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Abstract: The differential microphone array, or differential beamformer, has attracted much attention
for its frequency-invariant beampattern, high directivity factor and compact size. In this work, the
design of differential beamformers with small inter-element spacing planar microphone arrays is con-
cerned. In order to exactly control the main lobe beamwidth and sidelobe level and obtain minimum
main lobe beamwidth with a given sidelobe level, we design the desired beampattern by applying the
Chebyshev polynomials at first, via exploiting the structure of the frequency-independent beampat-
tern of a theoretical Nth-order differential beamformer. Next, the so-called null constrained and least
square beamformers, which can obtain approximately frequency-invariant beampattern at relatively
low frequencies and can be steered to any direction without beampattern distortion, are proposed
based on planar microphone arrays to approximate the designed desired beampatterns. Then, for
dealing with the white noise amplification at low-frequency bands and beampattern divergence
problems at high-frequency bands of the null constrained and least square beamformers, the so-called
minimum norm and combined solutions are deduced, which can compromise among the white noise
gain, directivity factor and beampattern distortion flexibly. Preliminary simulation results illustrate
the properties and advantages of the proposed differential beamformers.

Keywords: microphone array; fixed beamformer; differential beamformer; frequency-invariant
beampattern; main lobe beamwidth; sidelobe level

1. Introduction

Beamforming based on sensor/antenna array [1–7] has attracted much attention
since the apparent advantage over the single sensor/antenna. The earliest beamforming
technique is the delay-and-sum (DS) structure, which is investigated widely in narrowband
applications [8–11], such as radar, sonar and antenna. However, the drawbacks of the
varying beampattern with frequency and low directivity factor (DF) at low-frequency
bands make the DS beamformer unsuitable for dealing with broadband signals, such
as speech.

To overcome these drawbacks, many broadband beamforming methods have been
developed, including the narrowband decomposition methods [12,13], the nested-array
framework [14–16], the modal beamforming techniques [17–20], the super directive al-
gorithms [21–23] and the differential beamformers (or differential microphone arrays,
DMAs) [24–29]. Among those, the DMAs have been widely studied as they exhibit
frequency-invariant beampatterns and high DF. Moreover, they are usually small and com-
pact in size and consequently can be easily integrated into small devices, such as hearing
aids, smartphones, smart wearable devices, etc. In this paper, we focus on the design
of the DMAs.
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The concept of the DMA evolutes from the directional ribbon microphone [30,31]
responding to the sound pressure gradient field instead of the sound pressure field. The
gradient direction of the sound field is parallel with the propagating direction of the
sound, and the maximum directional derivative is in the gradient direction of the sound
field. This is the underlying reason why we usually assume that the desired signal comes
from the end-fire direction for a linear microphone array. Traditionally, the DMAs are
designed in a cascaded subtraction way [32–34] by using several small inter-element spacing
omnidirectional microphones. Through adjusting the time delay among different channels,
many classical beampatterns can be obtained, including cardioid, dipole, supercardioid
and hypercardioid. Based on the cascaded subtraction structure, much of the literature has
been devoted to the design and study of the DMAs from different perspectives [34–39].
However, the shortcoming of the cascaded subtraction structure is inflexible in dealing
with the white noise amplification problem, which is the inherent problem of differential
beamformers and is very serious at low-frequency bands. It limits the deployment of the
DMAs in practice.

In order to overcome the aforementioned drawback, a so-called null-constrained
method was developed recently in [27,40] in the frequency domain, which enables one
to design DMAs by only using the distortionless and null constraints. Then, a minimum
norm solution is deduced in this framework by using more microphones to design a
lower order DMA, and the problem of white noise amplification can be solved to a certain
extent [27,40]. In [28], it is shown that the null-constrained method is the same as the
cascaded subtraction way, and the minimum norm solution is also explained in a two-stage
manner. Based on the null-constrained method, many interesting differential beamformers
have been studied and developed [24–26,41–44].

Though much research about DMA has been done, further research attention is indis-
pensable. For example, it is known that the main lobe beamwidth of the beampattern of the
classical differential beamformer is usually large, especially the low-order ones. However,
a narrower main lobe may be preferred in some applications for better source acquisition.
In addition, in some particular scenarios, if we do not want to distort the background
noise field very much, beampattern with the same level sidelobes is favored. So, how to
obtain a beamformer with a narrower main lobe and how to exactly control the main lobe
beamwidth and sidelobe level to obtain frequency-invariant beampatterns with expected
characteristics are very important in DMA context, and to the best of our knowledge, these
are still open issues.

In this work, for overcoming the above problems, we resort to the Chebyshev polyno-
mials in the design of planar differential microphone array, which has been widely used
in traditional array design area [45–53]. The main contributions of this manuscript are as
follows. First, via investigating the frequency-independent beampattern of a theoretical
Nth-order differential beamformer, the desired beampattern is designed by exploiting the
Chebyshev polynomials, whose main lobe beamwidth and sidelobe level can be exactly
controlled, and the minimum main lobe beamwidth is guaranteed with a provided sidelobe
level. Moreover, the relationship among the main lobe beamwidth, sidelobe level and
polynomial order is deduced. Second, it has been proved theoretically in our framework
that the first-order dipole beampattern has the narrowest beamwidth among the classical
first-order differential beampatterns, i.e., dipole, cardioid, supercardioid and hypercardioid.
Third, with the desired beampatterns at hands as targets, the so-called null constrained
and least square beamformers for planar microphone array are proposed, which can ob-
tain approximately frequency-invariant beampattern at relatively low frequencies and can
be steered to any direction without beampattern distortion. Fourth, for overcoming the
drawbacks of the null constrained and least square beamformers, i.e., severe white noise
amplification problem at low frequencies and beampattern divergence from the desired
one at high frequencies, the so-called minimum norm and combined solutions are deduced
by exploiting the redundancy provided by using more microphones, which can flexibly
compromise among the white noise gain (WNG), DF and beampattern divergence by
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adjusting parameters. Simulations are conducted and the preliminary results illustrate the
properties and advantages of the proposed beamformers.

The remainder of this manuscript is as follows. The signal model, problem formulation
and performance measures of beamforming are presented in Section 2. Section 3 introduces
the approaches to the design of desired beampatterns. A set of differential beamformers are
derived to approximate the desired beampatterns in Section 4. Simulations are conducted
in Section 5, and conclusions are drawn in Section 6.

2. Signal Model, Problem Formulation and Performance Measures

The farfield plane wave model is considered in this manuscript. The microphone
array consists of M omnidirectional microphones which are placed in a horizontal plane
as shown in Figure 1. (rm cos θm, rm sin θm) denotes the location of the mth sensor, whose
radius and angle are denoted by rm and θm, respectively. The desired source impinges on
the microphone array from θs at the speed of sound c ≈ 343 m/s. Obviously, the steering
vector of the planar array is

d(ω, θs) =
[

eωr1cos(θs−θ1)/c eωr2cos(θs−θ2)/c · · · eωrMcos(θs−θM)/c
]T

, (1)

where the superscript T is the transpose operator,  =
√
−1 is the imaginary unit, ω = 2π f

is the angular frequency, f > 0 is the temporal frequency. Since the source is assumed to
propagate from the angle θs, the signals observed by the microphone array are given by

y(ω) = [ Y1(ω) Y2(ω) · · · YM(ω) ]T

= x(ω) + v(ω)

= d(ω, θs)X(ω) + v(ω), (2)

where Ym(ω) is the observed signal on mth microphone, x(ω) = d(ω, θs)X(ω), X(ω) is the
zero-mean desired signal, and v(ω) is the zero-mean additive noise signal vector, which
is defined similarly to y(ω). The desired signal and additive noise are assumed to be
uncorrelated with each other. The beamformer output is then [1]

Z(ω) = hH(ω)y(ω)

= hH(ω)d(ω, θs)X(ω) + hH(ω)v(ω), (3)

where Z(ω) is the estimate of the desired signal, X(ω),

h(ω) = [ H1(ω) H2(ω) · · · HM(ω) ]T (4)

is a complex-valued linear filter applied to the observed signal vector, y(ω), and the
superscript H denotes conjugate-transpose. In our context, we do not want the desired
signal to be distorted by the beamformer, so the distortionless constraint is desired, i.e.,

hH(ω)d(ω, θs) = 1. (5)

The main interest of this work is beamforming with small inter-element spacing planar
microphone arrays where the spacing between the neighboring microphones is much
smaller than the minimum wavelength of the frequency band of interest. Consequently,
the differentials of a different order of the acoustic pressure field can be approximated by
finite differences in the microphones’ output. Usually, the objective of differential beam-
forming is to design beamformers, i.e., to find beamforming filters, h(ω), which response
to the spatial derivative of acoustic pressure field of different orders, to estimate X(ω)
as good as possible.



Sensors 2023, 23, 3733 4 of 24

M

m

Figure 1. Illustration of a planar microphone array, where M is the microphone number, θs denotes
the incidence angle of the desired source from farfield, rm denotes the distance between the mth
microphone and the coordinate system origin, and θm is the angle of the mth microphone.

Usually, the three most important performance measures, i.e., beampattern, WNG and
DF, are used to evaluate the fixed beamformer.

The beampattern or directivity pattern describes the sensitivity of the beamformer to
a plane wave impinging on the array from the direction θ. Mathematically, it is given by

B[h(ω), θ] = dH(ω, θ)h(ω)

=
M

∑
m=1

Hm(ω)e−ωrmcos(θ−θm)/c. (6)

The null-to-null beamwidth of the beampattern is defined as the width between the
two nulls which are closest to the main lobe from each side and is denoted by BNN.

With the first microphone being the reference (without loss of generality), the input
signal-to-noise ratio (iSNR) is defined as

iSNR(ω) =
φX(ω)

φV1(ω)
, (7)

where φX(ω) = E
[
|X(ω)|2

]
and φV1(ω) = E

[
|V1(ω)|2

]
are the variances of X(ω) and

V1(ω), respectively, and E[·] denotes the mathematical expectation. The output signal-to-
noise ratio (oSNR), according to the beamforming model given in (3), is defined as

oSNR[h(ω)] = φX(ω)

∣∣hH(ω)d(ω, θs)
∣∣2

hH(ω)Φv(ω)h(ω)

=
φX(ω)

φV1(ω)
×
∣∣hH(ω)d(ω, θs)

∣∣2
hH(ω)Γv(ω)h(ω)

, (8)
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where Φv(ω) = E
[
v(ω)vH(ω)

]
and Γv(ω) =

Φv(ω)

φV1(ω)
are the correlation and pseudo-

coherence matrices of v(ω), respectively. The SNR gain derived from (7) and (8) is

G[h(ω)] =
oSNR[h(ω)]

iSNR(ω)

=

∣∣hH(ω)d(ω, θs)
∣∣2

hH(ω)Γv(ω)h(ω)
. (9)

Two particular types of noise are often considered for beamformer evaluation:

• Spatially and temporally white Gaussian noise with identical variances at all sen-
sors, which models microphones’ self-noise, nonuniform responses among the micro-
phones, imperfections of the microphone positions, etc. In this scenario, Γv(ω) = IM,
where IM is the identity matrix of size M×M, and the resulting SNR gain is named
as WNG, i.e.,

W [h(ω)] =

∣∣hH(ω)d(ω, θs)
∣∣2

hH(ω)h(ω)
. (10)

So, the WNG evaluates the robust of the beamformer to some of the array imperfec-
tions. The maximum WNG that can be achieved by a beamforming filter is equal to
M [40], i.e.,Wmax = M. It can be obtained by the DS beamformer [40,54]:

hDS(ω) =
d(ω, θs)

M
. (11)

Note thatW [h(ω)] < 1 indicates that there is white noise amplification.
• Spherical isotropic noise, which is characterized by

[Γd(ω)]ij =
sin
(
ωδij/c

)
ωδij/c

= sinc
(
ωδij/c

)
, (12)

with [Γd(ω)]mm = 1, m = 1, 2, . . . , M, where δij is the spacing between the ith and
jth microphones. In this case, the SNR gain is named DF:

D[h(ω)] =

∣∣hH(ω)d(ω, θs)
∣∣2

hH(ω)Γd(ω)h(ω)
, (13)

which quantifies how the beamformer performs in suppressing spatial directional
noise, such as reverberation. The maximum DF that can be achieved by a beamformer
with a given array is [40]

Dmax(ω) = dH(ω, θs)Γ
−1
d (ω)d(ω, θs), (14)

which can be obtained by the so-called superdirective (hypercardioid) beamformer:

hS(ω) =
Γ−1

d (ω)d(ω, θs)

dH(ω, θs)Γ
−1
d (ω)d(ω, θs)

. (15)

It can be shown that [55], when the uniform linear array is considered, we have

lim
δ→0
Dmax(ω) = M2, ∀ω, (16)

which is referred as the supergain in the literature [56], and δ stands for the spacing
between neighboring sensors.
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3. Beampattern Design

It is well known that the frequency-independent beampattern of a theoretical Nth-
order DMA whose main lobe is at θ = 0 can be written as [32,40]

BN(θ) =
N

∑
n=0

aN,n cosn θ, (17)

where aN,n, n = 0, 1, . . . , N, are real coefficients that determine the beampattern shape.
For normalization, we would like the beampattern to be 1 in the direction of the main lobe,
i.e., BN(0) = 1. So, we have

N

∑
n=0

aN,n = 1. (18)

Different coefficients corresponding to different desired beampatterns of any order,
such as classical dipole, cardioid, hypercardioid and supercardioid, can be found by optimiz-
ing different criteria [40,57], and one of the most important tasks of DMA design is to find
desired beampattern and then approximate it as close as possible by beamforming filters.

While the aforementioned classical DMA beamformers have some optimum properties,
there are some other issues. For example, the beamwidth of their beampattern is large
usually, even for the hypercardioid beamformer which can obtain the maximum DF with
a given microphone array. However, a narrower main lobe may be preferred in some
applications for better source acquisition. In addition, in some particular scenarios, if we
do not want to distort the background noise field very much, beampattern with the same
level sidelobes is favored. So, in this manuscript, we try to exactly control the main lobe
beamwidth and sidelobe level of the DMA beampattern.

From (17), we see that the beampattern, BN(θ), is a polynomial of order N which is
symmetric about θ = 0. In order to exactly control the main lobe beamwidth and sidelobe
level and obtain minimum main lobe beamwidth with a given sidelobe level, we resort
to the Chebyshev polynomials, which have been widely used in traditional array signal
processing area [46,54].

The Chebyshev polynomials, TN(x) = cos
(

N cos−1 x
)
, are formed by using the Gram–

Schmidt orthogonalization to the standard basis 1, x, x2, x3, . . . in the interval x ∈ [−1, 1]
with respect to the weighting function w(x) = 1/

√
1− x2 [41], where cos−1 x is the inverse

function of cos x. The first eight Chebyshev polynomials are [54]:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1,

T7(x) = 64x7 − 112x5 + 56x3 − 7x,

and for N ≥ 2, we have

TN(x) = 2xTN−1(x)− TN−2(x). (19)
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The Chebyshev polynomials are a set of functions that are orthogonal in [−1, 1] with
respect to the weighting function w(x) [41], i.e.,∫ 1

−1

1√
1− x2

Tn(x)Tm(x)dx = cnδ(n−m), (20)

where δ(·) is the Dirac delta function, and cn is

cn =

{
π, n = 0

π/2, n 6= 0
. (21)

The definition of the Nth degree Chebyshev polynomial on the whole range of x is

TN(x) =


cos

(
N cos−1 x

)
, |x| ≤ 1

cosh
(

N cosh−1 x
)

, x > 1

(−1)N cosh
(

N cosh−1 x
)

, x < −1

, (22)

where cosh−1 x is the inverse function of cosh x.
TN(x) has N real roots in x ∈ [−1, 1]. By taking x = cos θ, we know that the roots are

at cos (Nθ) = 0, i.e.,

Nθ = (2k− 1)
π

2
, 1 ≤ k ≤ N. (23)

From (22), we know that the Chebyshev polynomials have equal ripple characteristics
in the interval [−1, 1] (the magnitude of every maxima and minima is 1, i.e., |TN(x)| ≤ 1),
and all of the polynomials pass through the points (1, 1) and (−1, (−1)N). When |x| > 1,
we have |TN(x)| > 1.

We assume the magnitude of the main lobe corresponds to the value of TN(x0) where
x0 > 1. The ratio of the main lobe level to the sidelobe level is defined as R, i.e.,

R =
Lm

Ls
, (24)

where Lm and Ls denote the main lobe level and sidelobe level, respectively. So, the point
(x0, R) on the TN(x) curve is the position of the mainlobe maximum. According to (22),
we have

x0 = cosh
(

1
N

cosh−1 R
)

. (25)

If we simply use x = cos θ, then |x| ≤ 1. However, in order to design the desired beam-
pattern, we should utilize the entire range [−1, x0] of the Chebyshev polynomial [46,54].
So, we assume

x = c1 cos θ + c2, (26)

where c1 and c2 are constant values. The range [−1, x0] in x-space corresponds to the range
[0, π] in θ-space. So, in order to control the whole range of the beampattern, i.e., θ ∈ [0, π],
the mapping relationship presented in Table 1 should be satisfied [46].

Table 1. The Mapping Relationship Between θ and x.

θ 0 π

x = c1 cos θ + c2 x0 −1



Sensors 2023, 23, 3733 8 of 24

To determine c1 and c2, we solve the following two equations:

c1 + c2 = x0,

−c1 + c2 = −1,

and have

c1 =
x0 + 1

2
, c2 =

x0 − 1
2

. (27)

Substituting (27) into (26), we have

x =
x0 + 1

2
cos θ +

x0 − 1
2

. (28)

So, the desired beampattern is

BN,d(θ) =
1
R
TN

(
x0 + 1

2
cos θ +

x0 − 1
2

)
, (29)

where the factor 1/R normalizes the beampattern making BN(0) = 1. Obviously, we can
steer the desired beampattern to θs as

BN,d(θ − θs) =
1
R
TN

[
x0 + 1

2
cos (θ − θs) +

x0 − 1
2

]
. (30)

For conciseness, in this section, we only discuss the case of θs = 0, i.e., the desired
beampattern in (29). A simple beampattern steering method will be given in the next section.

From (23), we know that the roots of TN(cos θ) are

θk =
(2k− 1)π

2N
, 1 ≤ k ≤ N. (31)

So, in x-space the roots are at

x =
x0 + 1

2
cos θ +

x0 − 1
2

= cos θk. (32)

Then, we know the roots in the scaled space occur at

θk0 = cos−1
[

2
x0 + 1

(
cos θk −

x0 − 1
2

)]
, k = 1, 2, . . . , N. (33)

From (33), we know the main lobe beamwidth is

BNN = 2θ10 = 2 cos−1
[

2
x0 + 1

(
cos

π

2N
− x0 − 1

2

)]
. (34)

By simple manipulation, we obtain

BNN = 2 cos−1
[

2
x0 + 1

(
cos

π

2N
+ 1
)
− 1
]

= 2 cos−1

 2

cosh
(

1
N cosh−1 R

)
+ 1

(
cos

π

2N
+ 1
)
− 1

. (35)

Since x0 > 1 and N ≥ 1, we have

−1 <
2

x0 + 1

(
cos

π

2N
+ 1
)
− 1 < 1. (36)



Sensors 2023, 23, 3733 9 of 24

So, we can observe that the beamwidth, BNN, increases with R (which increases with
the increase of x0) and decreases with N. Consequently, we can make a compromise
between the main lobe beamwidth and sidelobe level with a provided N flexibly. When
N is given, the main lobe beamwidth can be adjusted by tuning R, and the minimum
beamwidth is obtained when R → 1 (i.e., x0 → 1), which means the magnitudes of the
main lobe and sidelobe are the same, and we have

lim
R→1

BNN =
π

N
. (37)

So, the 1st order dipole beampattern, which has the same magnitudes of the main lobe
and sidelobe and a null at π/2, has the minimum main lobe beamwidth, i.e., BNN = π,
among the different 1st order DMA beampatterns.

From (35), we can also get

R = cosh

{
N cosh−1

[
2
(
cos π

2N + 1
)

cos BNN
2 + 1

− 1

]}
, (38)

i.e., when N and BNN are given, we can determine R using (38). However, it should be
noted that the BNN will never be narrower than π/N. The method of designing the desired
beampattern is described in Algorithm 1.

Algorithm 1: Steps for designing the desired beampattern.

1: Select the order, N, of the desired beampattern, BN(θ), and choose the
Chebyshev polynomial, TN(x), of the same order;

2: Set the ratio of the main lobe level to the sidelobe level, R, and determine x0
according to (25), or set the main lobe beamwidth BNN, and determine the
parameter R according to (38) and then find x0;

3: Change the scale by using the mapping function (28);
4: Obtain the desired beampattern, BN,d(θ), according to (29) (the methods of
approximating the desired beampattern are described in Section 4).

It is observed that, from (35), we can calculate the order of the Chebyshev polynomial,
NF, by using numerical methods when BNN and R are given, where the subscript ‘F’
denotes fractional. Though the polynomial order N should be an integer, NF gives us a
good reference.

As seen, (29) can be rewritten as

BN,d(θ) =
1
R
TN

[
x0 + 1

4
(eθ + e−θ) +

x0 − 1
2

]
, (39)

and the component e−ωrmcos(θ−θm)/c in (6) can be expressed as a function of e−nθ using the
Jacobi-Anger expansion [58,59]. Consequently, we can deduce the beamformer coefficients
by solving the following equation:

B[h(ω), θ] = BN,d(θ). (40)

However, it is difficult when N is large. So, for simplicity, we proposed the so-called
null-constrained and least square beamformers in the next section.

4. DMA Design

With the desired beampattern, BN,d(θ), at hand as target, our task is to approximate
it as close as possible. In this work, we first introduce two kinds of methods, i.e., null-
constrained and least square methods. Then, we derive the minimum norm and combined
solutions in order to improve the white noise amplification problem at low-frequency
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bands and prevent the array beampattern from significantly deviating from the desired
one at high-frequency bands.

From (17), we know the desired beampattern is symmetric about the 0 ↔ π axis.
However, to design the beampattern of the planar array, we need to consider the whole
range of θ, i.e., θ ∈ [0, 2π]. So, 2N zeros are taken in to account in our context, i.e.,
θk0, k = 1, 2, . . . , 2N. The first N zeros are θk0, k = 1, 2, . . . , N, and the last N zeros are
2π − θk0, k = 1, 2, . . . , N. It should be noted that, since TN(x) pass through the point
(−1, (−1)N), we will never have a null at θ = π, with a given limited R. So, there is not
higher (than 1) order null.

4.1. Null Constrained Method

As known, the position of nulls is very important in DMA design, which determines
the beampattern of DMA uniquely [27,40]. In this part, we assume M = MN = 2N + 1,
where MN is the minimum microphone number that is required to form a Nth order planar
DMA beampattern given the array geometry. By combining the distortionless constraint
(which is at θ = 0) and the null constraints, we have the following linear system:

D(ω, θ0)h(ω) = iMN , (41)

where

D(ω, θ0) =



dH(ω, 0)
dH(ω, θ10)
dH(ω, θ20)

...
dH(ω, θN0)

...
dH(ω, θ2N0)


(42)

is the constraint matrix of size MN × MN , which is assumed to be a full rank matrix,
θ0 = [ θ10, θ20, · · · , θN0, · · · , θ2N0 ] and iMN is the first column of the identity matrix,
IMN , of size MN ×MN . So, we can obtain the beamformer as

hNC(ω) = D−1(ω, θ0)iMN . (43)

If we want to steer the main lobe to directions other than θ = 0, the nulls can be set
at θ0 = [ θs + θ10, θs + θ20, · · · , θs + θN0, · · · , θs + θ2N0 ], and now the distortionless
constraint is dH(ω, θs)h(ω) = 1, where θs is the steered direction.

4.2. Least Square Method

In this part, again, we assume M = MN . Let us define the error of the DMA beampat-
tern first:

E [h(ω), θ] = BN,d(θ)−B[h(ω), θ]

= BN,d(θ)− dH(ω, θ)h(ω). (44)

Then, the least square approximation criterion [41] can be written as

JLS[h(ω)] =
∫ 2π

0
|E [h(ω), θ]|2dθ

= hH(ω)P(ω)h(ω)− hH(ω)q(ω)− qH(ω)h(ω) +
∫ 2π

0

∣∣BN,d(θ)
∣∣2dθ, (45)
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where

P(ω) =
∫ 2π

0
d(ω, θ)dH(ω, θ)dθ,

q(ω) =
∫ 2π

0
BN,d(θ)d(ω, θ)dθ

are matrices of size MN ×MN and MN × 1, respectively. Of course, we can use a weighting
function to either emphasize or deemphasize some specific angles. However, for sim-
plicity, we set the weighting function to 1 in this work. By combining JLS[h(ω)] and the
distortionless constraint, we obtain the cost function, i.e.,

min
h(ω)

JLS[h(ω)] subject to dH(ω, 0)h(ω) = 1. (46)

Solving (46) by using the Lagrange multiplier method, the beamformer is derived as

hLS(ω) =
P−1(ω)q(ω)

qH(ω)P−1(ω)d(ω, 0)
. (47)

In this case, if we want to steer the main lobe to direction θs 6= 0, we can set the desired
beampattern as in (30).

4.3. Minimum Norm Solution

In the traditional and the above DMA design routines, it is assumed that M = MN . As
known, one of the inherent shortcomings of the differential beamformer is the white noise
amplification problem at low-frequency bands. Recently, in order to improve this thorny
problem, the minimum norm solution is proposed in [40,57] which takes the advantage
that we can exploit the redundancy by using more microphones, i.e., M > MN . In this
context, the linear system can be written as

D(ω, θ0)h(ω) = iMN , (48)

where

D(ω, θ0) =



d
H
(ω, 0)

d
H
(ω, θ10)

d
H
(ω, θ20)

...
d

H
(ω, θN0)

...
d

H
(ω, θ2N0)


(49)

is the constraint matrix of size MN ×M, which is assumed to be a row full rank matrix,
and d(ω, θ) is the steering vector of length M > MN . Then, the minimum norm solution
can be derived by solving the following cost function:

min
h(ω)

hH(ω)h(ω) subject to D(ω, θ0)h(ω) = iMN , (50)

and the beamforming filter is

hMN(ω) = DH
(ω, θ0)

[
D(ω, θ0)D

H
(ω, θ0)

]−1
iMN . (51)
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4.4. Combined Solution

Usually, at relatively high-frequency bands (compared to the spacing between the
neighboring sensors), the array beampattern significantly deviates from the desired one
since the differentials of a different order of the acoustic pressure field can no longer be ap-
proximated precisely by finite difference of the microphones’ output when the microphone
array geometry is given. So, it is necessary to control the distortion of the beampattern
and the white noise amplification problem simultaneously. Consequently, we apply the
following cost function [41]:

min
h(ω)

µhH(ω)h(ω) + (1− µ)JLS[h(ω)] subject to D(ω, θ0)h(ω) = iMN , (52)

and the solution which is named a combined solution is

hC(ω) = P−1
µ (ω)

{
2(1− µ)q(ω) + DH

(ω, θ0)Q
−1
µ (ω)

[
iMN − 2(1− µ)D(ω, θ0)P

−1
µ (ω)q(ω)

]}
, (53)

where

Pµ(ω) = 2µIM + 2(1− µ)P(ω),

Qµ(ω) = D(ω, θ0)P
−1
µ (ω)DH

(ω, θ0),

P(ω) =
∫ 2π

0
d(ω, θ)d

H
(ω, θ)dθ,

q(ω) =
∫ 2π

0
BN,d(θ)d(ω, θ)dθ

are of size M × M, MN × MN , M × M and M × 1, respectively, and 0 ≤ µ ≤ 1. When
µ = 1, we get the minimum norm solution, hMN(ω).

For more degree of freedom to deal with the white noise amplification problem at low
frequencies, we simplify (52) as [41]

min
h(ω)

µhH(ω)h(ω) + (1− µ)JLS[h(ω)] subject to d
H
(ω, 0)h(ω) = 1, (54)

whose solution is

hCF(ω) = P−1
µ (ω)

2(1− µ)q(ω) +
1− 2(1− µ)d

H
(ω)P−1

µ (ω)q(ω)

d
H
(ω)P−1

µ (ω)d(ω)
d(ω)

. (55)

When µ = 0, we get the least square beamformer, hLS(ω), with redundant microphone,
and when µ = 1, we get the delay-and-sum beamformer, hDS(ω).

4.5. Particular Case: Linear Microphone Array

The methods proposed above are applicable to linear microphone arrays. However,
for a linear array, we only need to consider the range θ ∈ [0, π]. In this case, the microphone
number M is require to satisfy M ≥ MN,L = N + 1, θ0 = [ θ10, θ20, · · · , θN0 ], and D(ω, θ0)
of size MN,L ×MN,L and D(ω, θ0) of size MN,L ×M are, respectively,

D(ω, θ0) =


dH(ω, 0)

dH(ω, θ10)
dH(ω, θ20)

...
dH(ω, θN0)

 (56)
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and

D(ω, θ0) =



d
H
(ω, 0)

d
H
(ω, θ10)

d
H
(ω, θ20)

...
d

H
(ω, θN0)


. (57)

It should be noted that the steering ability of the linear DMA is limited [60–62].

5. Simulations

In this section, we evaluate the performance of the methods proposed above.

5.1. Desired Beampattern

We first study the desired beampattern with a different main lobe level to sidelobe
level ratio R. The order of the Chebyshev polynomial is set to be N = 3, and R = 5, 10, 20
and 30 (in dB, the same below) are considered. The results are presented in Figure 2. As
seen, the sidelobe level is controlled precisely, and the main lobe beamwidth increases
with the increase of R. When R is small, the main lobe beamwidth is narrower than that
of the superdirective beamformer (whose beampattern can be found in [21,27]) Next, we
investigate the beampatterns with a given main lobe beamwidth BNN = π/3 and different
polynomial order N (N = 4, 5, 6, 7). The beampatterns are plotted in Figure 3. It is observed
that we can exactly control the main lobe beamwidth if the polynomial order N is adequate.

Then, we evaluate the performance of the beamformers proposed in Section 4.
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Figure 2. Desired beampatterns with different ratio, R, of mainlobe level to sidelobe level: (a) R = 5,
(b) R = 10, (c) R = 20, and (d) R = 30. Conditions: N = 3, and θs = 0.
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Figure 3. Desired beampatterns with a given mainlobe beamwidth BNN and different polynomial
order N: (a) N = 4, (b) N = 5, (c) N = 6, and (d) N = 7. Conditions: BNN = π/3 and θs = 0.

5.2. Performance of the Null Constrained and Least Square Beamformers

The uniform circular array (UCA) is considered in the performance evaluation parts.
The null-constrained beamformer is studied first. Again, the order of the Chebyshev
polynomial is set to be N = 3, and R = 30 (dB) is taken, i.e., the desired beampattern that
we want to approximate is Figure 2d. So, M = 7 microphones are needed. The radius of the
UCA is set to be r = 0.02 m. The beampatterns of the null-constrained beamformer with
different frequencies ( f = 500, 1000, 2000 and 4000 Hz) are shown in Figure 4, including
the beampattern of the maximum front-to-back ratio [63] (purple dot line) beamformer at
f = 1000 Hz. We can see from Figure 4 that, at relatively low frequencies, the beampattern
of the null-constrained beamformer is very close to the desired one. However, at high
frequencies, the array beampattern diverges from the desired beampattern gradually, and
the divergence increases with the increase of frequency. The reason has been explained in
Section 4.4. In addition, as we can see from Figure 4b, comparing with the beampattern
of the maximum front-to-back ratio beamformer, the sidelobe level of hNC(ω) is exactly
controlled, and the level of different sidelobe is the same, which is useful if we do not
want to distort the background noise field too much. Figure 5 plots the 3-D beampattern
of the null constrained beamformer versus frequency with θs = 0. We can see that the
beampattern is approximate frequency-invariant at low frequencies, and the sidelobe level
gradually increases with the increase of frequency at high frequencies.
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Figure 4. Beampatterns of the null constrained beamformer, hNC(ω), with different frequencies:
(a) f = 500 Hz, (b) f = 1000 Hz, (c) f = 2000 Hz, and (d) f = 4000 Hz. Conditions: N = 3, M = 7,
R = 30, r = 0.02 m, and θs = 0.

For evaluating the performance of the beamformer hNC(ω), we simulated the room
acoustic environments with the well-known image model [64,65]. The sampling rate is set
to 8 kHz. The length, width and height of the simulated room are, respectively, 4 m, 4 m
and 3 m. The position of the point in the simulated room is denoted as (x, y, z) with respect
to a corner of the room which is considered the origin of the Cartesian coordinate system. A
UCA with radius r = 0.02 m and 7 microphones, whose center and the first microphone are
at (2, 2, 1.5) (in meter, the same below) and (2.02, 2, 1.5), respectively, is considered in the
simulation. The main lobe level to sidelobe level ratio, R, is set to 20 dB. 360 loudspeakers
are simulated as sources of interest and placed at the same horizontal plane of the UCA
with 1◦ interval, and the distance between the loudspeakers and the center of the UCA
is 1.5 m. The reflection coefficients of all six walls are set to 0.40 and the corresponding
reverberation time T60 ≈ 110 ms. The room impulse responses (RIRs) between every
microphone and loudspeaker are generated using the image model. The output signal of
each microphone is generated by convoluting a piece of the clean speech signal with the
simulated RIRs. The normalized energy of the output signal of the beamformer hNC(ω)
and hS(ω) is presented in Figure 6. As seen from Figure 6, for input signal from different
directions, the output energy of the beamformer hNC(ω) corresponding to the sidelobe
region keeps flatter than that of the beamformer hS(ω).
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Figure 5. Beampattern of the null constrained beamformer, hNC(ω), versus frequency. Conditions:
N = 3, M = 7, R = 30, r = 0.02 m, and θs = 0.

Figure 6. The normalized energy of the output signal of the beamformer hNC(ω) and hS(ω) for the
input signal from different direction. Conditions: N = 3, M = 7, R = 20, r = 0.02 m, and θs = 0.

Now, we take a look at the beampatterns of the least square beamformer. Again, we
use the setting of N = 3, R = 30 (dB), M = 7, and r = 0.02 m. The resulting beampatterns
are shown in Figure 7, from which we can see the same phenomenon, i.e., the array
beampattern is similar to the desired one at low frequencies, and it diverges from the
desired one at high frequencies.

Using the same array and Chebyshev polynomial parameters as the last simulation,
we study the steering ability of the null-constrained and least square beamformers. Figure 8
describes the beampatterns of the beamformers hNC(ω) and hLS(ω) with different direction
of the desired signal, θs (θs = 30◦, 60◦, 90◦ and 120◦), at frequency f = 1000 Hz. As we
can see, the beampattern of the proposed two beamformers can be steered to any direction
without distortion.
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Figure 7. Beampatterns of the least square beamformer, hLS(ω), with different frequencies:
(a) f = 500 Hz, (b) f = 1000 Hz, (c) f = 2000 Hz, and (d) f = 4000 Hz. Conditions: N = 3,
M = 7, R = 30, r = 0.02 m, and θs = 0.
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Figure 8. Beampatterns of the beamformers hNC(ω) and hLS(ω) with different values of θs:
(a) hNC(ω), θs = 30◦, (b) hLS(ω), θs = 30◦, (c) hNC(ω), θs = 60◦, (d) hLS(ω), θs = 60◦, (e) hNC(ω),
θs = 90◦, (f) hLS(ω), θs = 90◦, (g) hNC(ω), θs = 120◦, and (h) hLS(ω), θs = 120◦. Conditions: N = 3,
M = 7, R = 30, r = 0.02 m, and f = 1000 Hz.
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The WNG and DF of the null constrained and least square beamformers are investigated
in our simulations, and the parameter settings are the same as in the last simulation. Figure 9
shows the WNG and DF with respect to R at f = 1000 Hz, and the results of the DS and
superdirective beamformers are also included. As seen, the DF of the null constrained and
least square beamformers increase with R first and then decreases, which is always less than
that of the superdirective beamformer as expected. The WNG, however, increases with R
monotonically. The WNG and DF of hNC(ω) and hLS(ω) as functions of frequency with N = 3
and R = 30 are plotted in Figure 10. It is observed that the WNG is very low at low-frequency
bands, which is the motivation of the development of the minimum norm solution.

Figure 9. Performance of the beamformers hNC(ω) and hLS(ω) versus the parameter R: WNG (top),
and DF (bottom). Conditions: N = 3, M = 7, f = 1000 Hz, r = 0.02 m, and θs = 0.

Figure 10. Performance of the beamformers hNC(ω) and hLS(ω) versus frequency: WNG (top), and
DF (bottom). Conditions: N = 3, M = 7, R = 30, r = 0.02 m, and θs = 0.
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5.3. Performance of the Minimum Norm and Combined Solutions

This simulation is devoted to the investigation of the minimum norm solution of
the DMA. The desired beampattern is with N = 3 and R = 30. The WNG and DF
versus frequency for different microphone numbers, M = 7 (i.e., the null constrained
solution), 10, 14, are plotted in Figure 11. Note that the inter-element spacing (which is

δ = 2r sin
( π

M

)
for a UCA, and r denotes the radius. When r = 0.02 m and M = 7,

δ = 0.0174 m) keeps the same for different microphone number. From Figure 11, it is
observed that the WNG increases with the microphone number, which exactly corresponds
to the analysis. Figure 12 plots the beampatterns of the minimum norm beamformer with
M = 10 at different frequencies ( f = 500, 1000, 2000 and 4000 Hz). Comparing with the
desired beampattern in Figure 2d, we observe that, though the WNG is improved at low-
frequency bands, the beampattern deviates from the target at high-frequency bands also
as the beamformers hNC(ω) and hLS(ω). For overcoming this drawback, the combined
solution is derived.

Figure 11. Performance of the beamformer hMN(ω) versus frequency with different microphone
number, M: WNG (top), and DF (bottom). Conditions: N = 3, R = 30, δ = 0.0174 m, and θs = 0.

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0 dB

–10 dB

–20 dB

–30 dB

–40 dB

(a)

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0 dB

–10 dB

–20 dB

–30 dB

–40 dB

(b)

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0 dB

–10 dB

–20 dB

–30 dB

–40 dB

(c)

0◦

30◦

60◦
90◦

120◦

150◦

180◦

210◦

240◦

270◦
300◦

330◦

0 dB

–10 dB

–20 dB

–30 dB

–40 dB

(d)

Figure 12. Beampatterns of the beamformer hMN(ω) with different frequencies: (a) f = 500 Hz,
(b) f = 1000 Hz, (c) f = 2000 Hz, and (d) f = 4000 Hz. Conditions: N = 3, M = 10, R = 30,
δ = 0.0174 m, and θs = 0.

In this part, the combined solutions are studied. Again, the desired beampattern is
with N = 3 and R = 30, and M is selected to be 10. At first, the beampatterns of hC(ω)
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with different values of µ (µ = 1, 0.99, 0.98, 0.95) are investigated at f = 4000 Hz, and
the results are shown in Figure 13. As seen, as µ decreases, the approximation of the array
beampattern to the desired one goes better. Then, the performance of the beamformer
hCF(ω) with µ = 0.2, 0.4, 0.8, 0.9 is investigated. The WNG and DF versus frequency are
plotted in Figure 14, including the results of the DS and least square (µ = 0) beamformers.
As expected, the WNG increases and the DF decreases with the increase of µ. Figure 15
plots the 3-D beampattern of the beamformer hCF(ω) versus the frequency with µ = 0.4
and θs = 0. we can make compromises among the WNG, DF and beampattern distortion
by adjusting the parameter µ flexibly. As seen from Figure 15, the level of different sidelobe
keeps the same at relatively high frequencies, and we can make compromises among the
WNG, DF and beampattern distortion by adjusting the parameter µ flexibly.
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Figure 13. Beampatterns of the beamformer hC(ω) with different values of µ: (a) µ = 1.0, (b) µ = 0.99,
(c) µ = 0.98, and (d) µ = 0.95. Conditions: N = 3, M = 10, R = 30, δ = 0.0174 m, f = 1000 Hz,
and θs = 0.

Figure 14. Performance of the beamformer hCF(ω) versus frequency with different values of the
parameter µ: WNG (top), and DF (bottom). Conditions: N = 3, M = 10, R = 30, δ = 0.0174 m,
and θs = 0.
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Figure 15. Beampattern of the beamformer hCF(ω) versus frequency. Conditions: N = 3, M = 10,
R = 30, µ = 0.4, δ = 0.0174 m, and θs = 0.

At last, we evaluate the performance of the beamformer hCF(ω) in the simulated
room acoustic environment with image model. A UCA with radius r = 0.039 m and
14 microphones, whose center and first microphone are, respectively, at (2, 2, 1.5) and
(2.039, 2, 1.5), is considered in the simulation, and the loudspeaker is placed at (3.5, 2, 1.5).
The reflection coefficients of all six walls are set to 0.85 and the corresponding reverberation
time T60 ≈ 350 ms. The simulated RIRs are divided into two parts, i.e., the direct path and
reflections, based on which two metrics are defined, i.e., the direct-path-signal-to-noise
ratio (DSNR), and the direct-path-signal-to-reverberation ratio (DSRR). The spatially and
temporally white Gaussian noise is added to the microphone signals with DSNR = 20 dB.
The input DSRR for our simulation setup is approximately 2.98 dB. The result is presented
in Table 2. It can be seen that the DSNR increases and DSRR decreases with the increase of
µ, which is consistent with the analysis. One should note that, the output DSNRs of the
beamformer hCF(ω) with µ = 0.2, 0.4, 0.8, 0.9 are smaller than the input DSNR because
negative WNG of the beamformer hCF(ω) in relatively low frequency, which can be seen
in Figure 14.

Table 2. Performance of beamformer hCF(ω) with different value of µ. Conditions: T60 ≈ 350 ms,
M = 14 and r = 0.039 m, the input DSNR and DSRR are, respectively, 20 dB and 2.98 dB.

Beamformer DSNR (dB) DSRR (dB)

hCF(ω), µ = 0.2 5.14 4.89
hCF(ω), µ = 0.4 8.24 4.74
hCF(ω), µ = 0.8 14.24 4.39
hCF(ω), µ = 0.9 15.81 4.24

6. Conclusions

In this paper, by investigating the structure of the frequency-independent beampattern
of a theoretical Nth-order differential beamformer and exploiting the Chebyshev polyno-
mials, the desired beampattern design methods which can exactly control the main lobe
beamwidth and sidelobe level and obtain minimum main lobe beamwidth with a given
sidelobe level are proposed. The designed beam pattern can achieve a narrower main
lobe beamwidth than that of the hypercardioid beampattern with the same order, and
the relationship among the main lobe beamwidth, sidelobe level and polynomial order is
deduced. To obtain the designed desired beampattern, the null constrained beamformer,
hNC(ω), and least square beamformer, hLS(ω), are developed, which can approximate
the desired beampattern very well and consequently have a frequency-invariant spatial
response at relatively low frequencies. However, the beampatterns of hNC(ω) and hLS(ω)
deviate from the desired one at high frequencies. In addition, the WNG of hNC(ω) and
hLS(ω) is very low at low frequencies, which means serious white noise amplification.



Sensors 2023, 23, 3733 22 of 24

So, the minimum norm solution hMN(ω) and combined solutions hC(ω) and hCF(ω) are
proposed, which can achieve a flexible compromise among the WNG, DF and beampattern
distortion by adjusting the microphone number M and the parameter µ.
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