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Abstract: Tomato leaf diseases can incur significant financial damage by having adverse impacts on
crops and, consequently, they are a major concern for tomato growers all over the world. The diseases
may come in a variety of forms, caused by environmental stress and various pathogens. An auto-
mated approach to detect leaf disease from images would assist farmers to take effective control
measures quickly and affordably. Therefore, the proposed study aims to analyze the effects of
transformer-based approaches that aggregate different scales of attention on variants of features for
the classification of tomato leaf diseases from image data. Four state-of-the-art transformer-based
models, namely, External Attention Transformer (EANet), Multi-Axis Vision Transformer (MaxViT),
Compact Convolutional Transformers (CCT), and Pyramid Vision Transformer (PVT), are trained and
tested on a multiclass tomato disease dataset. The result analysis showcases that MaxViT comfortably
outperforms the other three transformer models with 97% overall accuracy, as opposed to the 89%
accuracy achieved by EANet, 91% by CCT, and 93% by PVT. MaxViT also achieves a smoother
learning curve compared to the other transformers. Afterwards, we further verified the legitimacy of
the results on another relatively smaller dataset. Overall, the exhaustive empirical analysis presented
in the paper proves that the MaxViT architecture is the most effective transformer model to classify
tomato leaf disease, providing the availability of powerful hardware to incorporate the model.

Keywords: transformers; EANet; MaxViT; CCT; PVT; tomato leaf disease; attention

1. Introduction

Countries that bank on the cultivation of crops for survival tend to grow mostly
green crops and vegetables. Tomato cultivation is popular among these crops and is
grown worldwide. However, tomatoes and their leaves are often plagued by a variety of
diseases mostly due to fungus attacks and adversary weather conditions. In either case,
it is imperative to treat the disease but more crucial to find the type of disease a particular
leaf is infected with. With different classes of leaf diseases, it became increasingly more
difficult to correctly classify them with traditional methods. Computer Vision and Deep
Learning (DL) techniques have been automating the analysis of different categories of data
for some time. DL-based classification techniques make the disease classification process
faster and more accurate.

Recently, huge amounts of attention have been given to the field of image classification
through the introduction of Vision Transformers (ViT) which originates originally from
Natural Language Processing (NLP). Transformer-based models are more robust and
recent studies have confirmed that they produce better results compared to the DL-based
models. Many applications are taking the aid of transformers-based models. For example,
M. Kaselimi et al. [1] employed a ViT model to demonstrate multilabel classification of
satellite pictures in deforestation, whereas the previous studies in [2,3] used ViT to study
remotely sensed images. T. Wang et al. [4] presented a noble ViT model where they
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suggested a suitable partition method to reduce the impact of data localization in the image
and boost the efficacy of computation and memory access. In [5], a review of ViT models
has been demonstrated, along with their applications, benefits, and drawbacks.

Transformer-based models employ an attention-based approach that offers context
for any location in the input sequence. ViT-based models separate the images into visual
tokens, in contrast to convolutional-based models a series of convolution and pooling
layers are utilized to extract features from images. The transformer-based models may
alter an image by breaking it up into fixed-size patches, precisely embedding each one,
and providing positional embedding as an input to the model encoder. However, ViTs are
data hoarders [6]; therefore, a huge amount of data must be fed to the model in order for
it to deliver a good outcome. The self-attention layer of ViT lacks location inductive bias
(LIB). ViTs need more information as a result.

All the existing studies have used CNN-based models [7–9] for the tomato leaf disease
classification task. However, in this study, we performed intensive experiments on recent
transformer-based models, which thrive based on the aggregation of different attention and
feature types. We want to explore these models due to the transformers having different
attributes that aid in the classification task. In this paper, we explore the different state-
of-the-art ViT models by implementing these on a large dataset consisting of numerous
classes of tomato leaf disease. Furthermore, we verified our findings on a second smaller
dataset. We aim to use these models in the future for other classification works such as
bark texture classification [10]. Contributions of this paper are as follows:

• Four state-of-the-art(SOTA) Vision Transformer models named CCT, PVT, EANet,
and MaxViT have been implemented and their respective parameters alongside pro-
duced outputs are compared.

• Various metrics are utilized to assess the efficacy of the models including accu-
racy curves, loss curves, confusion matrices, receiver operating characteristic curves,
and classification reports.

• To the best of our knowledge, this is the first paper that has done comprehensive
research work on tomato leaf diseases using Vision Transformer architectures.

The paper is organized as follows: Section 2 covers related research on the vision
transformer domain and its use in several medical domains. We describe the architecture
of our proposed model in Section 3 and compare it to the comparator models. The results
of each model are displayed in Sections 4 and 5 in terms of accuracy, confusion matrices,
and classification reports. Our conclusion is drawn in Section 6.

2. Related Works

This section overviews a summary of the SOTA literature on the subject of leaf diseases,
with a focus on the classification of tomato leaf diseases utilizing DL methods.

The literature utilizes either machine learning-based or DL-based methods for the
detection and classification of tomato leaf diseases. Several classification models, such as
AlexNet, VGG16, and VGG19, have been used in various studies such as [7,8]. Authors
have used AlexNet [11] as their DL model, VGG16 [12], and VGG19 [13] as neural network
models for their detection and for classification, they have used the KNN [14] model. They
have used the PlantVillage dataset in their study. The effect of hyperparameter tuning
and dataset size on the models’ performance has also been studied, indicating that an
increase in the number of images improves overall performance. A summary paper [15]
shows an extensive study on the state-of-the-art work on leaf disease classification. Ad-
ditionally, modified methods have been proposed such as in [16], a 14-layer CNN model
was developed for identifying plant diseases. In their proposal, they utilized different
image augmentation techniques to increase the number of images and balance the class.
The authors have run their model for 1000 epochs in a multi-graphics processing environ-
ment. Their model gave over 99% overall classification accuracy. A modified faster RCNN
model was proposed in [17] for detecting and locating tomato leaf diseases. For feature
extraction, the authors have used ResNet in place of VGG16, and the proposed model
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gave around 2.7% better accuracy compared to the regular faster RCNN model. A robust
approach has been presented for tomato plant leaf disease localization and classification
in [18]. In this paper, the authors have proposed a method based on the faster RCNN.
Overall, these studies demonstrate the potential of DL techniques for the accurate and
efficient classification of tomato leaf diseases.

A CornerNet model based on DenseNet-77- has been used in [19] for the localization
and classification of tomato plant leaf diseases. In this proposed method, DenseNet-77
is used for generating the feature vector which is used to detect and localize the tomato
leaf disease using the single-stage CornerNet model. Improved YOLO V3-based method
has been used in [20] for tomato leaf disease detection and classification. Since the disease
spot is tiny compared to the plant size, the YOLO V3 method has been modified to get
better accuracy with a faster processing time. The proposed model improved the YOLO V3
using image pyramid [21] through the utilization of multi-scale feature detection, object
bounding box dimension clustering [22], and multi-scale training. The accuracy result
of this improved method shows improvement in comparison to other methods in the
literature along with fast detection time. A DL-based tomato disease classification and
symptoms visualization method has been presented in [9]. This method used more than
14,000 tomato leaf images to classify 9 different diseases using CNN models. Their study
shows that DL models give better classification accuracy than compared to shallow methods
such as SVM, and Random Forest. A lightweight CNN model has been proposed in [23]
in comparison to the traditional heavyweight CNN methods. The proposed method has
used only 8 hidden layers to detect 10 different tomato leaf diseases with higher accuracy
than compared to other available methods. In [24], an attention-based method has been
developed to detect tomato leaf disease. This method used over 15,000 images having
10 classes, 9 diseased, and 1 healthy. As the backbone of the model in the proposed model,
resNet was used where the work achieves a higher accuracy with fast computation. Table 1
shows a summary of the tomato leaf disease detection works presented in the literature.
In [25], CNN is used for the early detection of tomato leaf disease. A dataset of size 300
is used for the experiment which has been done on a google colab environment. Various
colors, textures, and edges of the input images are considered in the analysis. The authors
have achieved an accuracy of more than 98% in this work.

Table 1 shows a summary of some of the research conducted on identifying plant
leaf diseases. It shows that none of the reported methods have used the more advanced,
accurate, and SOTA ViT-based models. In the remaining section of this paper, the use of
ViT-based models in identifying tomato leaf diseases is highlighted and a comparison of
accuracies alongside other related parameters is given.

Table 1. Summary of related works on tomato leaf disease.

Paper Dataset Name Dataset Size Algorithms Accuracy Comments

[7] - 450
Alexnet 76.1% Number of images are too small
VGG16 55%
VGG19 55.6%

[8] PlantVillage [26] 13,262 AlexNet 97.49% Variable image batch size is used which
shows variations in the results for VGG16
but for AlexaNet shows limited variations.

VGG16 97.29% Only two deep learning methods are used
for the analysis
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Table 1. Cont.

Paper Dataset Name Dataset Size Algorithms Accuracy Comments

[9] PlantVillage [26] 14,828

AlexaNet 98.66% Both deep learning and shallow models are
used for comparison

GoogleNet 99.18% Deep learning models the better results
SVM 94.54% Both pre-trained and without pre-trained

models are used
Random Forest 95.47%

[23] PlantVillage [26] 18,160 Customized CNN 98.40% A customize 8-layer CNN model has
been used
Manual augmentation technique was used

[25] - 3000 CNN 98.49% Dataset is not very large
Only one method is used

[19] PlantVillage [26] - DenseNet-77 99.98% Total images used not mentioned
Better mAP and test time

[27] PlantVillage [26] 3900 DLQP+SVM 95.60% Comparison with state of the art is missing
Other classification tools can be used to
check better classification accuracy

[28] First hand data 1308 SLIC+SVM 98.50% The proposed method can work having
complex background
Computation time is on the higher side

3. Proposed Methodology

This section explains the methodology used in the study, from data collection to visual
representations, to demonstrating the contributions made in the paper.

3.1. Data Collection

We collected the dataset from kaggle [29]. This dataset comprises a total of 20,000 im-
ages with 11 different classes having 10 classes consisting of images with 10 different types
of diseases infesting tomato leaves and 1 class having healthy leaves. A workstation with
Ryzen 5950X, 64 GB RAM, and NVIDIA GeForce RTX 3090 is used to implement all the
models. Figure 1 shows sample images of each of 11, different classes of tomato leaf images,
while Table 2 shows the class distribution of the classes in terms of training and validation
directories.

Table 2. Distribution of images among the classes in the first dataset.

Classes Training Validation

Bacterial Spot 2826 732
Early Blight 2455 643
Late Blight 3113 792
Leaf Mold 2754 739

Powdery Mildew 1004 252
Septoria Leaf Spot 2882 746

Spider Mites 1747 435
Target Spot 1827 457

Tomato Mosaic Virus 2153 584
Tomato Yellow Leaf 2039 498

Healthy 3051 806
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Bacterial spot Early Blight Late Blight Leaf Mold

Septoria leaf spot
 Spider mites Two spot Target Spot Tomato Yellow Leaf Curl Virus

Tomato mosaic virus Healthy Powdery mildew

Figure 1. Sample of the first dataset used in the study.

Additionally, we utilized the plantvillage dataset [30] to further verify the findings
from the first dataset. This second dataset consists of 6 classes and a total of 4972 images
after augmentation. The class information and samples from the classes are visualized in
Figure 2. Besides, the training and validation split of the dataset is given in Table 3.

Figure 2. Sample of the second dataset used in the study.
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Table 3. Distribution of images among the classes in the second dataset.

Classes Training Validation

Bacterial Spot 704 176
Black mold 428 108
Gray spot 537 135
Healthy 678 170

Late blight 627 157
Powdery mildew 1004 252

3.2. Model Seclection

In this research, we implement four ViT-based models to identify different types of
tomato leaf diseases. Most of these transformers combine multiple types of features or
utilize various types of attention mechanics. Their mechanisms are discussed below.

3.2.1. EANet

EANet [31] uses the external attention mechanism and is built on two external, small,
teachable, and shared memories, Mk, and Mv, as shown in Figure 3. In order to boost
performance and computational efficiency, EANet is used to remove patches with redun-
dant and unnecessary information. Two cascaded linear layers and two normalization
layers are used to implement the external attention. The attention between input pixels
and an external memory unit is determined by the EANet algorithm using the following
Equations (1) and (2), where F is the input feature. Last, the attention in A produces a
newer version of Mv’s input features.

The external attention mechanism of EANet separates it from the regular ViTs. The external
attention knowledge may come from incorporating additional images, textual descriptions,
or pre-trained models into the image classification process. EANet incorporates multi-head
attention to process these input images and external knowledge simultaneously. Afterward,
the features from the two sources are combined via semantic fusion. Regular ViTs frequently
require a lot of training data. However, EANet excels in specific situations where there is a
limitation of training data.

A = Norm(FMT
k ). (1)

Fout = AMv. (2)

Feature Linear Query Norm Output

Mk MvMemory units

Matrix
multiplication

Figure 3. External-attention for EANet model [31].

3.2.2. MaxViT

Multi-axis attention [32], a model of effective and scalable attention that has two
components—blocked local and dilated global attention—is introduced by the authors.
These design decisions enable linearly complicated global-local spatial interactions at any
input resolution. The authors also introduce a new architectural component by successfully
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fusing their proposed attention model with convolutions, and they suggest a straightfor-
ward hierarchical vision backbone by simply repeating the fundamental building block
throughout many phases. The MaxViT architecture is shown in Figure 4.

Generally, ViTs are designed to divide images into patches and input them in a
transformer model to learn the global representation of the image patches. Meanwhile,
the MaxViT model can capture both local and global interactions between image patches
due to its multi-axis attention. Additionally, unlike normal ViTs, MaxVit divides the input
image into patches of various sizes using a hierarchical patch partitioning approach, which
enables the model to capture both fine- and coarse-grained characteristics in the input data.
The size of the patches is adjusted dynamically based on the intricacy of the input images.
Additionally, MaxViT is designed to be highly scalable, enabling it to be applied to very
large images.

maxViT block

output layer

pool

fully
connected

conv layers

input layer

Figure 4. MaxViT architecture [32]. Note that this model uses both local and global mechanisms via
the maxViT block.

Figure 5 showcases the highlight of a basic MaxViT block. The block attention module
helps to capture the local attention information. Meanwhile, the grid attention module
helps to capture the global attention information. An MBConv block is also added at the
beginning since the presence of this layer helps to improve performance.

Figure 5. MaxViT block to capture both local and global attention information [32].

3.2.3. CCT

To optimize the display benefits of convolution and transformer, convolution and
transformer are combined into CCT [33]. If local information is used effectively, a convolu-
tional approach is used instead of the non-overlapping patches used in CCT’s standard
vision transformer. A technique called probabilistic depth tuning, which is similar to
dropout, but in which a series of slices is arbitrarily discarded at stochastic depth, is used to



Sensors 2023, 23, 3751 8 of 19

prevent the vanishing gradient problem in CCT. In CCT, data are sent through a transformer
encoder and sequenced after convolutional tokenization. The possibility of multiple types
of morphologies of tomato leaf diseases is provided by sequence pooling MLP headers.
Figure 6 unfolds the entire CCT operation.

The combination of transformer blocks and convolutional layers set CCT apart from
regular ViT, which generally consists of transformer blocks only. The convolutional layers
and the transformer blocks are connected through skip connections, allowing the model
to learn a more efficient representation of the input image by combining the features of
both convolutional and transformer architectures. CCTs are also a rather efficient extension
of the regular ViTs since it uses a variant of the transformer block called the ‘Compressed
Transformer’ that reduces the number of parameters and it incorporates parameter sharing
which allows the same set of parameters for all patches in a given layer of the transformer.
As a result, CCT can drastically lower memory requirements and computational costs.
The components of CCT as shown in the figure are discussed in brief below.

Positional Embedding: To introduce spatial information into the sequence, positional
embedding is utilized. As the model is not aware of the spatial association between tokens,
incorporating additional information that signifies the same can be beneficial. Generally,
this is accomplished by either training an embedding or assigning weights to the tokens
from two sine waves having high frequencies, which aids the model in recognizing the
positional relationship among the tokens.

convolution reshape Transformer encoders sequence poolingpositional embedding
(optional) MLP head

Bacterial spot Early blight Late blight Leaf Mold Septoria leaf
spot Spider mites

Target spotTomato Yellow Leaf
Curl Virus

Tomato mosaic
virus Healthy Powedery mildew

Figure 6. Compact Convolutional Transformer (CCT) used as classifier.

Transformer Encoder: A transformer encoder is made up of multiple encoding layers
that are stacked one on top of the other. Each encoder layer is composed of two sub-layers,
namely Multi-Headed Self-Attention (MHSA) and a Multi-Layer Perceptron (MLP) head.
Before each sub-layer, a layer normalization (LN) is added, and after that, there is a residual
connection to the next sub-layer.

Classification: In ViTs, an additional class token is often incorporated into the sequence
of embedded patches, which denotes the class attribute of an entire image, and its state
after the transformer encoder can be utilized for classification. The class token comprises
implicit information and, via self-attention, accumulates more details about the sequence,
which is subsequently employed for classification.

3.2.4. PVT

The challenges of adapting a Transformer to multiple density prediction jobs are
overcome by Pyramid Vision Transformer (PVT) [34]. According to the architects of this
architecture, PVT has a number of advantages over earlier works. First of all, In order
to achieve a high output resolution the dense partitions of the image can be utilized to
train PVT, which is important for dense predictions, in contrast to ViT, which typically has
low-resolution outputs and high computational and memory costs. PVT can also use a
progressive shrinking pyramid to reduce computations of large feature maps. Secondly,
PVT, which may be used to replace CNN backbones in a variety of vision applications
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without the need for convolutions, inherits the advantages of both CNN and the Trans-
former. Additionally, by completing comprehensive trials, the researchers validate PVT
and demonstrate that it improves the performance of numerous downstream activities.

Figure 7 shows the PVT architecture where there are four stages, each made up of a
patch embedding layer and a Bi-layer Transformer encoder, which make up the overall
model. The output resolution of the four stages gradually decreases from high (4-stride) to
low (32-stride), following a pyramidal shape.

Overall, the key difference between PVT and regular ViT is that PVT incorporates a
multi-scale feature aggregation approach that allows it to better handle images with varying
scales, while regular ViT uses a fixed-size patch-based approach. The multi-scale feature
aggregation approach allows PVT to achieve better results compared to the regular ViTs.

Patch Em
bedding

Position
Embedding

Element-wise
add

Encoder

Patch Em
bedding

Position
Embedding

Element-wise
add Encoder

Patch Em
bedding

Position
Embedding

Element-wise
add Encoder

Patch Em
bedding

Position
Embedding

Element-wise
add

Encoder

4 strides 8 strides 16 strides 32 strides

Figure 7. PVT architecture [34].

Finally, as we can see, each of the variants of ViT employed in this experiment has a
unique attribute that distinguishes it from the regular Vits and helps to improve the overall
performance. These ViT variants are also state-of-the-art, outperforming the regular ViTs on
large-scale datasets such as ImageNet, Cifer, Coco, etc. Due to this SOTA performance and
the distinctive aspects of the ViT variants, we decided to use them in our empirical analysis.

3.3. Comparison of Model Parameters

We used NVIDIA GeForce RTX 3090 to run all of the models. To have a fair comparison
between the models we ran each of them for 100 epochs. We chose the softmax activation
function for the models as this is a multiclass classification task and AdamW is selected as
the optimizer.

EANet takes the least amount of time to complete the training compared to the remain-
ing three models. It takes less than half the time to go through 100 epochs in contrast to the
rest of the models as stated in Table 4. The reason for EANet having the least amount of
time complexity is due to the model having the least number of total parameters. Having a
higher number of parameters increase the complexity of the model and makes the model
computationally more expensive requiring greater resources. However, having a large num-
ber of parameters suggests that it can solve more complicated functions than other models.
Additionally, it enables the application of powerful regularization to avoid overfitting.

Table 4. Comparison of model parameters.

Models Time
Complexity (S)

Space Complexity
(No. of Parameters)

Optimizer Loss Function Learning
Rate

Weight
Decay

Activation
Function

Patch
Size

Epochs

EANet
[31]

2910 355,602 AdamW Categorical
Crossentropy

1 × 10−3 0.0001 Softmax 2 100

MaxViT
[32]

6531 30,429,907 AdamW Categorical
Crossentropy

1 × 10−5 0 Softmax - 100

CCT [33] 5839 408,268 AdamW Categorical
Crossentropy

1 × 10−3 0.0001 Softmax - 100

PVT [34] 6314 12,341,003 AdamW Categorical
Crossentropy

5 × 10−5 0 Softmax 4 100
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Overall, the entire methodology can be summarised as given in Figure 8. First, we
collected the dataset and performed some pre-processing on it. Afterward, four attention-
based transformer models have been deployed and their accuracy alongside loss val-
ues have been tested on the test dataset. Finally, their results have been compared in
terms of Classification reports, Confusion matrices, and Receiver Operating Characteristic
(ROC) curves.

Figure 8. Summary of the methodology.

4. Performance Evaluation Metrics

In order to evaluate the performance of the implemented models we have used nu-
merous performance evaluation metrics. These include training and loss curves, confusion
matrices, classification reports, and ROC curves.

Training and loss curves at Figure 9 show the progress of the models’ classification
performance with increasing epochs. Accuracy curves reaching the highest percentage
value having a smoother shape with minimum zigzag/fluctuation are considered to pro-
duce the best results. The confusion matrix is a two-dimensional array that contrasts the
true label with the expected category labels. This helps to keep a track of the number
of images that are correctly classified and misclassified by the models. The classification
report in Figure 10 unfolds the values of Precision, Recall, and F1 score for the vision
transformer models.

Precision (P), refers to the proportion of correctly predicted results and the total
number of observations, which are positively classified. Precision can be defined as,

P =
Tp

Tp + Fp
. (3)

Recall (R) is determined as the ratio of correctly predicted results and all evaluations
of the original class.

R =
Tp

Tp + Fn
. (4)

The F1-score (F1) calculates a single score by averaging precision and recall.

F1 =
2 × precision × recall

precision + recall
. (5)
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EANet MaxViT

CCT PVT

Figure 9. Accuracy and loss curves for the models.

EANet MaxViT

CCT PVT

Figure 10. Classification report.
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In the above set of equations,

• Tp = True Positive.
• Fp = False Positive.
• Fn = False Negative.
• Tn = True Negative.

Additionally, we used ROC curves, which are performance indicator that works
on different threshold levels addressing classification issues. The area under the curve
(AUC) stands for the level or measurement of separability, and ROC is a probability curve.
It illustrates how much the performance of a particular model may vary between classes.

5. Results Analysis
5.1. Results on Selected Tomato Leaf Disease Dataset
5.1.1. Accuracy and Loss Curves

The metrics are plotted after 100 epochs of training on each of the selected models.
The accuracy and loss curves for the models are provided in Figure 9. The validation
accuracy and loss curves of the EANet and CCT models exhibit observable fluctuations after
reaching 70% training accuracy, which suggests a potential for more frequent encounters
with local maxima. This also likely indicates a slight overfitting issue as these models
have a much lower number of parameters compared to the other two models. In contrast,
MaxVIT and PVT’s accuracy and loss curves show far fewer spikes, suggesting a smoother
learning process thanks to the huge number of parameters that these models have.

The smooth learning curve of PVT and MaxViT also transitions into better accuracy
scores. Figure 10 shows that the EANet and CCT models, with accuracy scores of 91%
and 89%, respectively, are less accurate than the other variants. Meanwhile, PVT and
MaxVIT, who are smooth learners, score at 93% and 97% accuracy, respectively. In terms
of pure accuracy, MaxVIT surpasses the other models by a noticeable margin, with a 4%
improvement over the next leading model PVT.

5.1.2. Classification Report

Interestingly, different models showcase efficiency over different classes. EANet
showcases a noticeable decline in the recall score when classifying Septoria_leaf_spot class,
with a recall score of only 67%. It also achieves a relatively low precision score when
classifying Tomato_mosaic_virus class, with a precision score of 74%. Maxvit generally
performs very well on all the classes apart from getting slightly lower precision, recall,
and f1-score for Early_blight and Septoria_leaf_spot classes compared to the other classes.
However, even the scores on the lower side of the spectrum stay well around 95%. CCT
showcases weaker performance on the powedery_midew class with an 81% precision score,
75% recall score, and 78% f1 score while PVT performs worst for the Early_blight class with
a precision, recall, and f1 score of 91%, 85%, and 88%, respectively. As different models
showcase performance decline in different classes, perhaps an ensemble of all the models
might work better to improve the classification score of EANet, CCT, and PVT. However,
it would still probably be fairly difficult to overcome MaxVIT in terms of raw precision,
recall, and f1 scores. Meanwhile, in terms of stronger performances, all the models perform
really well to detect healthy leaves and the leaves with tomato_yellow_mosaic_virus, with
strong results across precision, recall, and f1 scores.

5.1.3. Confusion Matrices

The confusion matrices provided in Figure 11 provide us with a better idea of the
misclassified images. Looking at the results produced by EANet, around 131 images of
Septoria_leaf_spot are misclassified as Tomato_mosaic_virus. This large amount of mis-
classification resulted in a low recall and precision scores for the respective classes. Such
a massive discrepancy is not present in the results for MaxVit, CCT, and PVT models.
However, there are slight misclassification distributions for the Septoria_leaf_spot classes
for CCT and PVT, where both models managed to correctly classify 654 images out of
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746 images. Meanwhile, the MaxViT architecture performs fairly well to classify this partic-
ular class. Overall, Septoria_leaf_spot is seemingly the class that requires more attention
when the transformer models are trained.

EANet MaxViT

CCT PVT

Figure 11. Confusion matrices.

5.1.4. Area under Curve and Tabular Results

Finally, the Area Under Curve (AUC) for each model is showcased in Figure 12.
Keeping consistency with high accuracy scores, MaxViT achieves the highest range of AUC
scores between 97% to 99% for each individual class. PVT also showcases a consistent
AUC score between 92% and 99%. EANet achieves the lowest AUC value of 83% for the
Septoria_leaf_spot class while the lowest AUC value of CCT is for powdery mildew, with a
score of 87%.

A manual examination of the Septoria spot-affected leaves showcases an inconsistent
pattern of spots ranging from slightly darkened areas to the whole leaf becoming yellow.
There are also leaves with a sporadic pattern of darkened areas on them. A few examples
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of the pattern are showcased in Figure 13. To the best of our knowledge, perhaps this
inconsistent pattern of spots is the reason for the smaller transformers not being able to
properly classify it in many cases.

Figure 12. ROC for each of the models.

Figure 13. Inconsistent pattern in the Septoria Leaf Spot class.



Sensors 2023, 23, 3751 15 of 19

The generated results in Table 5 showcase that the MaxViT architecture comprehen-
sively achieves better performance than the other models. The model achieves 97% accuracy
over the dataset, with PVT being the distant second with 93% accuracy, CCT at third with
91%, and EANet at fourth with 89% accuracy. The PVT model employs a feature aggre-
gation method that can handle images with different scales more effectively, this enables
the model to produce better results. It is also noticeable that the accuracy of the models
is relative to the number of total parameters. The MaxVit model having over 300 million
parameters, nearly three times more than the next largest model PVT, achieves the highest
score. Due to this sheer volume of parameters, the training time for MaxViT is also quite
high. PVT, with the second largest number of parameters of more than 120 million, achieves
the next best results. In terms of parameter size, CCT and EANet are the smallest two,
resulting in the models achieving the lowest two scores, respectively. Due to having a
large number of parameters, MaxViT and PVT also showcase smoother learning patterns
with minimal symptoms of overfitting. Despite all the decent results, the MaxViT model
obviously requires much more resources to be trained and deployed. Therefore, the speed
of the model might create issues if it is to be implemented in a resource-constrained device,
which should be a common scenario in a tomato cultivation field as expenditure savings
play a crucial role here. In such cases, models such as EANet can be an excellent alternative
as long as the users are okay with sacrificing some reliability.

Table 5. Model Accuracies.

Models Accuracy

MaxViT 97%

PVT 93%

CCT 91%

EANet 89%

Finally, the superior performance of the MaxViT architecture provides us with an
understanding of the importance of combining local and global attention. There have been
other architectures in the past that combine local and global attention information across
a sub-portion of the network. However, MaxViT is the first architecture to combine local
and global attention from a very early phase to the very last of the feature extraction layers.
This combination of local+global attention throughout the entire network seems to have
benefited tomato disease classification a lot, which is proven by the best result achieved by
the network.

5.2. Results Generated on a Different Tomato Leaf Disease Dataset
5.2.1. Accuracy and Loss Curves

To further verify our findings and to eliminate the possibility of having any biased
conclusion based on just one dataset, we further checked for results on a smaller tomato
leaf disease dataset. In the plantVillage dataset [30] we implemented the same four models
and extracted results in terms of accuracy curves, loss curves, and classification reports.
The setup of the models and other hyperparameters such as the number of epochs, learning
rate, etc., has been kept the same as the run on the initial dataset.

The learning curves of the models on the second dataset further solidify our initial
claims. Just like in the previous case, the EANet and the CCT models showcase much more
fluctuated learning curves, showcasing hints of slight overfitting. The MaxViT and PVT
models manage to achieve much smoother learning curves, representing the robustness of
the learning for the models.
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5.2.2. Classification Report

The classification reports produced from the models also showcase in Figure 14 the
superiority of MaxViT architecture to classify leaf diseases. MaxViT achieves 95% overall
accuracy, much ahead of the next best produced by CCT, which is at 91%. The PVT and
the EANet models fall in the 3rd and the 4th place with 89% and 80% overall accuracy,
respectively. An important point to note here is that the results produced on [30] are not
benchmark accuracy for these models on the respective dataset. As the second dataset has a
much more complex background, the models are rather slow to train and the results would
visibly improve if the training was run beyond the 100th epoch since the learning curve
was still going up at the 100th epoch, which is visible in Figure 15. However, the target was
to just keep the exact same experimental setup and to check the training pattern.

To sum up, after training on both datasets, we verified that MaxViT is indeed the
superior architecture for tomato leaf disease classification. Therefore, MaxViT is the model
to be deployed when tomato disease classification is needed. Meanwhile, if any low-
resource model is needed for deployment, CCT and EANet can be decent alternatives.

EANet MaxViT

CCT PVT

Figure 14. Classification report.

CCT PVT

MaxViTEANet

Figure 15. Accuracy and loss curves for the models.
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6. Conclusions

To conclude, automated tomato leaf disease prediction can play an important role in
taking preventive measures and improving the cultivation process. The most accessible
method without the requirement for a professional is to photograph infected leaves and
identify the disease type without any manual intervention. Therefore, four transformer-
based models have been experimented with in the study for the classification of 11 different
tomato leaf disease types from image data. Our empirical analysis showcases that the
MaxViT architecture without any reservation is effectively the best transformer model
to classify tomato leaf disease. The model beats all the other transformer models with a
comprehensive 97% overall accuracy. Since the default MaxViT architecture has a huge
number of parameters, future work may involve optimizing the default architecture to
reduce the number of learnable weights with minimal sacrifice of accuracy. If it could
be successfully carried out, the detection model should be easier to deploy on cheap
embedded devices.

The models employed for this research work are mostly the default architectures of
the existing model, with no specific modifications to account for the leaf images specifically
that have been taken. Perhaps, it is possible to achieve even better scores by fine-tuning
the existing models and by tweaking the architectures a little more. Additionally, we can
experiment with the deployment of the model on edge devices. All these tasks will be part
of future work.
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