [35] follows:
“The goal of CoAP is not to blindly compress, but rather to realize a subset of REST
(representational state transfer) common with HTTP but optimized for M2M (machine-
to-machine) applications.” Many similarities to HTTP can be found. Similarly to HTTP,
the CoAP uses request/response model with GET, PUT, POST, and DELETE methods. In
contrast to HTTP, the CoAP uses the UDP protocol in the transport layer (see Figure 3). The
use of UDP protocol in transport layer is unreliable which means that it does not handle
missing packets, duplicate packets or packets retrieved in a different order caused by a
different path of packets in the Internet. Therefore, in 2018 [36], CoAP was designed to use
TCP, TLS, and WebSocket transports.

According to the Content-Type (see Section 3.1.1.5 in [26]) and Content-Encoding (see
Section 3.1.2.2 in [26]) part in HTTP 1.1, many different data types are allowed in the
message body part. Commonly adopted content types for the IoT application are JSON
(JavaScript Object Notation) [37,38], XML (Extensible Markup Language) [39] or raw bytes.
The full list of the allowed media types [40] is published by IANA (Internet Assigned
Numbers Authority) in [41]. More than 1500 available formats are in the single appli-
cation section of Media Types published on 21 November 2022. All allowed formats are
grouped into sections, which are as follows: application, audio, font, example, image,
message, model, multipart, text, video. Up-to-date XML media types “application/xml”
or “text/xml” were published in 2014 [42] and the up-to-date JSON media type “applica-
tion/json” was published in 2017 [43].

4. General Structure of Fault Diagnosis and Perspective Maintenance

The fault diagnosis system (Figure 9) detects faults based on changes in features
over time. The fault diagnosis system works with the client–server architecture in the
IT network [44–50]. The features are extracted from raw measurements and data or pre-
processed data. Fault detection means recognition in the change of machine state caused
by one or more faults. It can be treated as anomaly state detection, so any state different
from normal behavior can be detected. Fault isolation is the recognition of which parts
of the machine have faults. Finally, fault identification answers how wide the damages
are. The information about the fault can be used by the maintenance team to repair the
system. However, if repair is not possible immediately and the system cannot be stopped
safely, then FTC (fault tolerant control) is a key component. The system can have hardware
redundancy, which will be used if failure occurs, however, it is expensive to duplicate parts
and not always technically possible to apply. FTC allows to continue the system usage of
the system with performance constrains [51–56].

Fault diagnosis can be made only on data, which is called a data-driven approach.
Another option is to prepare a mathematical model of the diagnosed system and analyze the
residual data between the model and the system. Today, the investigated system model is
called a digital twin [57–64]. Modeling is a very wide area in which static behavior [65–67],
dynamic changes and continuous system [68,69], and discrete states [70] of systems can
be modeled. Contrary to the analysis of model and real system residuum is the analysis
of estimated parameters of system. The fault diagnosis system compares the estimated
parameters in a predefined bounded region. The fault is announced if one of the parameters
is outside the defined boundaries longer than the chosen amount of time.
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The sensor presented in Figure 9 can be any kind. It can be an additional sensor
only for fault diagnosis or a sensor already present in the system used by the control
algorithms. The electromechanical machine or power system can be investigated by many
different sensors and signals: current [71,72] and voltage [73,74], torque [75,76], angu-
lar velocity/position [77,78], linear 3-axis acceleration/speed/position [16,17], Doppler
laser vibrometer [79], transmission coefficient and reflexion coefficient of omnidirectional
antenna [80], strain/tension [81–84], power consumption [85–88], internal/external temper-
ature at selected points [89,90] or surface temperature by thermal camera [91,92], depending
on frequency range: displacement [93], vibrations [15,18,94–96], sound [97–99], sound from
several microphones [100] or ultrasound [101,102], vibro-acoustic [103], chemical analysis
of lubrication [104,105], chemical analysis by spectral imaging [106–109], camera imaging
in human colour spectrum [110–113], and signals to virtual image [114–118].

5. Feature Extraction Methods

The decision made by the fault diagnosis system can be taken based on data in the
time domain [119,120] or other domains, for example, the frequency domain [121–124], the
time–frequency domain [125–131] or the time-scale domain [132–135].

Analysis with frequency domain is achieved by using one of the FFT (fast Fourier
transform) algorithms. These algorithms decompose the analyzed signal into sinusoidal/
cosinusoidal components at frequency from 0 Hz up to half of the sampling frequency. The
use of the fast Fourier transform algorithm radix-2 [136,137] requires a number of sam-
ples equal N = 2k, k ∈ N. However, the radix-4 algorithm requires N = 4k [138,139]. The
authors in their publications mostly inform the reader about the use of FFT without mention-
ing the algorithm used [140–142]. Frequency analysis can be applied to stationary signals in
one time window. On the other hand, if knowledge about the sinusoidal/cosinusoidal com-
ponents and time of their duration in the analyzed signal is required, then time–frequency
analysis needs to be applied.

The use of FFT on short time-shifted windows leads to the STFT (short-time Fourier
transform) method. STFT changes a one-dimensional time series signal into a two-dimensional
time and frequency [143–145]. The STFT parameters are as follows: time window shape
(e.g., rectangle, Hamming [146,147], Hanning [148,149]), step size or overlap of next time
window that influence time resolution, time window length that influence frequency
resolution fres = fs/N, where N—signal length in samples and fs—sampling frequency.
Selection of time window length is a trade-off between good time localization or good
frequency localization of the sinusoidal/cosinusoidal components. STFT requires an FFT
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calculation on each shifted time window. If the step size is equal to 1, it means that FFT
will be calculated on N − 1 old and 1 new samples, which is not computationally effective.
The problem of spectrum update at each new sample was solved using the SDFT method
(sliding discrete Fourier transform).

SDFT was presented in 1997 [150] and well described in 2003 (rSDFT, 2003) [151] with
an update in 2004 (rSDFT, 2004) [152]. Using study [152], the single spectrum component
Sk at frequency k is calculated by Sk(n) = ej2πk/N(Sk(n− 1) + x(n)− x(n− N)), where
N—signal length in samples, n—time index, x—signal value. The discrete transfer function
of study [152] is HrSDFT,2004(z) = ej2πk/N(

1− z−N)
/
(

1− ej2πk/Nz−1
)

, which allows for
stability analysis of the algorithm. In 2010, mSDFT (modulated SDFT) was introduced [153].
In study [153], SDFT 2003 with the 2004 update was named rSDFT (recursive SDFT).
The mSDFT compared to rSDFT-2004 has reduced the accumulated error and potential
instabilities. The stability of algorithms was analyzed and a new guaranteed stable SDFT
algorithm (gSDFT) was published in 2015 [154]. The gSDFT algorithm has slightly smaller
accumulated errors and better performance compared to mSDFT. Other improvements of
mSDFT, called cascade integrator comb (CIC)—SDFT, which allow the embedded usage
of the B-spline window function, were presented in 2017 [155]. In the same year, optimal
sliding DFT (oSDFT) was presented [156], which reduces the number of multiplications
by 73.44%, 64.58%, 82.30%, and 29.17% as compared to FFT, rSDFT, mSDFT, and gSDFT,
respectively. The oSDFT accelerates the sliding transform process by 57.02%, 7.51%, 39.77%,
and 9.38% compared to the FFT, rSDFT, mSDFT, and gSDFT algorithms, respectively.
Misleading may be the name oSDFT (observer-based SDFT) introduced in 2018 [157],
which uses the state observer method for digital signal processing purposes.

6. Demonstration of Fault Diagnosis with MQTT Communication

The demonstration shows classification of computer fan work into classes: idle, nor-
mal, or fault. The failure is caused by a paper clip added to the fan blade. The prepared
demonstration setup (shown in Figure 10) consists of a NUCLEO board with STM32F746ZG
microcontroller that handles the IMU-6 DOF (inertial measurement unit with 6 degrees
of freedom) MPU6050 sensor. Data are collected synchronously with constant sampling
time equal to 5 ms (sampling frequency 200 Hz). The vector of 128 samples from the 3-axis
accelerometer and 3-axis gyroscope is then transformed into JSON (JavaScript Object Nota-
tion) as the object {“accelerometer”:{“x”:[],“y”:[],“z”:[]},”gyroscope”:{“x”:[],“y”:[],“z”:[]}},
where the array “[]” contain samples. Data are sent on the topic “sensor/IMU6DOF/raw”
by the MQTT client implemented in the microcontroller to the MQTT broker hosted on
a personal computer. Eclipse Mosquitto™ was used as an MQTT broker [158]. The data
stream was processed in real time by MATLAB R2022b with the MQTT client [159].

The first stage is data collection at predefined class states for several seconds. Data
collected in one micro batch in time domain are shown in Figure 11. Data were collected for
three states of the fan: (1) idle class—fan power is switched off, (2) normal class—fan power
without paper clip is switched on, and (3) fault class—fan power with paper clip is switched
on. The time domain signal for the idle class has a constant signal with noise, the signal
in the normal class has small oscillations, and the signal in the fault class has significant
oscillations compared to previous classes. Data were transformed to the frequency domain
by the FFT function in MATLAB, resulting in a complex number vector. The absolute value
of the complex numbers is shown in Figure 12. Each class has different frequency features
in the range of 0 Hz to 100 Hz. The most significant change in frequency occurs on the Z
axis of the gyroscope.

The second stage of preparation was the extraction of features using mSDFT [153].
Each step of mSDFT returns 33 complex numbers at frequencies in the range from 0 Hz
to 100 Hz. The algorithm was implemented in MATLAB and the absolute values of the
complex number were stored in the files. Each row of the file contains 33 points that were
used as a feature vector. The sliding discrete Fourier transform result can be gathered
after each new sample. The multiple spectrums calculated at different times are shown in



Sensors 2023, 23, 3755 11 of 22

Figures 13 and 14. The time–frequency analysis showed that for each class, the dominant
frequency components are constant and do not vary with time.
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The third stage of the demonstration requires the preparation of a classification. The
features saved in the files for each class were read and loaded into MATLAB Classification
Learner [160]. Several classifiers were trained, and the best was used for real-time verifica-
tion. The dataset has 4200 observation sets randomly divided into 80% training and 20%
test dataset. The training process was carried out on 1120 sets of fault class, 1120 sets of
idle class, and 1120 sets of normal class. One set consists of 33 frequency features calculated
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by mSDFT from the gyroscope Z axis signal. The confusion matrix of the trained classifier
is shown in Figure 15. The classifier can be used by applying new calculated features to
predictFcn in MATLAB. The prediction result is sent to the MQTT sensor/IMU6DOF/predict
topic in the data pipeline (see Figure 1).
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Figure 16. STFT RGB image creation and convolutional neural network architecture. 

Figure 15. Confusion matrix of the trained classifier (train—left; test—right).

7. Recognition of a Time–frequency RGB Image of Vibration

Data from each axis of IMU 6-DOF were transformed into the time–frequency domain
by applying STFT (short-time Fourier transform) with 32 samples of window length and
31 samples of overlap (see Figures 16–20). As a result of STFT at 128 time domain samples
of single axis, there was a two-dimensional signal of 65 frequencies at 97 time moments.
The process was repeated for each axis of accelerometer and gyroscope. Finally, six images
for 128 × 6 samples of IMU 6-DOF were obtained in the time–frequency domain for each
class: idle in Figure 17, normal in Figure 18, and fault in Figure 19. These six images are
combined into one RGB (red, green, and blue) image of size 130 × 97 × 3 in Figure 16;
representative RGB images for each class are shown in Figure 20.
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Figure 17. STFT RGB image of idle class for accelerometer x, y, and z axis (top) and gyroscope x, y,
and z (bottom).
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Figure 18. STFT RGB image of normal class for accelerometer x, y, and z axis (top) and gyroscope x,
y, and z (bottom).

Data collected in the time domain for each class were converted into time–frequency
RGB images. Together, the dataset has 2670 RGB images divided into classes: fault with 890
RGB images, idle with 890 RGB images, and normal with 890 RGB images. All images, which
were divided into training and validation datasets. From the dataset, 80% is the training
set (2136 RGB images) and 20% is the testing set (534 RGB images) which were randomly
selected. CNN (convolutional neural network) training was performed in MATLAB Deep
Learning Toolbox [161] with the support of NVIDIA GPU (graphics processing unit) with
CUDA® (Compute Unified Device Architecture). Validation of the trained convolution
neural network confirms good classification, shown as a confusion matrix in Figure 21.
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Figure 19. STFT RGB image of the fault class for the accelerometer x, y, and the z axis (top) and
gyroscope x, y, and z (bottom).
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8. Discussion

The cloud-based fault diagnosis system is suitable for human-centric and resilient
European Industry 5.0 that requires a long lifetime of machines to reduce the amount of
e-waste. A large number of industrial protocols used, of which only part are grouped in
Communication Profile Families, underline the problem of data collection and ingestion
into the cloud system. However, Internet protocols are developed separately without
considering the needs of industrial processes. Therefore, the adoption of existing and new
Internet protocols for industrial processes is a challenge. Batch and stream processing
requires different handling. Batch processing can be applied with the request–response
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HTTP/1.1 protocol with a closing connection. However, stream processing requires an
established connection for a long time, which can be achieved by WebSocket, HTTP/2.0,
HTTP/3.0 or MQTT v3.1 and v5.0. It is worth considering the data exchange problem as a
producer–consumer problem with a buffer in the middle. The producer can collect data
from many different sensor technologies to investigate the normal and abnormal behavior
of an industrial system. An interesting concept is the usage-only energy meter with the
energy consumption profile for fault diagnosis. The decision about fault detection is made
on the selected signal characteristics. A wide range of diagnostic applications, especially in
rotating machines, use frequency analysis or time–frequency analysis. Therefore, short-time
Fourier transform (STFT) and sliding discrete Fourier transform algorithms (rSDFT, mSDFT,
gSDFT, and oSDFT) were underlined in the article. In batch processing, FFT (radix-2 or
radix-4) or STFT can be applied. Real-time stream processing in the frequency domain can
be performed using one of the SDFT algorithms.

The manuscript contains a demonstration of the fan fault diagnosis. Data were col-
lected synchronously using a 3-axis accelerometer and a 3-axis gyroscope and microcon-
troller. The data collected were transformed into a JSON text structure. Those data in
JSON are sent to an HTTP server for batch processing and as a result, fault diagnosis server
returns a prediction in JSON format. Another investigation was conducted by sending
data collection in JSON from the microcontroller client to the MQTT broker in real time
as a stream (micro batch) on the sensor/IMU6DOF/raw topic for fault prediction. This
approach allowed us to use two fault diagnosis predictors (two MQTT clients subscribed
to sensor/IMU6DOF/raw topic) based on mSDFT and the second based on recognition of the
time–frequency RGB image of vibration. For the first predictor, the time series data were
transformed into the frequency domain by the mSDFT and evaluated by classification algo-
rithm. The second predictor calculates six STFT and combines the result into an RGB image
which is evaluated by the convolutional neural network. The result of both predictors is
sent to sensor/IMU6DOF/predict topic in JSON format which contains the predicted state
and probability for each class. This approach allowed us to classify the state of machine by
two different algorithms and can be further extended by other algorithms to ensure voting
of prediction from different algorithms to increase software algorithm redundancy.

9. Conclusions

The presented two communication methods allow for rapid prototyping of the fault
diagnosis system with cloud connectivity. The HTTP server allows for one-to-one fault
diagnosis, where data from one microcontroller are evaluated by one fault diagnosis
server endpoint. On the other hand, MQTT allowed for one-to-many fault diagnoses
when the same data were evaluated by two fault diagnosis clients with different feature
extraction and different classification algorithms. HTTP and MQTT use TCP, however, due
to connection closing in HTTP and connection remaining in MQTT, their work differently
and both are suitable for fault diagnosis. In the authors’ opinion, it is more convenient to
use MQTT for rapid prototyping and modularity of a variety of environments of the fault
diagnosis system.

The authors have shown two approaches for fault diagnosis. One is based on frequency
analysis which was enhanced in comparison to classical ones by usage of sliding Fourier
transform (SDFT) instead of fast Fourier transform (FFT). This modification allows us to
update the spectrum based on a new sample in time domain and spectrum in the previous
step, which work as an IIR (Infinite Impulse Response) filter where filter input is one time
domain sample and filter output is one frequency domain sample (complex number). The
second proposed approach transforms data from IMU 6-DOF sensor into six spectrograms
by STFT, which are used to create an RGB image. This time–frequency RGB image is
evaluated by a convolutional neural network for fault diagnosis. The proposed approach
proves that CNN can be successfully used in multispectrogram recognition which are
organized into RGB images for fault diagnosis without the need for preliminary selection
of a vibration axis.
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Future research will be focused on increasing the TRL (technology readiness level).
Research was carried out at TRL 1 to validate the proof of principles and concept. Further
work will be conducted to increase the TRL to higher levels to validate in the laboratory
environment the rotary electric machine (electric drive) with fault diagnosis system. At the
next TRL, more faults of electric drive will be considered with different natures (electrical
and mechanical), e.g., fault in inverter topology, fault in bearing, and shaft cracks.
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99. Karabacak, Y.E.; Gürsel Özmen, N.; Gümüşel, L. Intelligent Worm Gearbox Fault Diagnosis under Various Working Conditions

Using Vibration, Sound and Thermal Features. Appl. Acoust. 2022, 186, 108463. [CrossRef]
100. Yao, Y.; Wang, H.; Li, S.; Liu, Z.; Gui, G.; Dan, Y.; Hu, J. End-To-End Convolutional Neural Network Model for Gear Fault

Diagnosis Based on Sound Signals. Appl. Sci. 2018, 8, 1584. [CrossRef]
101. Zhang, Z.; Li, J.; Song, Y.; Sun, Y.; Zhang, X.; Hu, Y.; Guo, R.; Han, X. A Novel Ultrasound-Vibration Composite Sensor for Defects

Detection of Electrical Equipment. IEEE Trans. Power Deliv. 2022, 37, 4477–4480. [CrossRef]
102. Wang, W.; Xue, Y.; He, C.; Zhao, Y. Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades.

Energies 2022, 15, 5672. [CrossRef]
103. Wang, X.; Mao, D.; Li, X. Bearing Fault Diagnosis Based on Vibro-Acoustic Data Fusion and 1D-CNN Network. Measurement

2021, 173, 108518. [CrossRef]
104. Maruyama, T.; Maeda, M.; Nakano, K. Lubrication Condition Monitoring of Practical Ball Bearings by Electrical Impedance

Method. Tribol. Online 2019, 14, 327–338. [CrossRef]
105. Wakiru, J.M.; Pintelon, L.; Muchiri, P.N.; Chemweno, P.K. A Review on Lubricant Condition Monitoring Information Analysis for

Maintenance Decision Support. Mech. Syst. Signal Process. 2019, 118, 108–132. [CrossRef]
106. Rizk, P.; Younes, R.; Ilinca, A.; Khoder, J. Wind Turbine Ice Detection Using Hyperspectral Imaging. Remote Sens. Appl. Soc.

Environ. 2022, 26, 100711. [CrossRef]
107. Rizk, P.; Younes, R.; Ilinca, A.; Khoder, J. Wind Turbine Blade Defect Detection Using Hyperspectral Imaging. Remote Sens. Appl.

Soc. Environ. 2021, 22, 100522. [CrossRef]
108. Meribout, M. Gas Leak-Detection and Measurement Systems: Prospects and Future Trends. IEEE Trans. Instrum. Meas. 2021, 70.

[CrossRef]
109. Li, Y.; Yu, Q.; Xie, M.; Zhang, Z.; Ma, Z.; Cao, K. Identifying Oil Spill Types Based on Remotely Sensed Reflectance Spectra and

Multiple Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9071–9078. [CrossRef]
110. Zhou, Q.; Chen, R.; Huang, B.; Liu, C.; Yu, J.; Yu, X. An Automatic Surface Defect Inspection System for Automobiles Using

Machine Vision Methods. Sensors 2019, 19, 644. [CrossRef]
111. Yang, L.; Fan, J.; Liu, Y.; Li, E.; Peng, J.; Liang, Z. A Review on State-of-the-Art Power Line Inspection Techniques. IEEE Trans.

Instrum. Meas. 2020, 69, 9350–9365. [CrossRef]

http://doi.org/10.3390/en12142801
http://doi.org/10.1016/j.measurement.2020.107936
http://doi.org/10.1016/j.measurement.2021.108978
http://doi.org/10.1109/TMC.2021.3059796
http://doi.org/10.3390/en15010341
http://doi.org/10.1109/TIE.2019.2931511
http://doi.org/10.3390/electronics10243152
http://doi.org/10.1109/TIE.2015.2497665
http://doi.org/10.1109/TEC.2021.3075897
http://doi.org/10.1016/j.measurement.2020.108815
http://doi.org/10.1016/j.infrared.2019.103140
http://doi.org/10.3390/en14061531
http://doi.org/10.1016/j.eswa.2020.114022
http://doi.org/10.3390/en15041514
http://doi.org/10.3390/app9152950
http://doi.org/10.1109/TITS.2021.3109632
http://doi.org/10.3390/en14227646
http://doi.org/10.1016/j.apacoust.2021.108463
http://doi.org/10.3390/app8091584
http://doi.org/10.1109/TPWRD.2022.3171713
http://doi.org/10.3390/en15155672
http://doi.org/10.1016/j.measurement.2020.108518
http://doi.org/10.2474/trol.14.327
http://doi.org/10.1016/j.ymssp.2018.08.039
http://doi.org/10.1016/j.rsase.2022.100711
http://doi.org/10.1016/j.rsase.2021.100522
http://doi.org/10.1109/TIM.2021.3096596
http://doi.org/10.1109/JSTARS.2021.3109951
http://doi.org/10.3390/s19030644
http://doi.org/10.1109/TIM.2020.3031194


Sensors 2023, 23, 3755 21 of 22

112. Davari, N.; Akbarizadeh, G.; Mashhour, E. Intelligent Diagnosis of Incipient Fault in Power Distribution Lines Based on Corona
Detection in UV-Visible Videos. IEEE Trans. Power Deliv. 2021, 36, 3640–3648. [CrossRef]

113. Kim, S.; Kim, D.; Jeong, S.; Ham, J.-W.; Lee, J.-K.; Oh, K.-Y. Fault Diagnosis of Power Transmission Lines Using a UAV-Mounted
Smart Inspection System. IEEE Access 2020, 8, 149999–150009. [CrossRef]

114. Ullah, Z.; Lodhi, B.A.; Hur, J. Detection and Identification of Demagnetization and Bearing Faults in PMSM Using Transfer
Learning-Based VGG. Energies 2020, 13, 3834. [CrossRef]

115. Long, H.; Xu, S.; Gu, W. An Abnormal Wind Turbine Data Cleaning Algorithm Based on Color Space Conversion and Image
Feature Detection. Appl. Energy 2022, 311, 118594. [CrossRef]

116. Kreutz, M.; Alla, A.A.; Eisenstadt, A.; Freitag, M.; Thoben, K.-D. Ice Detection on Rotor Blades of Wind Turbines Using RGB
Images and Convolutional Neural Networks. Procedia CIRP 2020, 93, 1292–1297. [CrossRef]

117. Xie, T.; Huang, X.; Choi, S.-K. Intelligent Mechanical Fault Diagnosis Using Multisensor Fusion and Convolution Neural Network.
IEEE Trans. Ind. Inform. 2022, 18, 3213–3223. [CrossRef]

118. Łuczak, D.; Brock, S.; Siembab, K. Fault Detection and Localisation of a Three-Phase Inverter with Permanent Magnet Synchronous
Motor Load Using a Convolutional Neural Network. Actuators 2023, 12, 125. [CrossRef]

119. Liang, M.; Cao, P.; Tang, J. Rolling Bearing Fault Diagnosis Based on Feature Fusion with Parallel Convolutional Neural Network.
Int. J. Adv. Manuf. Technol. 2021, 112, 819–831. [CrossRef]

120. Toma, R.N.; Kim, J.-M. Induction Motor Bearing Fault Diagnosis Using Statistical Time Domain Features and Hypertuning
of Classifiers. In Advances in Computer Science and Ubiquitous Computing; Park, J.J., Fong, S.J., Pan, Y., Sung, Y., Eds.; Springer:
Singapore, 2021; pp. 259–265.

121. Bi, X.; Cao, S.; Zhang, D. Diesel Engine Valve Clearance Fault Diagnosis Based on Improved Variational Mode Decomposition
and Bispectrum. Energies 2019, 12, 661. [CrossRef]

122. Wang, J.; Li, S.; Xin, Y.; An, Z. Gear Fault Intelligent Diagnosis Based on Frequency-Domain Feature Extraction. J. Vib. Eng.
Technol. 2019, 7, 159–166. [CrossRef]

123. Li, H.; Feng, G.; Zhen, D.; Gu, F.; Ball, A.D. A Normalized Frequency-Domain Energy Operator for Broken Rotor Bar Fault
Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3009011. [CrossRef]

124. Luczak, D. Frequency Analysis of Mechanical Resonance in Direct Drive. In Proceedings of the 2012 12th IEEE International
Workshop on Advanced Motion Control (AMC), Sarajevo, Bosnia and Herzegovina, 25–27 March 2012; pp. 1–5.

125. Ramteke, S.M.; Chelladurai, H.; Amarnath, M. Diagnosis and Classification of Diesel Engine Components Faults Using Time–
Frequency and Machine Learning Approach. J. Vib. Eng. Technol. 2022, 10, 175–192. [CrossRef]

126. Lim, H.; Kwon, G.-Y.; Shin, Y.-J. Fault Detection and Localization of Shielded Cable via Optimal Detection of Time–Frequency-
Domain Reflectometry. IEEE Trans. Instrum. Meas. 2021, 70, 3092514. [CrossRef]

127. Iglesias-Martínez, M.E.; Antonino-Daviu, J.A.; Fernández de Córdoba, P.; Conejero, J.A. Rotor Fault Detection in Induction
Motors Based on Time-Frequency Analysis Using the Bispectrum and the Autocovariance of Stray Flux Signals. Energies 2019,
12, 597. [CrossRef]

128. Luczak, D. Spectral Analysis of Digital Filter Tuned for Mechanical Resonant Frequency Reduction in Multi-Mass Mechanical
Systems in Electrical Direct Drive. Int. J. Simul. Syst. Sci. Technol. 2020, 17, 11.1–11.8. [CrossRef]

129. Strack, J.L.; Carugati, I.; Orallo, C.M.; Maestri, S.O.; Donato, P.G.; Funes, M.A. Three-Phase Voltage Events Classification
Algorithm Based on an Adaptive Threshold. Electr. Power Syst. Res. 2019, 172, 167–176. [CrossRef]

130. Yoon, Y.; Brahma, A. Air–Fuel Ratio Imbalance Diagnostic of Spark-Ignited Engines With Modulated Sliding Discrete Fourier
Transform. J. Dyn. Syst. Meas. Control 2020, 142, 081003. [CrossRef]

131. Peña-Alzola, R.; Sztykiel, M.; Jones, C.E.; Norman, P.J.; Moore, G.; Pou, J.; Burt, G.M. First-Fault Detection in DC Distribution
With IT Grounding Based on Sliding Discrete Fourier-Transform. IEEE Trans. Power Electron. 2021, 36, 3649–3654. [CrossRef]

132. Li, X.; Bi, F.; Zhang, L.; Yang, X.; Zhang, G. An Engine Fault Detection Method Based on the Deep Echo State Network and
Improved Multi-Verse Optimizer. Energies 2022, 15, 1205. [CrossRef]

133. Gu, J.; Peng, Y.; Lu, H.; Chang, X.; Chen, G. A Novel Fault Diagnosis Method of Rotating Machinery via VMD, CWT and
Improved CNN. Measurement 2022, 200, 111635. [CrossRef]

134. Łuczak, D. Mechanical Resonance Frequensies Identyfication of Direct Drive Using Wavelet Analysis. In Proceedings of the 2012
17th International Conference on Methods & Models in Automation & Robotics (MMAR), Miedzyzdroje, Poland, 27–30 August
2012; pp. 29–32.

135. Łuczak, D. Mechanical Vibrations Analysis in Direct Drive Using CWT with Complex Morlet Wavelet. Power Electron. Drives
2023, 8, 65–73. [CrossRef]

136. Singleton, R. A Method for Computing the Fast Fourier Transform with Auxiliary Memory and Limited High-Speed Storage.
IEEE Trans. Audio Electroacoust. 1967, 15, 91–98. [CrossRef]

137. Cooley, J.W.; Tukey, J.W. An Algorithm for the Machine Calculation of Complex Fourier Series. Math. Comput. 1965, 19, 297–301.
[CrossRef]

138. Corinthios, M.J.; Smith, K.C.; Yen, J.L. A Parallel Radix-4 Fast Fourier Transform Computer. IEEE Trans. Comput. 1975,
C-24, 80–92. [CrossRef]

139. Corinthios, M.J. A Fast Fourier Transform for High-Speed Signal Processing. IEEE Trans. Comput. 1971, C-20, 843–846. [CrossRef]

http://doi.org/10.1109/TPWRD.2020.3046161
http://doi.org/10.1109/ACCESS.2020.3016213
http://doi.org/10.3390/en13153834
http://doi.org/10.1016/j.apenergy.2022.118594
http://doi.org/10.1016/j.procir.2020.04.107
http://doi.org/10.1109/TII.2021.3102017
http://doi.org/10.3390/act12030125
http://doi.org/10.1007/s00170-020-06401-8
http://doi.org/10.3390/en12040661
http://doi.org/10.1007/s42417-019-00089-1
http://doi.org/10.1109/TIM.2020.3009011
http://doi.org/10.1007/s42417-021-00370-2
http://doi.org/10.1109/TIM.2021.3092514
http://doi.org/10.3390/en12040597
http://doi.org/10.5013/IJSSST.a.17.33.11
http://doi.org/10.1016/j.epsr.2019.03.012
http://doi.org/10.1115/1.4046550
http://doi.org/10.1109/TPEL.2020.3026985
http://doi.org/10.3390/en15031205
http://doi.org/10.1016/j.measurement.2022.111635
http://doi.org/10.2478/pead-2023-0005
http://doi.org/10.1109/TAU.1967.1161906
http://doi.org/10.1090/S0025-5718-1965-0178586-1
http://doi.org/10.1109/T-C.1975.224085
http://doi.org/10.1109/T-C.1971.223359


Sensors 2023, 23, 3755 22 of 22

140. Soares, M.N.; Mollet, Y.; Kinnaert, M.; Gyselinck, J.; Helsen, J. Multiphysical Time- and Frequency-Domain Fault Detection and
Isolation Technique for Power-Electronic Converters in DFIG Wind Turbines. IEEE Trans. Power Electron. 2021, 36, 3793–3802.
[CrossRef]

141. Han, T.; Ding, L.; Qi, D.; Li, C.; Fu, Z.; Chen, W. Compound Faults Diagnosis Method for Wind Turbine Mainshaft Bearing with
Teager and Second-Order Stochastic Resonance. Measurement 2022, 202, 111931. [CrossRef]

142. Li, H.; Fan, B.; Jia, R.; Zhai, F.; Bai, L.; Luo, X. Research on Multi-Domain Fault Diagnosis of Gearbox of Wind Turbine Based on
Adaptive Variational Mode Decomposition and Extreme Learning Machine Algorithms. Energies 2020, 13, 1375. [CrossRef]

143. Liu, D.; Cheng, W.; Wen, W. Rolling Bearing Fault Diagnosis via STFT and Improved Instantaneous Frequency Estimation Method.
Procedia Manuf. 2020, 49, 166–172. [CrossRef]

144. Wang, Z.; Yang, J.; Li, H.; Zhen, D.; Xu, Y.; Gu, F. Fault Identification of Broken Rotor Bars in Induction Motors Using an Improved
Cyclic Modulation Spectral Analysis. Energies 2019, 12, 3279. [CrossRef]
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