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Abstract: In recent decades, the brain–computer interface (BCI) has emerged as a leading area of
research. The feature selection is vital to reduce the dataset’s dimensionality, increase the computing
effectiveness, and enhance the BCI’s performance. Using activity-related features leads to a high
classification rate among the desired tasks. This study presents a wrapper-based metaheuristic
feature selection framework for BCI applications using functional near-infrared spectroscopy (fNIRS).
Here, the temporal statistical features (i.e., the mean, slope, maximum, skewness, and kurtosis) were
computed from all the available channels to form a training vector. Seven metaheuristic optimization
algorithms were tested for their classification performance using a k-nearest neighbor-based cost
function: particle swarm optimization, cuckoo search optimization, the firefly algorithm, the bat
algorithm, flower pollination optimization, whale optimization, and grey wolf optimization (GWO).
The presented approach was validated based on an available online dataset of motor imagery (MI)
and mental arithmetic (MA) tasks from 29 healthy subjects. The results showed that the classification
accuracy was significantly improved by utilizing the features selected from the metaheuristic opti-
mization algorithms relative to those obtained from the full set of features. All of the abovementioned
metaheuristic algorithms improved the classification accuracy and reduced the feature vector size.
The GWO yielded the highest average classification rates (p < 0.01) of 94.83± 5.5%, 92.57 ± 6.9%, and
85.66 ± 7.3% for the MA, MI, and four-class (left- and right-hand MI, MA, and baseline) tasks, respec-
tively. The presented framework may be helpful in the training phase for selecting the appropriate
features for robust fNIRS-based BCI applications.

Keywords: motor imagery; mental arithmetic; fNIRS; feature selection; optimization; brain–computer
interface (BCI)

1. Introduction

Brain–computer interface (BCI) technology enables a direct connection between the
brain and an external device by avoiding the use of traditional channels, such as peripheral
nerves and muscles [1]. BCIs are designed to provide impaired people (such as those
with locked-in syndrome or spinal cord injuries) with new ways to communicate and
manage their surroundings. BCIs may also be employed in industries such as gaming,
transportation [2], recreation [3], virtual reality, human–machine interfaces [4], and neuro-
logical rehabilitation [5–8]. BCIs are classified into two types: invasive and non-invasive.
Invasive BCIs capture brain activity using electrodes placed directly into the brain. This
approach provides the highest-level information for signals but possesses significant risks,
including the chance of infection and lasting brain tissue damage. Non-invasive BCIs, by
contrast, do not require electrodes to be implanted in the brain. Instead, they capture signals
from the scalp or other areas of the head using methods, such as electroencephalography
(EEG) [9,10], functional magnetic resonance imaging [11,12], magnetoencephalography [13],
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and functional near-infrared spectroscopy (fNIRS) [14,15]. Non-invasive BCIs are less dan-
gerous and less obtrusive than invasive BCIs but provide lower-resolution signals. The
choice between invasive and non-invasive BCIs is determined by the specific application
and the trade-off between the resolution and invasiveness. Despite these potential benefits,
significant technical and clinical hurdles must be overcome before BCIs can be widely
adopted and utilized.

Each non-invasive BCI has its own advantages and disadvantages. As a relatively
new technique, fNIRS offers a balance between the temporal and spatial resolution and
a variety of distinctive benefits [16–18]. Oxyhemoglobin (HbO/∆HbO) and deoxyhe-
moglobin (HbR/∆HbR) concentration changes are measured using fNIRS, utilizing pairs
of multiple near-infrared lights (650–1000 nm range) that penetrate through the superficial
cortical areas. Both the absolute and relative concentration changes are measured [19,20].
The neocortex activation caused by the brain stimulation results in increased blood flow
and oxygenation levels (as reflected by the increases in ∆HbO or the decreases in ∆HbR).
These modifications can then be used to provide control signals for the fNIRS-based BCI
applications.

The development of rapid systems for quicker command decoding is one of the three
primary research objectives in the field of BCIs. The other two are maximizing the number
of decoded commands and improving the classification performance. The features are
extracted using various small window sizes (0–2, 0–2.5, 0–5, 2–7, etc.) to speed up the BCI
system [21–23]. fNIRS is used with other measuring modalities (e.g., EEG) to increase the
number of commands that can be decoded from the brain [24,25]. The selection of the
channels and features is a key component for enhancing the BCI classification accuracy.
In fNIRS-based BCI research, active channel selection has been performed using various
methods, such as averaging on a particular region of interest [26,27], computing the Pearson
correlation coefficient [28], performing vector phase analyses [21,29–31], averaging across
all the channels [32–34], applying baseline corrections [24], calculating the contrast-to-noise
ratios [35], using t-statistics and z-statistics [23,30,36], using a least absolute shrinkage and
selection operator homotopy-based sparse representation [37], and utilizing joint-channel-
connectivity methods [38].

Various types of features have been used to decode fNIRS signals in the literature,
including statistical features [39], graph-based features [40], Mel frequency cepstral co-
efficients [41], vector phase analysis-based features [29], and frequency domain-based
features [42]. Different ranges of two- and three-feature combinations have been used
in prior studies by using temporal statistical data to determine the best combinations for
classifying the various activities [43,44]. However, selecting the best features using visual
inspection can be challenging, particularly when all the channels are used for the feature
extraction and classification. Various studies have proven the impact of the feature selection
on BCIs [29,45,46]. It helps to reduce the dataset’s dimensionality, increase the computing
effectiveness, and enhance the classification performance among the tasks. By identifying
the features that are related to the activity, the feature selection increases the robustness of
the classification system. Therefore, in one study [47], the authors used a genetic algorithm
(GA) to determine the best window size for the computation of the temporal features.
Their suggested framework improved the model’s capability for classification. A recent
study [45] presented a systematic approach for choosing the subject-specific features. They
used filter-based techniques to remove the redundant features and boost the classification
efficiency. Similarly, the “ReliefF” filter merged with a GA was used to classify upper
limb movement intentions [48]. In another study, a minimum-redundancy maximum-
relevance filter was used to reduce the feature vector size and enhance the classification
performance. The relevant features were also identified using a sparse representation
classification method. [49]. Recently, Dokeroglu et al. [50] reviewed various wrapper-based
feature selection methods. Wrapper approaches examine the performance of each subset of
features and combine a metaheuristic optimization algorithm with a classifier. Except for
GAs, other wrapper-based feature selection methods have not been explored for fNIRS-
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based BCIs in the literature. The no-free-lunch (NFL) theorem states that no heuristic is
sufficient to address every optimization issue. Most metaheuristics excel in at least one
area compared to the others. The optimal subset of the features from several domains may
not always be discovered using a single metaheuristic algorithm.

Therefore, herein, wrapper-based approaches operating in conjunction with meta-
heuristic optimization algorithms were explored for an fNIRS BCI to improve the accuracy
and accelerate the processing. The following are the main highlights of the presented work.

• First, the data of all the channels of the fNIRS signals were pre-processed to remove
physiological noise.

• The most commonly used statistical temporal features were computed for the fNIRS
signals in all the channels.

• Wrapper approaches with various metaheuristic optimization algorithms, such as
particle swarm optimization (PSO), cuckoo search optimization (CSO), the firefly
algorithm (FA), the bat algorithm (BA), flower pollination optimization (FPO), the
whale optimization algorithm (WOA), and grey wolf optimization (GWO), were
applied to observe the classification performance using a k-nearest neighbor (k-NN)
approach.

• The performance of the proposed framework was evaluated using the online motor
imagery (MI) and mental arithmetic (MA) datasets.

• A statistical analysis was also performed to determine the significance of the obtained
results.

2. Proposed Framework

This section explains a framework for the feature selection for the fNIRS signals
using optimization algorithms. This framework entailed choosing the most pertinent
and significant features from the fNIRS signals. Here, the acquired fNIRS data were pre-
processed to remove the physiological noise, and further details are provided in Section 3.
After that, the temporal statistical features were extracted for all the channels in a 10-s
window. A wrapper-based feature selection method was applied to retrieve the most
important features using PSO, CSO, the FA, the BA, FPO, the WOA, and GWO. All the
algorithms were implemented using “Jx-WFST,” a Jxwrapper feature selection toolbox in
MATLAB (https://www.mathworks.com/matlabcentral/fileexchange/84139-wrapper-
feature-selection-toolbox, accessed on 7 February 2023). The k-NN model was selected for
the classification, as it is a non-parametric machine learning approach that is accurate, easy,
and widely used [51,52]. In this approach, the neighbors’ votes determine how a sample
is classified. The item corresponding to the k training samples (i.e., k, the object’s closest
neighbors) is categorized into a class based on the greatest class probability [53]. Further
details on the k-NN can be found in [54]. The framework of the proposed approach is
shown in Figure 1.
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3. Experimental Data and Pre-Processing

Here, the fNIRS data of 29 participants from an online dataset were used to validate
the presented methodology [55]. The prefrontal, motor, and occipital brain regions were
surrounded by 36 channels formed by fourteen sources and sixteen detectors spaced three
centimeters apart, utilizing the 10-5 international system with Fp1, Fp2, Fpz, C3, C4, and
Oz as the references. The fNIRS data were measured at a 12.5 Hz sampling rate and were
down-sampled to 10 Hz. The dataset was composed of triggered, fNIRS, and EEG data
from six different sessions. The dataset was divided into datasets A and B corresponding
to the left-hand motor imagery (LHMI) and right-hand motor imagery (RHMI) sessions
(i.e., 1, 3, and 5) as well as the MA and baseline sessions (i.e., 2, 4, and 6). There was a
1-min pre-rest time at the start of each session, followed by 20 trials (10 for each activity)
and followed by another 1-min post-rest interval. The exercise consisted of a 2-s visual
introduction, a 10-s task phase, and a rest period randomly allocated to last between 15 and
17 s. Here, only the fNIRS and associated trigger data were used. The fNIRS data (i.e., only
∆HbO in this study) were passed through a 3rd-order Butterworth low-pass filter with a
0.1 Hz cutoff frequency and a Butterworth high-pass filter with a 0.01 Hz cutoff frequency
to reduce the physiological noise. Figure 2 shows the fNIRS optode placement and the
experimental paradigm [55].
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4. Feature Extraction

The fNIRS trials for both the MI and MA were retrieved after pre-processing, and a
section of the trial lasting 10 s was utilized for the feature extraction. In this investigation,
only the top five most commonly used statistical features—the mean, peak, slope, skew-
ness, and kurtosis—were retrieved. [39,56–58]. The mean, skewness, and kurtosis were
determined using the following formulas, wherein the peak value is the maximum value,
and the slope is retrieved using the curve fitting.

µ =
1
N

k2

∑
k=k1

X(k) (1)

Sx =
Ex(Xx − µx)

3

σ3 (2)

Kx =
Ex(Xx − µx)

4

σ4 (3)

In the above, X represents the signals of the fNIRS (i.e., ∆HbO) and µ and σ denote
the mean and standard deviation, respectively. Sx, Kx, and Ex are the skewness, kurtosis,
and expectation of X, respectively.

Herein, initially, all of the fNIRS channels were used for the feature extraction. In
total, 180 features (36 × 5) were retrieved for a single trial. Thus, the feature selection
was necessary to choose the right features, further minimize the feature vector size, and
enhance the classification performance.

5. Feature Selection Method

In the feature selection process, a subset was chosen from the larger set of features
to develop the machine learning model. The quality of the created candidate subsets was
assessed using a predetermined criterion [59]. The feature selection aimed to improve
the model’s performance, decrease overfitting, and enhance the interpretability. The test
classification accuracy was used to validate the outcome of the feature selection method.
In general, feature selection algorithms may be divided into three primary categories,
i.e., filter, embedding, and wrapper approaches, depending on the numerous assessment
criteria and techniques used to generate the subsets.

Following the theory that the features with a high variance provide the most relevant
details, the filter feature techniques are geared to maintain the features with a more signifi-
cant variance [60]. These methods typically take little time to execute, although they can
select redundant variables.

Embedding methods do not distinguish between the feature selection procedure and
the classification method [61]. The feature selection is conducted within the classifica-
tion process; therefore, it is incorporated as an algorithmic component or a functionality
enhancement.

Wrapper algorithms are machine learning techniques that assess the performance of
a subset of features using a particular machine learning model (the “wrapper”) [62]. The
wrapper’s objective is to assess how the chosen features affect the model’s performance.
Based on the evaluation findings, the wrapper algorithm will either choose the current
subset of features or search for a better subset of features. The best subset of features
is eventually discovered by repeating this approach. The wrapper approach concept is
presented in Figure 3. This work uses wrapper-based techniques and various metaheuristics
algorithms for the optimal feature selection.
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5.1. Metaheuristics Algorithms for Wrapper-Based Methods

Metaheuristic algorithms aim to approximate solutions to challenging problems. They
are called “meta” because they manage high-level optimization problems by integrating
several low-level heuristics [63,64]. PSO, CSO, the FA, the BA, FPO, the WOA, and GWO,
among others, are examples of metaheuristic algorithms [50,65].

Learning algorithms are used in wrapper feature selection approaches to assess the
classification performance of the generated feature subsets. The metaheuristics serve as the
search algorithms to generate new potential optimal subsets [66]. The cost function for all
of the optimization algorithms is defined as shown in Equation (4) [67].

min(J) = α(1− Accuracy) + β

(
no. o f selected f eatures

no. o f total f eatures

)
(4)

Here, α and β are selected with the default values of 0.99 and 0.01, respectively.

5.1.1. Particle Swarm Optimization (PSO)

PSO is a technique for solving complicated optimization issues. It depends on the
coordinated behavior of a collection of particles traveling through a solution space while
being directed by the experiences of their nearby neighbors to locate the best solution [68,69].
It is inspired by the coordinated activity of a flock of birds or school of fish. Each particle in
PSO represents a potential solution to the issue, is initially placed, and moves randomly. The
particles adjust their locations (X) after each iteration depending on their current velocity
(V) and considering their own personal best solution (pbest) and the group’s overall best
solution (gbest). The pull toward the pbest and gbest solutions and a random element to
promote exploration are combined with the particle’s current velocity to create a velocity
update. The process is continued until a stopping requirement is satisfied, e.g., achieving
a suitable solution quality or completing a predetermined number of iterations [70]. The
equations below can be used to determine each particle’s velocity and update its position.

Vt
ij = αVt−1

ij + a1bt−1
1j

[
pbest− Xt−1

ij

]
+ a2bt−1

2j

[
gbest− Xt−1

ij

]
Xt

ij = Xt−1
ij + Vt

ij

}
(5)

where α, a1, a2, b1, and b2 are the parameters of PSO. The b1 and b2 can be randomly
selected. Further details about the PSO can be found in [71]. Algorithm 1 shows the pseudo
code of PSO.
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Algorithm 1 Pseudo code of PSO [71].

1. Generate a random population of particles (N)
2. while the termination condition is not satisfied do
3. for each particle do
4. Evaluate the fitness of all the particles using the fitness function
5. Update the velocity and position of all the particles using Equation (5)
6. Evaluate the fitness f (Prj

i)
7. if f (Prt

i ) < f (pbestt
i ) then

8. pbestt
i ← Prt

i
9. if f (Prt

i ) < f (gbestt
i ) then

10. gbestt
i ← Prt

i
11. return gbest

5.1.2. Cuckoo Search Optimization (CSO)

The CSO metaheuristic optimization method was developed in response to the cuckoo
bird’s tendency to lay its eggs in the nests of other bird species. The CSO algorithm
was proposed by Yang in 2009 [72]. In CSO, a population of potential solutions to a
problem is retained and an algorithm that uses random walk and exploitation operations
iteratively improves it. The cuckoo’s propensity to deposit its eggs in other birds’ nests
served as the inspiration for the random walk operation, which represents the discovery
of new solution areas. The algorithm can concentrate on and enhance the most promising
solutions with the help of the exploitation operation. In contrast to the other optimization
algorithms, CSO finds high-quality solutions more quickly owing to its careful balance
between exploration and exploitation. Additionally, CSO may be quickly parallelized for
complicated optimization issues and is very easy to implement. It also does not require
extensive parameter adjustment. The following equations can be utilized to model CSO.

xt+1
i = xt

i + αLevy(λ)
Levy ∼ u = t−λ

}
(6)

where xi is the solution at the step size (α) and λ is the variance of the levy distribution.
Further details about CSO can be found in [73]. Algorithm 2 shows the pseudo code
of CSO.

Algorithm 2 Pseudo code of CSO [73]

1. Generate a random population of host nests (N)
2. while the termination condition is not satisfied do
3. Select a random cuckoo (i) and determine a new solution using Equation (6)
4. Evaluate the fitness using the fitness function; Fi
5. Randomly choose a nest (j) from the population
6. if (Fi > Fj) then
7. Replace j with a new solution
8. end if
9. Abandon a fraction (Pa) of the worst nest and a new one at new location using Levy flights
10. Rank the solution and find the current best
11. return Sbest

5.1.3. Firefly Algorithm (FA)

In 2010, Yang presented the FA, which was motivated by the flashing qualities of fire-
flies [74]. These flashes draw potential mates or warn off predators. In the FA, the flashing
properties are developed and applied as functions to solve combinatorial optimization
issues [75]. According to their levels of brightness, fireflies attract other flies and advance
toward brighter fireflies. The more space between the fireflies, the less appealing they
become. The fireflies move at random when a brighter one is not present. As a result, the
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critical influences on the FA are the light intensity and the attractiveness level. A selected
function can be used to control the brightness at a particular place. As it relies on the
distance and absorption coefficient, the attraction is determined by the other fireflies. The
FA can be modeled as follows.

I = Ioe−γr

β = βoe−γr2

xt
i = xt−1

i + βoe−γr2
ij(xt−1

j − xt−1
i ) + αt ∈t

i

 (7)

where I and Io are the current and default light intensities; γ and r are the light absorption
coefficient and the distance, respectively; β and βo are the current and default attractiveness
(when the distance is zero); xi is the position; j is the higher intensity firefly; and α and ∈
are the random parameters. Further details about the FA can be found in [76]. Algorithm 3
shows the pseudo code of the FA.

Algorithm 3 Pseudo code of the FA [76]

1. Generate a random population of fireflies (N)
2. Evaluated the fitness value f (xi)
3. Initialize the parameters T, γ

4. while (t < T) do
5. for i = 1 to N do
6. for j = 1 to i do
7. if (Ij < Ii) then
8. Compute the attractiveness and move firefly i towards j using Equation (7)
9. end if
10. end for
11. end for
12. Evaluate the fitness value
13. Rank the fireflies and determine the current best
14. end while

5.1.4. Bat Algorithm (BA)

The BA is a nature-inspired optimization algorithm introduced by Yang in 2010 [77]. It
is based on how bats use echolocation to locate their prey. The method is modeled after how
bats fly around randomly while looking for food, generating noises, and listening for echoes
to find their meal [78]. Using random walk and exploitation procedures, the BA maintains
a population of alternative solutions to an optimization issue and iteratively enhances these
solutions. While the exploitation operation enables the algorithm to concentrate on the
most promising answers, the random walk operation imitates the unpredictable search
behaviors of bats. Its usage of a frequency-tuning mechanism is motivated by the frequency
modulation of bat sounds. This mechanism allows the algorithm to break out of the local
optima and discover superior solutions. Furthermore, the BA is easy to deploy and does
not require complicated parameter tuning. It is possible to codify echolocation as a method
for improving an objective function [79]. The equations below can be used to model this
algorithm.

fi = fmin + ( fmax − fmin)β

vt
i = vt−1

i + (xt
i − x∗) fi

xt
i = xt−1

i + vt
i

xnew = xold + αAt

 (8)

where xi and vi are the position and velocity in the frequency range between fmax and fmin;
β is the random vector; x∗ is the best available solution; and α and At are the random vector
between the range of [0, 1] and the maximum loudness of the bats. Further details about
the BA can be found in [80]. Algorithm 4 shows the pseudo code of the BA.
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Algorithm 4 Pseudo code of the BA [80]

1. Generate a random population of bats (N) and an initial velocity vi
2. Evaluated the fitness value f (xi)
3. Define fi
4. Initialize the parameters T, α, and At

5. while (t < T) do
6. Update the frequency, velocity, and position using Equation (8)
7. if (rand < ri) then
8. Select the best result and create a local result around the best result
9. end if
10. if (rand < Ai) and ( f (xi) < f (x∗)) then
11. Store the new result, decrease Ai, and increase ri
12. end if
13. Rank the bats and determine the current best
14. end while

5.1.5. Flower Pollination Optimization (FPO)

The metaheuristic optimization method known as FPO was motivated by the pol-
lination process in flowers [81]. It was developed to address the optimization issues in
various fields, including computer science, engineering, mathematics, physics, and finance.
The optimization procedure in FPO is based on how pollen moves between flowers. The
quality of a solution is expressed by how much “nectar” it contains, and each solution in
the optimization problem is represented as a “flower.” The nectar is transferred between
the flowers in a way that is similar to how the optimization problem solutions are selected
and merged. FPO is renowned for its ease of use, quick convergence speed, and simplicity.
It has been used to address numerous optimization issues, including function optimization,
scheduling, and data clustering issues [82]. FPO can be modeled using the following
equations.

xt
i = xt−1

i + αL(λ)(g∗ − xt−1
i )

L(λ) = λΓ(λ)· sin(λ)
π · 1

s1+λ

xt
i = xt−1

i + ε(xt−1
j − xt−1

k )

 (9)

where xt
i is the pollen; g∗ is the best available solution; α is the scaling factor [0, 1]; L(λ)

and Γ(λ) are the levy step size and gamma function; and xj and xk are the pollen from the
different flowers but the same plant species. Further details about FPO can be found in [83].
Algorithm 5 shows the pseudo code of FPO.

5.1.6. Whale Optimization Algorithm (WOA)

In 2016, Mirjalili and Lewis [84] introduced the WOA, which is inspired by humpback
whales’ hunting habits. These whales hunt in groups, demonstrating their gregarious
nature. They blow bubble nets to catch their prey (such as tiny fish or krill) when they
come across clusters of prey. The WOA mathematical model represents a fresh approach
to addressing complex optimization issues. The algorithm’s primary tasks are finding
prey, surrounding it, and moving in spiral bubble-net patterns. The WOA uses a variety
of strategies after starting with a random solution. The other agents adjust their places
after choosing the top search agent. They choose a target (either the best search agent or a
random whale) and proceed to attack it. The WOA has helped resolve various optimization
issues, including function optimization, scheduling, and data clustering issues [50]. The
following equations can be used to model the WOA.

→
x

t
i =

→
D′·ebl · cos(2πl) + x∗t−1

i
→
D′ =

∣∣∣∣x∗t−1
i −→x

t−1
i

∣∣∣∣
 (10)
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where
→
x and x∗ are the current and best locations, respectively; b and l are the constant for

determining the logarithmic spiral shape and a random number, respectively; and
→
D′ is

the distance between the whale and the prey. Further details about the WOA can be found
in [85,86]. Algorithm 6 shows the pseudo code of the WOA.

Algorithm 5 Pseudo code of FPO [83]

1. Generate random pollinators and flowers
2. Initialize the parameters
3. Evaluate the solution of the population using the fitness function f (x)
4. Determine the global best solution (g*)
5. while (t < T) do
6. for i = 1:N
7. if (p < rand) then
8. Draw a (d-dimensional) step vector L that obeys a Levy distribution and perform global
pollination
9. else
10. Pick ε randomly [0–1]
11. Randomly choose j and k among all the solutions and perform local pollination
12. end if
13. Evaluate f min of the new solution
14. If f min is better than previous solution, update the i solution and f min in the population, and if
f min is better than global best solution, update the global best solution and its f min
15. end for
16. Store the global best solution
17. t = t + 1
18. end while

Algorithm 6 Pseudo code of the WOA [86]

1. Generate a random population (N)
2. Initialize the parameters
3. Evaluate the solution of the population using the fitness function
4. Determine the best solution (x*)
5. while (t < T) do
6. for each solution do
7. Update all the parameters (i.e., a, A, C, l, and p)
8. if (p < 0.5) then
9. if |A| < 1 then
10. Update the position of the current solution by using

→
x (t + 1) =

→
x
∗
(t)−

→
A · D

11. else if |A| > 1 then
12. Select a random solution from a population

13. Update the position of x(t) by using
→
x (t + 1) =

→
x rand −

→
A ·
→
D

14. end if
15. else if (p > 0.5) then
16.Update the position of x(t) using Equation (10)
17. end if
18. end for
19. Evaluate the fitness value for each solution.
20. Update x*
21. t = t + 1
22. end while

5.1.7. Grey Wolf Optimization (GWO)

The GWO was presented by Mirjalili et al. in 2014 [87] and its multi-objective variant
was introduced in 2016 [88]. Predators such grey wolves live and hunt in groups. Grey
wolves live in social packs composed of five to twelve individuals. Depending on their
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level of authority over others, the group members are referred to as alpha, beta, omega,
or subordinates in this social system. Each pack has a single alpha wolf or a dominant
wolf and leader of the group. As a result, the alpha is in charge of the majority of tasks.
The second most dominating wolf is the beta. It is anticipated that the beta will become
the dominant wolf (alpha). The beta supports the alpha’s decision-making, communicates
his/her orders to the group, and sees them through. The lowest ranking wolf in the group
(ruled by all the other wolves) is named the omega. The remaining wolves are referred
to as subordinate or delta wolves. In addition to this social organization, grey wolves
also hunt in groups. The group tracks and pursues a victim when it is within range.
They surround the target whenever feasible, then each attacks in turn. The grey wolves’
characteristics are considered for modeling GWO. The mathematical representation of
GWO comprises the social structure and prey hunting techniques. The alpha, beta, and
delta wolves in GWO are chosen as the top three solutions. The other wolves in the pack
are considered the omega wolves and do not influence the choices made for the following
iteration. The GWO technique was created to address the optimization issues prevalent
in many disciplines, including computer science, engineering, mathematics, physics, and
finance [67,89]. The variants of GWO are also proposed and applied to solve various
engineering problems [90,91]. GWO can be modeled using the following equations.

→
x

t
=
→
x

t−1
p +

→
A·
→
D

→
D =

∣∣∣∣→C ·→x t−1
p −→x

t
∣∣∣∣

→
A = 2a·→r 1 − a
→
C = 2

→
r 2


(11)

where
→
x and

→
x p are the grey wolf and prey locations, respectively;

→
A and

→
C are the

coefficient vectors;
→
D′ is the distance between the grey wolf and the prey; r1 and r2 are the

random vectors; and a is the linearly decreased variable. It can be calculated using the
following equation.

a = 2− t
2

maxiterations
(12)

where is the iteration number. The following equations can be used to update the grey
wolves’ position.

→
x

t
=

→
x 1 +

→
x 2 +

→
x 3

3
(13)

where
→
x 1 =

∣∣∣∣→x α −
→
A1
→
Dα

∣∣∣∣
→
x 2 =

∣∣∣∣→x β −
→
A2
→
Dβ

∣∣∣∣
→
x 3 =

∣∣∣∣→x δ −
→
A3
→
Dδ

∣∣∣∣
→
Dα =

∣∣∣∣→C1·
→
x α −

→
x
∣∣∣∣

→
Dβ =

∣∣∣∣→C2·
→
x β −

→
x
∣∣∣∣

→
Dδ =

∣∣∣∣→C3·
→
x δ −

→
x
∣∣∣∣



(14)

Further details about the GWO can be found in [92]. Algorithm 7 shows the pseudo
code of GWO.
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Algorithm 7 Pseudo code of GWO [92]

1. Generate a random population (N)
2. Initialize the parameters
3. Evaluate the fitness of each wolf
4. while (t < T) do
5. for each wolf do
6. Update the position using Equations (13) and (14)
7. end for
8. Update the parameters
9. Evaluate the fitness value
10. Update the wolf’s position
11. t = t + 1
12. end while
13. return

→
x α

6. Results and Discussion

This study applied wrapper-based metaheuristics feature selection approaches to
enhance the fNIRS signals’ classification accuracy. The MA and MI datasets were used to
test the suggested feature selection algorithms [55]. The discriminations between the MA
and baseline, LHMI and RHMI, and LHMI, RHMI, MA, and baseline were accomplished
by utilizing a feature set composed of five statistical temporal features, as discussed above.
The wrapper-based metaheuristic algorithms discussed above (PSO, CSO, the FA, the BA,
FPO, the WOA, and GWO) were employed to extract valuable information. The extracted
feature subset was classified using a k-NN and a 0.2-holdout validation technique. The K
parameter of the k-NN was set as 5, N was the population size and T was the maximum
number of iterations. Each algorithm was run ten times. All the parameters for each
algorithm are enlisted in Table 1.

Table 1. Parameters for each algorithm.

PSO CSO FA BA FPO WOA GWO

T = 100
N = 10
c1 = 1
c2 = 2
α = 2

T = 100
N = 10
α = 1

λ = 1.5

T = 100
N = 10
α = 1
β0 = 1
γ = 1

T = 100
N = 10
fmax = 2
fmin = 0

α = β = 0.9
A = 2

T = 100
N = 10
λ = 1.5

T = 100
N = 10
b = 1
l = 1

T = 100
N = 10

The results from all three cases are presented in Tables 2–4. This study used the
classification accuracy and the feature vector size as the performance comparison metrics.
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Table 2. Classification performance of each subject for the mental arithmetic (MA) and baseline tasks in terms of the accuracy (Acc) and the feature vector size (F.V.S.)
(data represented as the mean ± the standard deviation).

Subject
PSO CSO FA BA FPO WOA GWO Full Features

F.V.S. Acc (%) F.V.S. Acc (%) F.V.S Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%)

1 57.9 ± 8.4 96.6 ± 4.3 64.6 ± 6.1 96.6 ± 5.8 77.6 ± 8.4 97.5 ± 4 72.5 ± 5.9 98.3 ± 3.5 78 ± 3.9 97.5 ± 4 36.1 ± 35.5 94.1 ± 6.8 24.1 ± 5.1 99.1 ± 2.6

180

91.67

2 58.8 ± 12.8 94.1 ± 5.6 59 ± 6.4 90.8 ± 8.2 76 ± 6.4 91.6 ± 10.3 70.6 ± 6.4 89.1 ± 7.9 78.3 ± 7.8 91.6 ± 5.5 6.6 ± 3.9 90 ± 8.6 13.6 ± 5.2 94.1 ± 8.8 91.67

3 56.9 ± 5.8 85.8 ± 11.1 67.9 ± 5.7 85.8 ± 10.4 81.2 ± 7.4 83.3 ± 9.6 74.3 ± 5 78.3 ± 8.9 81 ± 5.8 74.1 ± 13.2 12.5 ± 14 81.6 ± 8.6 21.3 ± 4.6 93.3 ± 6.5 83.33

4 57.6 ± 6.2 93.3 ± 6.5 58.7 ± 4.6 88.3 ± 8.9 75.1 ± 5.7 90 ± 6.5 69.4 ± 5.5 89.1 ± 8.8 75.3 ± 5.6 84.1 ± 7.2 4.8 ± 2.8 88.3 ± 8.9 14.4 ± 4.4 93.3 ± 6.5 91.67

5 64.4 ± 8.7 82.5 ± 13.2 70.9 ± 4.5 82.5 ± 14.4 80.6 ± 6.4 83.3 ± 11.7 80.6 ± 7.1 84.1 ± 13.8 79.3 ± 5.5 83.3 ± 10.3 10.1 ± 14.7 85.8 ± 6.8 27.3 ± 5.8 94.1 ± 5.6 58.33

6 58.8 ± 7.5 85.8 ± 7.9 70.4 ± 7.4 89.1 ± 7.9 80.1 ± 6.5 84.1 ± 9.1 77 ± 6.6 84.1 ± 8.2 79.8 ± 6.6 77.5 ± 13 12.6 ± 14.5 88.3 ± 9.7 22.8 ± 7.6 94.1 ± 8.8 91.67

7 59.9 ± 6.9 84.1 ± 9.1 69.7 ± 9 91.6 ± 7.8 86.2 ± 6.4 87.5 ± 7 76.6 ± 4.7 82.5 ± 9.1 79.6 ± 6.5 84.1 ± 9.1 15.3 ± 29.9 90.8 ± 7.2 27.7 ± 8.1 95.8 ± 7 75

8 63.6 ± 5.3 89.1 ± 6.8 68.6 ± 7 89.1 ± 6.8 80.8 ± 7.8 81.6 ± 10.2 76.1 ± 5.8 84.1 ± 11.4 81.9 ± 5.7 83.3 ± 12.4 17.9 ± 25.8 91.6 ± 7.8 21.6 ± 3.6 94.1 ± 6.8 75

9 63.1 ± 8.2 96.6 ± 5.8 66.4 ± 4.6 95 ± 7 81 ± 4.4 92.5 ± 8.2 79.9 ± 6.2 97.5 ± 4 81.3 ± 3.5 90 ± 6.5 18 ± 20.4 96.6 ± 5.8 20.2 ± 6.2 99.1 ± 2.6 91.67

10 54.2 ± 6.9 100 ± 0 54.4 ± 5.1 100 ± 0 72.3 ± 5 100 ± 0 65.5 ± 3.7 100 ± 0 76.4 ± 5.6 100 ± 0 7.2 ± 7 100 ± 0 6.9 ± 2.8 100 ± 0 100

11 67.5 ± 6.7 90.8 ± 7.2 73.7 ± 6.9 81.6 ± 6.5 81.5 ± 5.2 77.5 ± 5.6 82.3 ± 5.5 88.3 ± 8.9 83.4 ± 8 85 ± 6.5 17.9 ± 27.6 81.6 ± 7.6 28 ± 6 91.6 ± 6.8 75

12 60.6 ± 8.5 85 ± 6.5 62.6 ± 6 80 ± 12.5 84.3 ± 8 80 ± 10.5 77.6 ± 6.5 80.8 ± 7.9 80.1 ± 6.4 75 ± 10.3 5.7 ± 4.1 89.1 ± 5.6 18.8 ± 7.8 93.3 ± 5.2 75

13 66.7 ± 7.5 87.5 ± 14.8 74.2 ± 3.9 85 ± 9.4 82 ± 4.5 80.8 ± 7.9 80.5 ± 5.3 81.6 ± 11.6 79.5 ± 5.9 82.5 ± 9.1 21.9 ± 28.5 86.6 ± 5.8 27.1 ± 5.1 93.3 ± 8.6 66.67

14 66.4 ± 8.9 84.1 ± 10.7 67.4 ± 4.5 87.5 ± 7 83.1 ± 6.4 85.8 ± 5.6 77.9 ± 6.8 78.3 ± 9.7 82 ± 6.6 79.1 ± 9 17.3 ± 21.7 84.1 ± 10.7 23.9 ± 5 94.1 ± 4 83.33

15 71.8 ± 7.2 87.5 ± 9.8 71.7 ± 3.5 77.5 ± 11.8 85.6 ± 7.9 81.6 ± 10.2 82.5 ± 8.8 81.6 ± 7.6 81.6 ± 5.5 78.3 ± 7 17.1 ± 37.2 79.1 ± 5.8 28.9 ± 7.4 94.1 ± 9.6 66.67

16 67.8 ± 7.8 80.8 ± 9.6 72.4 ± 3.6 80 ± 11.9 83.8 ± 5 81.6 ± 14 76 ± 5.7 81.6 ± 9.4 78.4 ± 4.7 77.5 ± 15.2 6.5 ± 10.1 79.1 ± 10.5 26.1 ± 4.6 85.8 ± 8.8 75

17 61.6 ± 5.1 94.1 ± 5.6 67.1 ± 4.4 95.8 ± 5.8 78.3 ± 5 91.6 ± 6.8 78.3 ± 4.6 92.5 ± 6.1 80.7 ± 5.1 90.8 ± 8.2 37.2 ± 40.5 93.3 ± 5.2 17.5 ± 4.7 96.6 ± 4.3 83.33

18 56.8 ± 4.1 95.8 ± 4.3 62.6 ± 8.1 96.6 ± 4.3 81.3 ± 4.4 96.6 ± 5.8 76.3 ± 5.3 93.3 ± 7.6 77.3 ± 7.7 97.5 ± 4 8 ± 9.2 95.8 ± 4.3 12.5 ± 5.7 96.6 ± 4.3 83.33

19 57.8 ± 5.8 86.6 ± 8 70.1 ± 10.2 86.6 ± 11.9 80.2 ± 7.3 90 ± 11.6 77.8 ± 6 86.6 ± 8.9 80.4 ± 5 84.1 ± 9.9 19.8 ± 27.3 89.1 ± 9.6 17.8 ± 6.4 94.1 ± 5.6 83.33

20 61.8 ± 6.9 83.3 ± 10.3 68.1 ± 7.8 81.6 ± 11.6 78.6 ± 7.8 85 ± 10.9 79 ± 6.6 83.3 ± 9.6 84.8 ± 7.8 82.5 ± 8.2 11.3 ± 12.3 85 ± 7.6 23.8 ± 4.7 93.3 ± 6.5 83.33

21 60.5 ± 8.6 90.8 ± 8.2 69.7 ± 6.6 91.6 ± 8.7 86.5 ± 6.3 86.6 ± 5.8 79.6 ± 7.6 90 ± 9.4 79.4 ± 3.2 90.8 ± 10.7 14.1 ± 12.5 93.3 ± 8.6 24.6 ± 5.7 99.1 ± 2.6 100

22 61.1 ± 5.7 90 ± 11.6 73.1 ± 7.6 93.3 ± 6.5 81.9 ± 6.2 85 ± 10.9 79.6 ± 6.6 85.8 ± 13 78.6 ± 7.5 84.1 ± 9.9 14.8 ± 15 89.1 ± 5.6 23.9 ± 6.6 95.8 ± 4.3 83.33

23 65.8 ± 7.5 87.5 ± 11.2 65.4 ± 6.9 88.3 ± 8.9 78.9 ± 5.6 76.6 ± 15.6 77.6 ± 5.1 77.5 ± 15.2 76.9 ± 4.9 77.5 ± 13 16.9 ± 16.4 89.1 ± 7.9 22.1 ± 7.7 94.1 ± 6.8 83.33

24 62.3 ± 5.4 83.3 ± 15.7 70.2 ± 3 85 ± 10.2 81.7 ± 4.9 86.6 ± 8 77.7 ± 4.3 76.6 ± 12.9 82.6 ± 9.1 80 ± 8.9 7.6 ± 12.6 83.3 ± 9.6 26.8 ± 7.2 89.1 ± 4 66.67

25 59.5 ± 10.1 92.5 ± 7.2 68.1 ± 9.8 92.5 ± 9.9 77.2 ± 6.7 90 ± 8.6 79 ± 8.8 93.3 ± 6.5 79.4 ± 5.9 90.8 ± 8.2 23.2 ± 31.1 93.3 ± 5.2 19.4 ± 7.6 99.1 ± 2.6 83.33

26 61.6 ± 6.5 92.5 ± 7.2 65.5 ± 4.4 92.5 ± 7.2 83.1 ± 8.6 88.3 ± 8 79.9 ± 6.1 91.6 ± 6.8 81.6 ± 4.4 88.3 ± 8.9 24.1 ± 25.4 91.6 ± 7.8 22 ± 9.7 94.1 ± 6.8 91.67

27 62.9 ± 7.4 90.8 ± 6.1 73 ± 3 96.6 ± 4.3 78.7 ± 7.2 87.5 ± 8 77.8 ± 8.2 92.5 ± 8.2 82.7 ± 3.4 85.8 ± 7.9 22.3 ± 27.2 91.6 ± 5.5 22.7 ± 6.4 95.8 ± 5.8 83.33

28 60 ± 5.8 86.6 ± 9.7 67.6 ± 7.8 90 ± 11.6 77.3 ± 6.7 89.1 ± 5.6 76.7 ± 6 88.3 ± 7 81.5 ± 7.4 86.6 ± 12.5 9.9 ± 9.8 85 ± 10.2 19.1 ± 4 95 ± 5.8 66.67

29 56.7 ± 7 85 ± 8.6 63.1 ± 9.1 93.3 ± 7.6 78.1 ± 5.7 93.3 ± 6.5 77.1 ± 10.1 90 ± 8.6 79.7 ± 6.9 85.8 ± 13 14.2 ± 14.7 90.8 ± 2.6 22.4 ± 11.4 98.3 ± 3.5 75
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Table 3. Classification performance of each subject for the left-hand motor imagery (LHMI) and right-hand motor imagery (RHMI) tasks in terms of the accuracy
(Acc) and the feature vector size (F.V.S.) (data represented as the mean ± the standard deviation).

Subject
PSO CSO FA BA FPO WOA GWO Full Features

F.V.S. Acc (%) F.V.S. Acc (%) F.V.S Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%)

1 69.4 ± 5.5 82.5 ± 9.1 74.8 ± 6.9 76.6 ± 10.2 85.1 ± 6.9 70 ± 8.9 81.4 ± 5.1 70 ± 7 83.2 ± 6.3 70 ± 8 17.5 ± 32.5 77.5 ± 5.6 35.7 ± 13.7 92.5 ± 8.2

180

41.67

2 63.6 ± 4.7 87.5 ± 9 68.7 ± 6.7 94.1 ± 8.8 79.3 ± 6.7 85 ± 7.6 76 ± 5.3 91.6 ± 6.8 79.2 ± 6.5 87.5 ± 5.8 21.1 ± 22.1 89.1 ± 6.8 23.3 ± 7.8 94.1 ± 6.8 91.67

3 66.9 ± 9.2 83.3 ± 11.7 69.1 ± 5.9 80 ± 8 82.9 ± 7.6 80 ± 12.5 85.4 ± 7.9 77.5 ± 9.6 85.2 ± 7.3 78.3 ± 8.9 23.2 ± 43.3 86.6 ± 5.8 24.7 ± 6.5 94.1 ± 5.6 66.67

4 62.6 ± 6.4 83.3 ± 11.1 66.2 ± 6.7 84.1 ± 11.4 81.8 ± 5.9 82.5 ± 10.7 80.2 ± 4.3 87.5 ± 8 80.7 ± 5.6 79.1 ± 13.7 9.1 ± 12 83.3 ± 13 22.4 ± 6.6 92.5 ± 8.2 75

5 66.2 ± 4.1 88.3 ± 8 71.2 ± 7.1 78.3 ± 9.7 77.5 ± 4 80 ± 13.7 81.2 ± 9.6 74.1 ± 13.2 82 ± 5.6 80 ± 8 17.2 ± 16.7 85 ± 5.2 27.8 ± 6.5 90.8 ± 9.1 66.67

6 56.3 ± 7.8 88.3 ± 11.9 61.7 ± 2.9 85.8 ± 7.9 78 ± 7.4 86.6 ± 10.5 75.2 ± 6.3 84.1 ± 8.2 77.4 ± 6.8 80 ± 8 8.1 ± 10.4 90 ± 7.6 16.8 ± 6.4 86.6 ± 7 75

7 59.2 ± 7 90.8 ± 8.2 67.7 ± 5.3 90 ± 9.4 79.9 ± 4.8 86.6 ± 8 78 ± 6.2 86.6 ± 7 82.2 ± 8.9 85.8 ± 7.9 19.8 ± 27.8 82.5 ± 6.1 23.3 ± 6.1 95 ± 5.8 75

8 63.7 ± 7.8 79.1 ± 11.9 69.4 ± 5.7 78.3 ± 7 82.4 ± 9.6 74.1 ± 15.9 75.9 ± 6.1 77.5 ± 13.6 79.5 ± 7.5 81.6 ± 10.9 8.2 ± 7.8 81.6 ± 9.4 24.1 ± 3.9 87.5 ± 9.8 83.33

9 68.4 ± 5.3 83.3 ± 12.4 70.4 ± 7.5 77.5 ± 13.6 82.6 ± 7.2 79.1 ± 8 81.3 ± 4.9 75 ± 11.1 86.6 ± 9.1 73.3 ± 12.9 15.4 ± 12.4 84.1 ± 4.7 23.3 ± 6.7 96.6 ± 5.8 66.67

10 66.8 ± 5.7 86.6 ± 9.7 74 ± 4.6 89.1 ± 6.8 80.2 ± 6.5 82.5 ± 7.2 83.3 ± 6.2 80.8 ± 7.9 81.8 ± 4.2 83.3 ± 9.6 15.3 ± 25.6 84.1 ± 10.7 31.1 ± 10.3 92.5 ± 7.2 83.33

11 61.3 ± 9.6 79.1 ± 9.8 73.6 ± 6 85 ± 9.4 82.3 ± 6.4 79.1 ± 7 80 ± 7.6 80 ± 5.8 83.5 ± 5.6 81.6 ± 10.2 8 ± 9 83.3 ± 8.7 19.5 ± 5.1 91.6 ± 9.6 75

12 63.4 ± 7.1 83.3 ± 7.8 64.7 ± 6.6 76.6 ± 10.9 82.5 ± 7.1 80.8 ± 10.4 75.2 ± 5.3 75.8 ± 14.9 78.4 ± 6.4 80.8 ± 10.4 16.5 ± 20.5 80.8 ± 8.8 23.5 ± 8.7 90 ± 8.6 58.33

13 62.5 ± 5.1 89.1 ± 6.8 73.4 ± 7.5 88.3 ± 8 80.6 ± 6.8 84.1 ± 9.1 79.1 ± 4.5 80 ± 9.7 81 ± 4 80 ± 7 14.9 ± 19.9 85 ± 10.2 25.9 ± 8.6 96.6 ± 4.3 66.67

14 65.8 ± 6.4 83.3 ± 5.5 67 ± 6.2 87.5 ± 7 81.3 ± 5.1 89.1 ± 9.6 80.3 ± 4.1 83.3 ± 9.6 80.5 ± 6.8 85.8 ± 8.8 12.4 ± 19.9 83.3 ± 7.8 27.4 ± 5.8 97.5 ± 4 66.67

15 60.3 ± 7.6 74.1 ± 10.7 70 ± 6.5 80 ± 11.2 86.2 ± 7.2 77.5 ± 9.6 78.3 ± 9.5 88.3 ± 9.7 81.1 ± 3.4 80 ± 11.2 10.8 ± 7.4 85.8 ± 10.4 22.1 ± 5.4 93.3 ± 6.5 66.67

16 58.7 ± 5.4 81.6 ± 15.1 66.5 ± 6.1 83.3 ± 11.1 80 ± 5.6 69.1 ± 6.8 76.6 ± 6.2 80 ± 15.8 78.7 ± 6.1 76.6 ± 12.2 11.1 ± 23.3 79.1 ± 10.5 29.3 ± 16.6 94.1 ± 4 91.67

17 64.8 ± 7.2 82.5 ± 11.4 74.2 ± 5.9 85 ± 13.4 80.5 ± 6.4 80.8 ± 9.6 80 ± 9 75 ± 12.4 82.5 ± 5.7 73.3 ± 7.6 19 ± 25.4 80 ± 8.9 27.8 ± 9.4 91.6 ± 9.6 83.33

18 62.8 ± 5.9 88.3 ± 8 68.3 ± 4.8 87.5 ± 9.8 84.7 ± 8.3 82.5 ± 6.1 79.9 ± 10.4 83.3 ± 8.7 78.3 ± 4.6 75.8 ± 11.4 8.5 ± 10.1 81.6 ± 7.6 26.7 ± 5.3 87.5 ± 7 75

19 70.7 ± 4.5 79.1 ± 13.7 74.4 ± 6.8 72.5 ± 12.4 85.1 ± 7.1 71.6 ± 13.7 75.2 ± 5.2 58.3 ± 15.2 84.9 ± 6.6 64.1 ± 12.4 4.2 ± 3.8 80 ± 5.8 32.8 ± 8.2 86.6 ± 8 41.67

20 67.2 ± 7 87.5 ± 7 71.6 ± 7.8 85 ± 9.4 83.4 ± 9.5 80 ± 8.9 75.9 ± 5.4 83.3 ± 11.1 79.2 ± 4 78.3 ± 10.5 25.8 ± 27.6 88.3 ± 8 25.8 ± 5.3 97.5 ± 4 83.33

21 62.8 ± 10.1 79.1 ± 12.5 74.2 ± 8.1 85.8 ± 10.4 80.7 ± 8.4 80.8 ± 7.9 78.4 ± 5.1 81.6 ± 16.5 79.9 ± 7.3 80 ± 9.7 17.8 ± 21.1 86.6 ± 9.7 29.5 ± 8.2 94.1 ± 7.9 66.67

22 59.4 ± 7.8 80.8 ± 9.6 67.7 ± 5.5 78.3 ± 7 80.7 ± 4.6 75 ± 12.4 74.9 ± 3.9 83.3 ± 5.5 84 ± 7.4 75 ± 8.7 8.1 ± 13.1 82.5 ± 8.2 23.5 ± 7.8 90 ± 5.2 66.67

23 68.3 ± 8.4 88.3 ± 12.5 68.8 ± 7.9 88.3 ± 8 83.6 ± 7.6 85 ± 6.5 75.9 ± 5.5 86.6 ± 5.8 81.6 ± 6.3 85 ± 10.2 20.5 ± 29.8 87.5 ± 8 26.9 ± 10 94.1 ± 5.6 75

24 63.1 ± 8.4 77.5 ± 17.5 69.8 ± 4.8 74.1 ± 13.8 82.1 ± 5.5 74.1 ± 9.1 82.1 ± 7.8 77.5 ± 11.1 77.4 ± 5.4 72.5 ± 11.1 8.7 ± 12.6 79.1 ± 7 23.3 ± 4.2 90 ± 6.5 75

25 63.6 ± 8.9 78.3 ± 5.8 72.8 ± 5.7 84.1 ± 6.1 82.2 ± 6.3 80 ± 7 79.8 ± 10 81.6 ± 5.2 80.6 ± 5.1 69.1 ± 12.4 17.1 ± 12.8 85 ± 6.5 31.3 ± 7.5 91.6 ± 7.8 66.67

26 62.1 ± 5 84.1 ± 8.2 72.3 ± 5.9 82.5 ± 9.1 78.2 ± 5.2 81.6 ± 14 77.3 ± 3.8 87.5 ± 14.8 81.3 ± 5.2 80 ± 8 28.6 ± 30.5 81.6 ± 5.2 30.2 ± 13.6 91.6 ± 11.1 66.67

27 66.9 ± 5.8 84.1 ± 10.7 69.9 ± 5.3 90 ± 6.5 81.6 ± 8.2 83.3 ± 9.6 78.7 ± 4.8 85 ± 10.9 81.9 ± 7.7 84.1 ± 7.2 18.1 ± 28.2 90 ± 8.6 24.4 ± 7.6 96.6 ± 8 75

28 68.7 ± 5.1 82.5 ± 9.1 73 ± 7.5 86.6 ± 7 84.8 ± 6.1 83.3 ± 7.8 78.1 ± 5.4 85 ± 10.2 85.7 ± 8.4 82.5 ± 9.9 12.6 ± 6.5 88.3 ± 9.7 25.7 ± 7.7 93.3 ± 5.2 75

29 64.4 ± 6.1 85 ± 12.2 72.2 ± 9.1 85 ± 9.4 80.2 ± 6.7 82.5 ± 9.9 79.1 ± 4.1 75 ± 10.3 82.2 ± 7.6 75 ± 12.4 24.6 ± 37.1 84.1 ± 9.1 28.1 ± 6 95 ± 5.8 66.67
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Table 4. Classification performance of each subject for the LHMI, RHMI, MA, and baseline tasks in terms of the accuracy (Acc) and the feature vector size (F.V.S.)
(data represented as the mean ± the standard deviation).

Subject
PSO CSO FA BA FPO WOA GWO Full Features

F.V.S. Acc (%) F.V.S. Acc (%) F.V.S Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%) F.V.S. Acc (%)

1 81.1 ± 6.1 77.5 ± 7.6 81.3 ± 5.5 74.1 ± 8.7 86.1 ± 5.7 75 ± 5.5 84 ± 5.2 73.3 ± 6.8 86.9 ± 4.3 68.3 ± 4.8 51.6 ± 39.5 69.5 ± 6.8 44.8 ± 7.7 82.9 ± 8.2

180

66.67

2 76.6 ± 8.1 79.5 ± 4.5 77.8 ± 4.1 79.1 ± 7.3 83.6 ± 5.4 72.5 ± 5.9 85.8 ± 7.2 76.6 ± 4.4 86.7 ± 5.6 75 ± 9.8 53.9 ± 37.4 72.9 ± 11.3 35.3 ± 5.5 87.9 ± 5.3 70.83

3 71.8 ± 7.1 75.8 ± 7.2 75.9 ± 6 72.9 ± 8.1 83 ± 4.4 73.7 ± 5.5 83.8 ± 8.4 70 ± 11.7 83.7 ± 4.8 70.4 ± 5.3 71.3 ± 51.8 72.9 ± 5.2 36.3 ± 7 83.7 ± 8.8 58.33

4 72.6 ± 8.2 78.7 ± 4.1 73.9 ± 3.9 77 ± 6.2 83.9 ± 3 72.9 ± 7.6 83.3 ± 7.4 74.5 ± 5.7 84.9 ± 6.1 73.7 ± 3.4 60.8 ± 31.4 71.2 ± 8.2 35.4 ± 9.8 86.2 ± 5.9 66.67

5 78.6 ± 12.6 73.3 ± 5.6 81.4 ± 6 75 ± 6.8 85.9 ± 5.2 67.9 ± 7.3 82.6 ± 6.7 72 ± 5.5 83.5 ± 7.6 67 ± 6.9 42 ± 36.1 73.3 ± 6.5 39.4 ± 9.5 86.6 ± 2.6 58.33

6 69.5 ± 4.8 69.5 ± 7.3 76.9 ± 7.1 68.7 ± 7.4 81.4 ± 6 60.4 ± 10.2 82.1 ± 5.6 67 ± 4.9 82.4 ± 8.7 65 ± 7.6 34.1 ± 25.8 63.7 ± 6.5 35.5 ± 5.8 83.7 ± 6.3 50

7 76.2 ± 8.2 79.1 ± 6.5 76 ± 7.6 85 ± 7.9 82.2 ± 5.4 77.9 ± 5.5 84.5 ± 4.9 72.5 ± 6.8 84.1 ± 6.1 77.9 ± 6.2 43.6 ± 31.8 74.1 ± 5.1 37.9 ± 4 90 ± 5.9 58.33

8 77.9 ± 8.1 65.8 ± 7.5 75.1 ± 6.8 68.3 ± 10.6 85.3 ± 7.4 67.9 ± 5.5 83.1 ± 9 61.6 ± 7 85.2 ± 6.9 61.2 ± 7 20.3 ± 17.5 62 ± 7.9 35.2 ± 4.5 84.5 ± 5.2 62.50

9 79.1 ± 6.6 80 ± 7.2 76.1 ± 3.5 79.5 ± 7.4 84.5 ± 5.7 77.9 ± 9.6 85.1 ± 6 76.6 ± 5.9 85.9 ± 6.2 76.6 ± 6.5 51.8 ± 37.9 75.8 ± 8.2 38.4 ± 5.5 91.6 ± 5.8 75

10 70.9 ± 8 92.9 ± 3.4 75.2 ± 6.7 90 ± 4 83.9 ± 5 88.7 ± 6.8 84 ± 7.9 89.5 ± 5.2 83.7 ± 5.5 88.3 ± 5.1 53.9 ± 27.1 86.6 ± 5.4 33.3 ± 5.8 97.5 ± 2.1 83.33

11 75.6 ± 7.3 71.2 ± 9.9 74.3 ± 5.9 65.4 ± 6.8 84.8 ± 6.4 64.1 ± 9.2 87.6 ± 5 67 ± 4.9 83.9 ± 4.6 67.9 ± 3.4 58.8 ± 44.9 62 ± 10.6 43.7 ± 13.5 76.6 ± 7.9 58.33

12 67.9 ± 8.4 70.4 ± 8.6 71.9 ± 6.5 72.5 ± 11.9 83 ± 4.3 70 ± 8.9 79.3 ± 7.7 70.4 ± 6.6 81.2 ± 6 62.9 ± 7.4 17 ± 15.5 63.3 ± 6.4 30.4 ± 6.5 77 ± 5.6 58.33

13 76.7 ± 6.9 77 ± 8.6 77.9 ± 6.4 71.6 ± 6.4 87.7 ± 5.3 67.9 ± 6.2 81.7 ± 5.7 69.5 ± 7.3 87.3 ± 6 65 ± 5.2 39.8 ± 26.8 69.1 ± 8.3 41.9 ± 6.2 87 ± 7.7 58.33

14 77.2 ± 6.3 77 ± 6.2 75.4 ± 6.5 77 ± 5.6 85 ± 6.2 73.7 ± 7.3 83.9 ± 4.6 75.4 ± 6 84.5 ± 6.3 67.9 ± 8.5 35.2 ± 30.2 70.4 ± 8.2 41.4 ± 11.5 85 ± 7.4 75

15 75.3 ± 4.3 69.1 ± 7.6 78.5 ± 9 68.3 ± 6.2 85.5 ± 6.3 61.6 ± 6.1 86.1 ± 5.1 64.1 ± 5.9 84.9 ± 5 58.7 ± 5.3 54.3 ± 44.4 62.5 ± 6.8 39.1 ± 5.9 78.7 ± 6.6 41.67

16 77 ± 8.3 74.5 ± 6 80.2 ± 6.2 70 ± 6.4 84.3 ± 6.1 64.5 ± 7.4 80.8 ± 5.3 65.8 ± 9.5 85.1 ± 5.5 62.9 ± 10.2 39.8 ± 39.4 65.8 ± 10.9 41.1 ± 6.9 81.6 ± 5.9 66.67

17 77.5 ± 6.6 82 ± 7.6 76.1 ± 6.3 75.8 ± 9.7 83.9 ± 7.1 70 ± 3.8 86.6 ± 7.3 72.9 ± 5.9 86 ± 7 69.1 ± 6.8 60.6 ± 41.1 70.4 ± 4.9 37.4 ± 7.9 89.1 ± 4 58.33

18 76.9 ± 8.4 81.6 ± 10.4 74.8 ± 6.9 80 ± 7 82.1 ± 5 72.5 ± 7.6 84.6 ± 5.6 77.5 ± 7.1 87.2 ± 5.7 72.9 ± 9.2 39.6 ± 26.8 75.8 ± 4.7 33.8 ± 5.8 89.1 ± 6.5 66.67

19 78 ± 5.9 70.8 ± 8.5 77.6 ± 6.1 59.5 ± 7 83.9 ± 5.2 59.1 ± 5.4 82.2 ± 7.3 55.8 ± 7.9 81.8 ± 4.3 55 ± 6.4 19.5 ± 28.5 60.4 ± 9 36.9 ± 6.7 78.7 ± 7.4 50

20 77.1 ± 8 77.5 ± 9 73.5 ± 4.7 72.5 ± 5.6 89.6 ± 5.5 68.3 ± 6.2 82.8 ± 5.8 67.5 ± 7.8 87 ± 5.2 70 ± 7.5 54.7 ± 33.6 72 ± 7.8 37.2 ± 7 85 ± 6.5 62.50

21 78.2 ± 5 80.4 ± 10.2 80.7 ± 6.6 77.9 ± 6.8 86.7 ± 7.8 79.1 ± 5.5 85.4 ± 3.2 74.1 ± 8.7 85.2 ± 6.5 75 ± 5.8 53.5 ± 42.2 76.2 ± 7 40.6 ± 7.3 88.3 ± 5.8 62.50

22 78.1 ± 7.5 78.3 ± 8 79.8 ± 5.7 73.3 ± 6.5 86.2 ± 6.3 72 ± 3.9 85.4 ± 6.8 70.8 ± 4.8 85 ± 3.3 66.6 ± 7 46 ± 25.2 72 ± 7.6 44.1 ± 9.9 83.3 ± 5.8 70.83

23 70.9 ± 5.6 82 ± 9.4 78.2 ± 7.8 82 ± 6.5 83.8 ± 5.9 75.8 ± 8.2 86.2 ± 8.1 78.3 ± 10.1 84.1 ± 7.4 77.5 ± 6.5 52.5 ± 44.6 74.1 ± 5.4 38 ± 13 85 ± 10 75

24 78.4 ± 7.4 75.8 ± 6.1 74.6 ± 4.8 66.2 ± 6.3 84.6 ± 7 70 ± 6.4 85.5 ± 6.5 65 ± 6.5 79.8 ± 6.5 62.5 ± 7 38 ± 35.6 72 ± 7.6 32.4 ± 4.8 80.8 ± 5.6 54.17

25 76 ± 3.6 80.8 ± 5.6 80.8 ± 6.5 70 ± 8.2 87.4 ± 7.1 69.1 ± 10.6 83.1 ± 7.5 65 ± 8.3 84 ± 6.1 63.3 ± 9.9 65.3 ± 26.5 69.5 ± 9.6 41 ± 7.7 86.2 ± 4.8 58.33

26 74.8 ± 4.2 76.6 ± 6.8 78.4 ± 5.5 72.5 ± 8.3 86.1 ± 5.8 68.7 ± 7.9 83.1 ± 5.5 70.8 ± 8.7 82.7 ± 3.6 65.8 ± 5.8 50.2 ± 33.3 70 ± 7.2 37.6 ± 5.7 83.7 ± 5.7 54.17

27 77 ± 8.7 85 ± 7.6 81.1 ± 4.3 75 ± 6.2 83.6 ± 4.4 73.3 ± 8.1 86.1 ± 7.2 70.8 ± 7 80.7 ± 7.9 73.3 ± 8.3 51.5 ± 30.3 72 ± 7 39.7 ± 8.9 82.9 ± 8.4 70.83

28 75.5 ± 7.9 69.5 ± 9 78.7 ± 8 67.5 ± 5.4 82.1 ± 5.7 65 ± 4 85.1 ± 6.6 59.5 ± 9.2 84.2 ± 9 63.7 ± 9.4 37.8 ± 21.6 64.5 ± 7.6 37.8 ± 6.6 78.3 ± 8.2 62.50

29 68.9 ± 3.7 74.5 ± 6 77.2 ± 7.4 74.5 ± 9.3 81.4 ± 6 73.3 ± 6.8 81.5 ± 5.2 75.8 ± 5.8 87.1 ± 5.8 70 ± 7.5 57.4 ± 46 75.4 ± 5.3 33.9 ± 7.5 84.5 ± 9.6 66.67
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Tables 2–4 present the results for all three cases with each optimization algorithm
for the specific subjects, using the accuracy and the feature vector size as the comparison
metrics. In the case of the MA tasks, the full feature vector (180 features for each task)
resulted in a 91.67% classification accuracy for subject one. By contrast, all of the wrapper-
based optimization algorithms had a higher classification accuracy with a significantly
reduced feature vector size, as shown in Table 2. After carefully analyzing the results, it can
be seen that the GWO algorithm had a 99.1 ± 2.6 classification rate with a feature vector
size of only 24.1 ± 5.1 for subject one. The algorithm enhanced the classification rate more
than 8% from almost 150 fewer features. The WOA algorithm used the lowest number of
features for the classification and produced a good classification rate when using all the
channel features. For instance, in the cases of subjects three and four, the WOA only utilized
12.5 ± 14 and 4.8 ± 2.8 features to classify the MA task with the baseline and produced
classification rates of 81.6 ± 8.6% and 88.3 ± 8.9%, respectively. These were almost similar
results to those from the cases using all the channel features.

In the case of the MI tasks, the full channel features yielded an accuracy of only 41.67%
for subject one. By contrast, the WOA produced the highest classification rate of 92.5 ± 8.2
with 35.7 ± 13.7 features. The FA showed an 85.8 ± 8.8 classification performance for
subject 14 with 80.5 ± 6.8 features. The BA showed an 84.1 ± 8.2 classification rate for
subject six with 75.2 ± 6.3 features, i.e., 10% more than using all the features. The results
for the other subjects for the MI classification tasks are shown in Table 3.

Table 4 shows the results from the merged MA and MI datasets. This was performed
to observe the proposed strategy’s effectiveness in a multi-class environment. As depicted
in Table 4, the accuracy when using all the features was reduced for all of the subjects com-
pared to the MA task alone. The results presented in Table 4 demonstrate the effectiveness
of the proposed approach in a multi-class environment. For a better understanding of the
results, the average classification accuracies, processing times, and feature vector sizes of
all the subjects for the various tasks are presented in Figure 4 and Table 5.
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Figure 4. Comparison of all the presented metaheuristic algorithms and all the channel features for
the various tasks (data represented as the mean ± the standard deviation). * p < 0.01.

After deeply analyzing the results, it can be seen that GWO produced the highest
classification rates of 94.83 ± 5.5%, 92.57 ± 6.9%, and 85.66 ± 7.3% for the MA, MI, and
four-class (left- and right-hand MI, MA, and baseline) tasks, respectively. All of the channel
features had classification rates of only 81.32%, 71.26%, and 62.79% for similar tasks. All
of the optimization algorithms significantly improved the classification rate and reduced
the feature vector size. However, GWO produced the best and most stable results since
it was scalable, versatile, simple to use, and didn’t need any derivation information from
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the search space. The search method for the algorithm benefitted from a balance between
exploration and exploitation, producing an excellent convergence [93].

Table 5. Average feature vector size and processing time of the optimization algorithms.

Metaheuristic
Algorithm

Feature Vector
Size

Processing
Time (s)

PSO 67 2.37
CSO 72 4.48
FA 82 10.08
BA 80 2.32

FPO 82 2.27
WOA 26 2.00
GWO 29 2.17

A two-sample t-test was also utilized to determine the statistical significance of the
results. The results of GWO remained true compared to those from the full feature set
and all the other optimization methods’ results (p < 0.01). Table 5 presents the average
processing time of each algorithm. The WOA had the lowest processing time and the
smallest feature vector size with a reasonable accuracy. GWO used 29 features on average
with only 2.17 s of processing time to yield the highest classification accuracy, as shown in
Figure 4 and Table 5. As shown in Table 6, the results from this study were also compared
to those from the other studies using the same dataset.

Table 6. Comparison of the proposed framework with the studies using the same dataset.

Ref. MA
(%)

MI
(%)

Four-Class (LHMI,
RHMI, MA, and

Baseline)
(%)

[36] 88.1 87.2 (LHMI),
88.4 (RHMI) -

[45] 86.83 77.41 -
[55] 83.6 63.5 -
[94] 84.94 70.14 -
[95] 82.76 65.86 -

Proposed
approach 94.83 ± 5.5% 92.57 ± 6.9% 85.66 ± 7.3%

Several researchers have presented task-based relevant feature selection approaches
to improve the performance of fNIRS-based BCIs [36,45,94,95]. Aydin utilized both filter-
based and wrapper-based methods to reduce the redundant features and extract useful
information [45]. She showed that the wrapper-based approach had a better performance.
In the filtering techniques, the features were selected based on the feature relevance to the
dependent variable. She did not find any relevance between the feature and the model
performance, while the wrapper methods trained a model using a subset of features to
verify their usefulness. In some cases, in the filter-based approaches, a threshold value
was selected to remove the redundant information. Wrapper-based techniques can take
slightly longer to process, but they have shown that they produce an excellent classification
accuracy. In this work, a wrapper-based metaheuristic feature selection framework was
proposed to enhance the classification performance of fNIRS-based BCIs. The proposed
technique and the literature are compared in Table 6. It is evident from the results that the
proposed approach had a better classification performance as compared to the others.

In the study, only continuous metaheuristic feature selection approaches were applied.
However, different binary metaheuristic feature selection approaches can be explored
in the future to improve the classification accuracy and the feature vector size [96–98].
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This study’s practical application is in the BCI training phase. The model can be trained
offline using the selected features that were determined using the presented wrapper-based
approach. In the case of online testing, only the selected features were fed to the trained
model for a better classification performance.

7. Conclusions

In this study, the wrapper-based metaheuristic optimization algorithms were utilized
for activity-related feature selection in the fNIRS-based BCI applications. The performance
of seven metaheuristic optimization algorithms (i.e., PSO, CSO, the FA, the BA, FPO, the
WOA, and GWO) was analyzed using a k-NN-based cost function. The results demon-
strated that all of the metaheuristic optimization algorithms significantly improved the
classification accuracy and reduced the feature vector size. After extensive training and
testing, GWO obtained the highest classification rates of 94.83 ± 5.5%, 92.57 ± 6.9%, and
85.66 ± 7.3% for the MA, MI (left- and right-hand), and four-class (left- and right-hand
MI, MA, and baseline), respectively. Furthermore, the statistical analysis (p < 0.01) showed
that GWO yielded better and more stable results. Therefore, the wrapper-based meta-
heuristic optimization algorithms were considered helpful for selecting the appropriate
activity-related features for robust fNIRS-based BCI applications. In the future, other latest
optimization algorithms and binary versions can be applied to measure their performance
on fNIRS-based BCI applications.
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