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Abstract: This paper presents a new recursive trigonometric (RT) technique for Field-Programmable
Gate Array (FPGA) design implementation. The traditional implementation of trigonometric func-
tions on FPGAs requires a significant amount of data storage space to store numerous reference values
in the lookup tables. Although the coordinate rotation digital computer (CORDIC) can reduce the
required FPGA storage space, their implementation process can be very complex and time-consuming.
The proposed RT technique aims to provide a new approach for generating trigonometric functions
to improve communication accuracy and reduce response time in the FPGA. This new RT technique
is based on the trigonometric transformation; the output is calculated directly from the input values,
so its accuracy depends only on the accuracy of the inputs. The RT technique can prevent com-
plex iterative calculations and reduce the computational errors caused by the scale factor K in the
CORDIC. Its effectiveness in generating highly accurate cosine waveform is verified by simulation
tests undertaken on an FPGA.
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1. Introduction

In modern electronic systems, trigonometric functions are commonly used in satel-
lite communication, 5G mobile communication, system control, digital signal processing,
etc. [1]. Several embedded platforms, such as the Field-Programmable Gate Array (FPGA)
and application-specified integrated circuitry, can help implement trigonometric functions
in electronic systems [2]. The lookup table (LUT) [3], polynomial approximation [4], and
coordinate rotation digital computer (CORDIC) [5-9] are the main algorithms for imple-
menting trigonometric functions in these embedded platforms. Among these algorithms,
although the LUT has small latency, it requires a large storage capacity of the ROM [10].
The polynomial approximation has higher accuracy, but it requires more complex mul-
tiplications and square operations [11]. In addition, although CORDIC is a commonly
used algorithm to implement trigonometric functions in embedded systems, it still has
drawbacks in the actual design [11-20]. For example, even though a high-radix CORDIC
such as 4-radix, 16-radix, or hybrid CORDIC can reduce the iteration and simplify the
process procedure, its computation of the variable scale factor is very time-consuming [17].
Although the scaling-free CORDIC can avoid complex calculations, its convergence and
accuracy are limited [1].

On the other hand, the scale-free CORDIC designed in [1,6] can enhance convergence
and reduce power consumption and latency through booth recoding; however, its inherent
CORDIC iteration remains unchanged, which will increase the complexity of the CORDIC
algorithm. Hence, a novel algorithm is essentially needed to implement trigonometric
functions so as to offer a streamlined approach and improve the computation accuracy in
contemporary electronic systems.
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To tackle the aforementioned problems, a new recursive trigonometric (RT) technique
will be proposed in this work to provide a simpler but more accurate analytical model
forcalculating trigonometric function values. The RT technique is inspired by recursive
methods in computer programming, which can be used to divide a problem into several
sub-problems, solve each of those sub-problems, and then synthesize the results of these
sub-problems. The recursion method breaks the factorial into the product of the base input
and the recursive calculation. Once the input value is defined, the recursive chain keeps
running until the program ends [21]. The proposed RT technique is new in the following
aspects: (1) It employs trigonometric identities such as Angle Addition and Subtraction
to elucidate the relationships between the sine and cosine functions. Different from the
CORDIC algorithm, the RT technique employs a streamlined computational model to
improve the accuracy of trigonometric function generation. (2) The new RT technique will
calculate the values of trigonometric functions directly so as to prevent delays associated
with multiple iterations and reduce execution time on FPGAs. The efficacy of the RT
technique will be assessed through simulation tests.

2. Recursive Trigonometric Technique

In this Section, the RT technique and its implementation strategy on FPGA are discussed.

2.1. Principle of the RT Technique

The proposed RT technique is based on the trigonometric identities to conduct trigono-
metric function calculation. It is motivated by the fact that the cosine functions can
be calculated easily using other trigonometric functions (e.g., sine, tangent, and cotan-
gent) by the trigonometric identities. Equations (1) and (2) are the basic cosine and sine
function expansions:

cos((n+1)8) = cos(8) cos(nf) — sin(n6) sin(6) 1)

sin(nf) sin() = %[cos(ne —0) — cos(nb +0)] )
Based on Equations (1) and (2), the following representation can be obtained:

cos(nf — 6) — cos(n6 + 0)

cos((n+1)8) = cos(6) cos(n) — 7 3
Equation (3) can be simplified as
cos((n+1)0) = 2cos(0) cos(nf) — cos((n —1)0) 4)

The RT technique will be derived from the trigonometric identities transform in
Equation (4), specifically:

Ifn=1,
cos(260) = 2cos(0) cos(6) — cos(0) (5)

Ifn=2,
cos(30) = 2cos(6) cos(26) — cos () (6)

fn=m,
cos(m0) = 2cos(0) cos((m —1)0) — cos((m —2)6) (7)

From Equations (5) to (7), it can be seen that given an initial angle 6, we can calculate
the values of cos(f), cos(2), ..., cos(mf), recursively, where m is an integer. Therefore,
once the initial angle is selected, all cosine values of cos(imf) can be computed, m6 € [0, 27].
To generate an entire periodic cosine signal, the RT technique is essentially a pipelined
computational process. Once the initial value has been entered, the calculation of the cosine
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cos(0) =1 |RAM

/

value can be executed. The computation result will be utilized directly in the subsequent
cosine calculation, and so forth. The accuracy of the RT technique is also different from the
traditional CORDIC because computation is affected by the accuracy of the input cosine
values only, but not by the iterations and rotation coefficients.

2.2. FPGA Architectures of the RT Technique

In the RT technique, the trigonometric calculation will cover each cosine angle over
[0, 27t]. The initial angle cos(0) and the iteration step angle cos(f) should be selected
properly based on applications. For example, the iteration step size of the angle can be
selected so that the following input will be the cosine value of the selected step size angle
without a non-integer number of iterations. The iteration step can be an integer angle in
degrees, a fractional angle, or an angle in radians, but the angle value should be an integer
multiple of 27 rad or 360 degrees.

Figure 1 shows the digital architecture to implement the RT technique to calculate
the cosine values. Firstly, store the initial angle and iteration step angle in the RAM. The
shifter will shift the step size angle to the left or multiply by 2, resulting in 2cos(f); it
will then be multiplied by cos(n6) according to Equation (5). Next, 2cos(8)cos(n0) will be
subtracted in the accumulator, which generates 2cos(f) and is stored in the RAM for the
following calculations. The output accuracy depends on the precision of the input angle
only, whereas the input angle precision relies on the bit resolution of the device or system
in the application.

cos(30)

cos(26) |

cos(6)

cos(46)

st

cos((n-3)6)

cos((n—2)0) ——

2cos(6)

\

cos(20)
cos(e)
2cos(6)
<l a0

J 2co0s(6) N
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cos((n-1)0)
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cos((n-1)0) RAM

2cos(60) F 2cos(6) T

Figure 1. The architecture of the RT algorithm.

3. Simulation Test and Analysis

Some simulations will be undertaken in this section to use the RT technique to generate
the cosine waveforms. The RT technique will be implemented in MATLAB and ModelSim.
The tests will be undertaken on an FPGA platform. The RT’s effectiveness will be examined
by comparing its performance with the related methods under the same testing conditions.

3.1. MATLAB Simulation and Analysis

Figure 2 shows simulated cosine waveforms in MATLAB using the RT technique. The
step angle is 0.006 rad used for the RT, radix-2 CORDIC, and radix-4 CORDIC, respectively.
The scale factor K = 0.607 is used for radix-2 CORDIC with 16 iterations [13]. The scale
factor K is a variable for radix-4 CORDIC, with eightiterations [13]. For the RT technique,
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theinitial value is the cosine value of the step angle: cos(0.006). The cosine value of the
step angle and cos(0)are used to compute the following cosine values recursively using
Equation (5). The result precision will keep in a 16 bits binary format for the computation
of each algorithm.
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Figure 2. The RT cosine waveform simulation by MATLAB.

Figure 3 shows the 16-bit comparison among these algorithms. It can be seen that the
maximum CORDIC difference error occurs at 71/2 for the radix-2 (Figure 3a) and radix-4
(Figure 3b), respectively. Because the CORDIC has angles only over (—1.74, +1.74) rad
or (—99.99, +99.99) degrees, based on tan(f), it can calculate two quadrants’ angles only.
The angle out of this interval can be converted into (—1.74, +1.74) rad or (—99.99, +99.99)
degrees. As a result, calculation errors will increase as more iterations are undertaken.
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Figure 3. 16-bit accuracy comparison among different methods: (a) Radix-2, (b) Radix-4, (c) RT.
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The scale factor K will affect the accuracy of CORDIC. The radix-2 CORDIC is an
approximate calculation algorithm; its final cosine value is multiplied by a scale factor of
approximately 0.607 as the number of iterations reaches infinity. For the radix-4 CORDIC,
the scale factor K is not a constant [16] but can be calculated by

- 1/2
K=TT(1+0? x4 / @®)
1

where 0; belongs to the digitset {—a,...,0,...,+a}, a € [2, 3]; i is the number of iterations;
when i achieves # bits, the result precision is n/2.

0; can be determined by angle intervals, as discussed in [16]. Different angles in
eachiteration will result in a different ¢; value. Although radix-4 CORDIC can decrease the
iteration time, its scale factor calculation is more complex compared with radix-2 using
Equation (8).

As illustrated in Figure 3c, the proposed RT technique generates the maximum error of
1.98 x 10712, which is much lower than the radix-2 (1.50 x 10~°) and radix-4 (1.10 x 10~10)
algorithms, as shown in Figures 3a and 3b, respectively. For the RT technique, the processing
errors mainly come from two sources: (1) the pre-define cosine value; (2) the accumulated
truncation errors in the recursive calculation. The former error can be reduced by using
more accurate input cosine values such as 24 bits or 32 bits in binary format. The latter error
can be reduced by using quadrant transformation. The applied angle domain is (0, 7t/2),
and the angles beyond that range can be transformed to (0, 7t/2). For example, the value of
cos(371/2) can be transformed to cos(7t/2). To illustrate the improvement in the accuracy of
the RT algorithm by applying quadrant transformation, Figure 4 offers a comparison using
the RT algorithms with and without using the quadrant transformation.

o x1071
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Figure 4. Accuracy comparison of the RT algorithms using and without using the quadrant transfor-
mation, represented by a solid line and a dashed line, respectively.

As shown in Figure 4, the RT algorithm without using quadrant transformation
generates the maximum error of 6.47 x 10~!2 around 6.46 rad and the second maximum
error peak of 2.34 x 10~!2 around 1.98 rad. Since the truncation error cannot be eliminated
over (0, 7), the error is continuously accumulated over (7, 27t).In contrast, the RT algorithm
using the quadrant transformation computes cosine values only over the (0, 71/2) domain,
which can prevent the error accumulation in computing cosine values beyond 7t/2. Its
maximum error is 1.98 x 10~!2 at 1.56 rad, which is much lower than 6.47 x 10~1? generated
by the RT algorithm without applying the quadrant transformation. Or the quadrant
transformation can avoid the accumulation of truncation errors so as to improve the overall
accuracy of the RT technique.
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To further examine the effectiveness of the proposed RT technique in calculation
accuracy, some comparison tests are undertaken using MATLAB in terms of the root mean
square error (RMSE). Table 1 summarizes respective errors with 16-bit and 32-bit precision
of RT and other related methods such as CORDIC II [11] and Hybrid CORDIC [13].

Table 1. Comparison of different algorithms to generate cosine waveform.

Algorithm 16 Bits RMSE 32 Bits RMSE
Radix-2 [22] 1.39 x 10~* 1.69 x 10~
Radix-4 [16] 6.85 x 107° 1.07 x 1076
CORDIC II [11] 8.70 x 1073 N/A
Hybrid [13] 1.70 x 1072 N/A
RT 2.82 x 1077 1.02 x 10712

It is seen from Figure 3 and Table 1 that the proposed RT technique outperforms
other related algorithms in precision due to its quadrant transformation. Each cosine
value is directly calculated based on the recursion in Equation (5). On the other hand, the
CORDIC and its related improved methods, such as Hybrid CORDIC and CORDIC II, are
approximation algorithms; the calculation accuracy of their cosine values depends on not
only the iterations but also the selection of the scale factor K.

3.2. ModelSim Simulation and Analysis

The effectiveness of the proposed RT technique will be further examined in accuracy
and flexibility by some simulation tests on the ModelSim environment.

In initialization, the step angle of 0.088 rad is selected, and the bandwidths of the
cosine results are 16 bits and 32 bits. The CORDIC will use 16 and 32 iterations with a scale
factor of K = 0.6072. The RT technique will use the same step angle and also take 16 bits
and 32 bits to make the test conditions compatible with those used in CORDIC and LUT.
The cosine value of 0.542 rad is used as a reference for comparison. Table 2 summarizes the
resulting cosine values using these three methods.

Table 2. Accuracy comparison of different algorithms to generate cosine waveform.

Algorithm 16 Bits Deviation 32 Bits Deviation
CORDIC 56,769 232 x 1074 929,887,710 1.43 x 1078
LUT 56,755 1.48 x 105 93,719,550,786 2.04 x 10710
RT 56,755 1.48 x 105 5,929,887,683 1.47 x 1079

As observed from Table 2, both the RT and LUT algorithms outperform the CORDIC
algorithm in terms of accuracy at 16 bits. This is because the CORDIC relies on the
scale factor K and the number of iterations, which will degrade its cosine calculation
accuracy. Utilizing restricted 16 data bits, the RT technique can produce the highest
precision approximate cosine value, which is equivalent to the accuracy offered by the
LUT. In 32-bit analysis, although the LUT generates the highest accuracy (2.04 x 10~19), it
requires a significant volume of data that must be pre-stored in memory (90 cosine values
in this case). On the other hand, the accuracy of the RT technique is 10 times higher than the
CORDIC in the 32 bits (1.47 x 1077 vs. 1.43 x 10~%). Therefore, the RT technique provides
the best comprehensive performance in comparison with the LUT and CORDIC algorithms.
Table 3 summarizes the comparison with different bandwidths of the same angle cosine
value by using the RT technique.

The RT is a recursive algorithm by which the cos((n + 1)6) is computed based on
cos(f) and cos((n — 1)0) values. Therefore, more accurate cos()) values can generate
more accurate computations of the following trigonometric functions. As illustrated in
Table 3, if the bandwidth increases from 8 bits to 32 bits, the RT can compute a 0.524 rad
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cosine value with much higher accuracy (7.68 x 1072 vs. 1.47 x 107%), or the accuracy
increases exponentially.

Table 3. Comparison of different bandwidth 0.524 rad cosine value generated by the RT technique.

Bandwidth Result Deviation
8 bits 220 7.68 x 1072
16 bits 56,755 1.48 x 10>
32 bits 929,887,683 1.47 x 1079

It is seen from Equation (5) that the accuracy of the RT mainly depends on two factors:
the step angle cosine value and the truncation error arising from the use of multiplication
in the calculation process, as discussed in Section 2.2. The step angle cosine value is
expressed in a constant 32-bit binary format. In the course of the processing stage, ensuring
a consistent computational bandwidth requires the execution of multiplication through
a rightward data shift. This operation subsequently contributes to the emergence of
truncation errors. Consider an example in Table 4, if the sampling step angle is 0.088
rad, the computation of the 1.484 rad cosine value, cos(1.484), will take 17 RT recursions
in comparison with 6 RT calculations for 0.542 rad cosine value, cos(0.542), in Table 3.
Therefore, the cos(1.484) value has a lower accuracy than the cos(0.542) value because of
the accumulated truncation errors. In addition, it is seen from Table 4 that the accuracy of
the RT technique depends on the bandwidth of the application. A wider bandwidth will
provide a higher accuracy in RT processing.

Table 4. Comparison of different bandwidth 1.484 rad cosine value generated by the RT technique.

Bandwidth Result Deviation
8 bits —-18 1.81
16 bits 5537 2.70 x 1072
32 bits 93,582,683 8.87 x 1077

On the other hand, it is seen from Tables 3 and 4 that the RT generates different cosine
values in different bits device platforms. Unlike the LUT algorithm, the RT technique does
not need to pre-store each of the required angle values in the ROM, while the value of
cos(f) is the only stored quantityfor the following waveform generation and processing.
The RT algorithm can use any initial angle to calculate the waveforms, which can facilitate
software programming and hardware implementation.

Table 5 summarizes the RT technique for latency comparison. The test environment is
to generate a full cosine function of 16-bit width at a 50 MHz system clock. The CORDIC
and its improved methods use seveniterations or more for shifting, whereas the RT uses
only one iteration to generate the required cosine values, which can significantly reduce
the calculation and processing time. It is seen from Table 5 that the RT technique takes
only 80 ns to complete the calculation of cosine functions, which is much faster than other
related techniques.

Table 5. Comparison of latency using the related algorithms.

Algorithm Iterations Time (ns)
Radix-2 CORDIC [22] 16 360
Radix-4 CORDIC [16] 11 320

Hybrid [13] 7 160

CORDIC II [11] 7 140

RT 1 80
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3.3. FPGA Implementation of Cosine Functions

The RT technique is coded in Verilog, synthesized using Quartus software, and imple-
mented on the Cyclone IV E FPGA (EP4CE15F23C8 from Intel, San Jose, CA, USA). The
digital output is converted to an analog signal using a DAC (AD9707 from Analog Device
Inc, Wilmington, NC, USA). The bandwidth of DAC input is 12 bits. The outputs from
the DAC are scaled so that the first and second bits are used for the plus/minus sign bit
and decimal point bit, respectively. Figure 5 shows the experiment setting, and Figure 6
demonstrates the generated cosine waveforms using the RT technique.

Figure 5. Experiment setup of FPGA implementation of the cosine waveform: (1) Oscilloscope;
(2) FPGA USB blaster; (3) DAC output; (4) Cyclone IV E FPGA; (5) Connection to a PC.

Figure 6. A cosine waveform generated by Cyclone IV FPGA using the RT technique.

The initial angle of 0.086 rad is selected such that a complete cosine cycle requires
generating 73 cosine values. The input clock of the FPGA 1/0O pins is 50 MHz, or the period
is 20 ns. Then the cycle frequency of the final DAC output will be

1

73x20x10 v ©

four =

This can be recognized in Figure 6. The experimental results are fully consistent with
the theoretical results, which can verify the feasibility of using the RT technique on the
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FPGA. The test results using the RT technique and other related algorithms in terms of
resource and power consumption are summarized in Tables 6 and 7, respectively.

Table 6. Comparison of the resource consumption using the related algorithms.

Algorithm Logic Elements ROM (Bits)
CORDIC 2363/15,408 (12%) 0
LUT 24/15,408 (<1%) 4096
RT 2677/15,408 (17%) 0

Table 7. Comparison of the power consumption using the related algorithms.

Algorithm Dynamic (mW) Static (mW) Total (mW)
CORDIC 14.13 49.63 90.93
LUT 0 49.29 88.39
RT 10.52 49.47 87.58

It is seen from Table 6 that the RT technique is more resource-intensive than CORDIC
due to its use of multipliers that consume a large number of logic units. However, this
issue could be mitigated by designing and using a special hardware multiplication unit.
In addition, like CORDIC, the RT technique does not require a large number of memory
cells to store data as LUT-based approaches. Furthermore, as demonstrated in Table 7, the
proposed RT technique uses the lowest power consumption among the related algorithms.

4. Conclusions

A recursive trigonometric, RT, technique has been proposed in this work to provide
a new approach for FPGA implementation of trigonometric functions. The RT technique
leverages the inherent properties of trigonometric functions to compute the target cosine
value using the input cosine value directly. Consequently, the precision of the processing
result is commensurate with the accuracy of the input value; it can circumvent the need for
complicated calculation procedures and avoid the errors that may arise from the rotation
factor. Its effectiveness has been examined by simulation tests. Test results have shown
that the proposed RT technique can provide high accuracy in computation, a simple
structure in implantation, and high efficiency in processing. It has the potential forwide
applications such as digital synchronizers, waveform generators, and communication
systems. Specifically, from ModelSim simulation, the RT technique outperforms other
related algorithms (with 1 x 10! orders higher in precision) at 16-bit and 32-bit bandwidths,
as well as better performance in latency due to its straightforward computation approach.
From simulation tests on the Cyclone IV E FPGA device, the RT technique has demonstrated
its better performance in resource and power consumption. It has the potential forreal-
world applications such as digital synchronizers, waveform generators, and communication
systems. On the other hand, the RT technique has the following possible limitations:
(1) the processing accuracy could vary with input value accuracy; (2) it could still have
accumulated truncation errors in calculation; and (3) it has resource usage due to multipliers.
Advanced research is undertaken to enhance the hardware by incorporating FPGAs with
dedicated hardware multipliers, improve its processing speed and accuracy, as well as
verify its efficiency in the actual physical platforms.

Author Contributions: Conceptualization, X.X. and W.W.; methodology, X.X.; hardware, X.X.; vali-
dation, X.X.; formal analysis, X.X.; investigation, X.X.; resources, X.X.; data curation, X.X.;writing—
original draft preparation, X.X.; writing—review and editing, WW. and X.X; visualization, X.X,;
supervision, W.W.; project administration, W.W.; funding acquisition, W.W.All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported in part by the Natural Sciences and Engineering Research Council
of Canada (NSERC) and the Bare Point Water Treatment Plant in Thunder Bay, ON, Canada.



Sensors 2023, 23, 3683 10 of 10

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data unavailable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Aggarwal, S.; Meher, P.; Khare, K. Scale-Free Hyperbolic CORDIC Processor and Its Application to Waveform Generation. IEEE
Trans. Circuits Syst. I Reg. Pap. 2013, 60, 314-326. [CrossRef]

2. Zhu, B, Lei, Y;; Peng, Y.; He, T. Low Latency and Low Error Floating-Point Sine/Cosine Function Based TCORDIC Algorithm.
IEEE Trans. Circuits Syst. I Reg. Pap. 2017, 64, 892-905. [CrossRef]

3. Turner, S,; Chan, R,; Feng, ]. ROM-Based Direct Digital Synthesizer at 24 GHz Clock Frequency in InP DHBT Technology. IEEE
Microw. Wirel. Compon. Lett. 2008, 18, 566-568. [CrossRef]

4. Weaver, L.; Kerr, R. High Resolution Phase to Sine Amplitude Conversion. U.S. Patent 4,905,177, 27 February 1990.

5. Meher, P; Valls, J.; Juang, T.; Sridharan, K.; Maharatna, K. 50 Years of CORDIC: Algorithms, Architectures, and Applications.
IEEE Trans. Circuits Syst. I Reg. Pap. 2009, 56, 1893-1907. [CrossRef]

6. Jaime, F; Sanchez, M.; Hormigo, J.; Villalba, J.; Zapata, E. Enhanced Scaling-Free CORDIC. IEEE Trans. Circuits Syst. I Reg. Pap.
2010, 57, 1654-1662. [CrossRef]

7. Maharatna, K.; Troya, A.; Banerjee, S.; Grass, E. Virtually Scaling-Free Adaptive CORDIC Rotator. IEEE Trans. Circuits Syst. Video
Technol. 2005, 15, 1463-1474. [CrossRef]

8.  Aggarwal, S.; Meher, P; Khare, K. Concept, Design, and Implementation of Reconfigurable CORDIC. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2016, 24, 1588-1592. [CrossRef]

9.  Kumar, P. FPGA Implementation of the Trigonometric Functions Using the CORDIC Algorithm. In Proceedings of the International
Conference on Advanced Computing & Communication Systems, Coimbatore, India, 15-16 March 2019.

10. De Caro, D.; Napoli, E.; Strollo, A. Direct Digital Frequency Synthesizers Using High-Order Polynomial Approximation. In
Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 7 August 2002; Volume 1,
pp- 134-135.

11.  Garrido, M.; Kéllstrom, P.; Kumm, M.; Gustafsson, O. CORDIC II: A New Improved CORDIC Algorithm. IEEE Trans. Circuits
Syst. II Express Briefs 2016, 63, 186-190. [CrossRef]

12.  Banerjee, A.; Dhar, A.S. A Novel Paradigm of CORDIC-Based FFT Architecture Framed on the Optimality of High-Radix
Computation. Circuits Syst. Signal Process. 2020, 40, 311-334. [CrossRef]

13.  Shukla, R.; Ray, K. Low Latency Hybrid CORDIC Algorithm. IEEE Trans. Comput. 2014, 63, 3066-3078. [CrossRef]

14. Chakraborty, M.; Dhar, A.; Lee, M. A Trigonometric Formulation of the LMS Algorithm for Realization on Pipelined CORDIC.
IEEE Trans. Circuits Syst. II Express Briefs 2005, 52, 530-534. [CrossRef]

15. Park, S.; Cho, N. Fix-Point Error Analysis of CORDIC Processor Based on the Variance Propagation Formula. IEEE Trans. Circuits
Syst. I Reg. Pap. 2004, 51, 573-584. [CrossRef]

16. Villalba, J.; Zapata, E.; Antelo, E.; Bruguera, ].D. Radix-4 Vectoring CORDIC Algorithm and Architectures. J. Signal Process. Syst.
1998, 19, 127-147.

17.  Changela, A.; Zaveri, M.; Verma, D. Mixed-Radix, Virtually Scaling-Free CORDIC Algorithm Based Rotator for DSP Applications.
Integration 2021, 78, 70-83. [CrossRef]

18.  Qin, M.; Liu, T.; Hou, B.; Gao, Y.; Yao, Y.; Sun, H. A Low-Latency RDP-CORDIC Algorithm for Real-Time Signal Processing of
Edge Computing Devices in Smart Grid Cyber-Physical Systems. Sensors 2022, 22, 7489. [CrossRef] [PubMed]

19. Fu, W,; Xia, J.; Lin, X,; Liu, M.; Wang, M. Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx
and Coshx Based on Improved CORDIC Algorithm. Electronics 2021, 10, 2533. [CrossRef]

20. Kumar, A.; Kumar, A.; Singh Tomar, G. Hardware Chip Performance of CORDIC Based OFDM Transceiver for Wireless
Communication. Comput. Syst. Sci. Eng. 2022, 40, 645-659. [CrossRef]

21. Xu, L.; Ding, F. Recursive Least Squares and Multi-Innovation Stochastic Gradient Parameter Estimation Methods for Signal
Modeling. Circuits Syst. Signal Process. 2016, 36, 1735-1753. [CrossRef]

22. Bruguera, ].D.; Antelo, E.; Zapata, E.L. Design of a Pipelined Radix 4 CORDIC Processor. Parallel Comput. 1993, 19, 729-744.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://doi.org/10.1109/TCSI.2012.2215778
http://doi.org/10.1109/TCSI.2016.2631588
http://doi.org/10.1109/LMWC.2008.2001025
http://doi.org/10.1109/TCSI.2009.2025803
http://doi.org/10.1109/TCSI.2009.2037391
http://doi.org/10.1109/TCSVT.2005.856908
http://doi.org/10.1109/TVLSI.2015.2445855
http://doi.org/10.1109/TCSII.2015.2483422
http://doi.org/10.1007/s00034-020-01472-0
http://doi.org/10.1109/TC.2013.173
http://doi.org/10.1109/TCSII.2005.850784
http://doi.org/10.1109/TCSI.2003.820232
http://doi.org/10.1016/j.vlsi.2021.01.005
http://doi.org/10.3390/s22197489
http://www.ncbi.nlm.nih.gov/pubmed/36236587
http://doi.org/10.3390/electronics10202533
http://doi.org/10.32604/csse.2022.019449
http://doi.org/10.1007/s00034-016-0378-4
http://doi.org/10.1016/0167-8191(93)90061-O

	Introduction 
	Recursive Trigonometric Technique 
	Principle of the RT Technique 
	FPGA Architectures of the RT Technique 

	Simulation Test and Analysis 
	MATLAB Simulation and Analysis 
	ModelSim Simulation and Analysis 
	FPGA Implementation of Cosine Functions 

	Conclusions 
	References

