
Citation: Yin, Y.; Zhang, J.; Guo, M.;

Ning, X.; Wang, Y.; Lu, J. Sensor

Fusion of GNSS and IMU Data for

Robust Localization via Smoothed

Error State Kalman Filter. Sensors

2023, 23, 3676. https://doi.org/

10.3390/s23073676

Academic Editors: Shichang Du,

Yiping Shao, Delin Huang and

Robert Odolinski

Received: 23 February 2023

Revised: 16 March 2023

Accepted: 30 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Sensor Fusion of GNSS and IMU Data for Robust Localization
via Smoothed Error State Kalman Filter
Yuming Yin 1, Jinhong Zhang 1, Mengqi Guo 2, Xiaobin Ning 1,* , Yuan Wang 1 and Jianshan Lu 1

1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 College of Engineering, Beijing Forestry University, Beijing 100083, China
* Correspondence: nxb@zjut.edu.cn

Abstract: High−precision and robust localization is critical for intelligent vehicle and transportation
systems, while the sensor signal loss or variance could dramatically affect the localization perfor-
mance. The vehicle localization problem in an environment with Global Navigation Satellite System
(GNSS) signal errors is investigated in this study. The error state Kalman filtering (ESKF) and Rauch–
Tung–Striebel (RTS) smoother are integrated using the data from Inertial Measurement Unit (IMU)
and GNSS sensors. A segmented RTS smoothing algorithm is proposed in order to estimate the error
state, which is typically close to zero and mostly linear, which allows more accurate linearization and
improved state estimation accuracy. The proposed algorithm is evaluated using simulated GNSS
signals with and without signal errors. The simulation results demonstrate its superior accuracy and
stability for state estimation. The designed ESKF algorithm yielded an approximate 3% improvement
in long straight line and turning scenarios compared to classical EKF algorithm. Additionally, the
ESKF−RTS algorithm exhibited a 10% increase in the localization accuracy compared to the ESKF
algorithm. In the double turning scenarios, the ESKF algorithm resulted in an improvement of about
50% in comparison to the EKF algorithm, while the ESKF−RTS algorithm improved by about 50%
compared to the ESKF algorithm. These results indicated that the proposed ESKF−RTS algorithm is
more robust and provides more accurate localization.

Keywords: error state Kalman; RTS smoothing; robust and accurate localization

1. Introduction

The Global Navigation Satellite System (GNSS) has found widespread usage in ve-
hicle measurement, intelligent driving, and robot navigation due to its stable long−term
localization performance [1–3]. However, the susceptibility of satellite signals to external
interference would lead to the GNSS having unreliable localization accuracy. Therefore, the
combination of GNSS and Inertial Navigation System (INS) has been widely employed,
in which both systems could compensate for each other’s drawbacks and leverage their
respective strengths to achieve continuous localization [4–6]. The reported studies have
investigated the combined filtering algorithm of GNSS and INS, GNSS/IMU can provide
position, velocity, and attitude information for vehicle control. Liu [7,8] presents a novel
pitch and roll feedback mechanism that utilizes intrinsic information of the vehicle such as
steering angle and wheel speed. To compensate for the cumulative velocity errors that occur
during low sampling intervals of GNSS, the integration of reverse smoothing and grey
prediction is employed. Shin and Naser [9] reported that the algorithm yielded better navi-
gation and localization results, even in cases of short−term GNSS loss. Han [10] compared
the combined satellite/inertial guidance parameter estimation results with those of a single
satellite system, with the former yielding superior results. Li and Zhang [11] studied the
combined GNSS/INS navigation algorithm and highlighted that the filtering algorithm still
struggled to provide accurate parameter estimation in situations where few satellite data
were available. Erfianti [12] researched a combined GNSS/INS navigation algorithm and
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discovered that the INS could only provide high−accuracy parameter estimation results
for a short duration. During the satellite signal occlusion, the forward filtering algorithm
alone thus cannot guarantee a robust localization.

Applying the extended Kalman filter (EKF) to estimate the motion of vehicle systems
is well desirable due to the system nonlinearity [13–16]. The EKF linearizes the nonlinear
model by approximating it with a first−order Taylor series around the state estimate
and then estimates the state using the Kalman filter. M. M. Atia [17] proposed utilizing
the extended Kalman filter to merge data from inertial sensors with GNSS data in a
loosely coupled mode to improve the accuracy of road network maps in determining
lanes. The resulting lane determination success rate was an impressive 97.14%. However,
the local linearization operation of this approach can introduce significant estimation
errors. Julier [18] introduced an Unscented Kalman filter algorithm that improves the
estimation results, while its high complexity makes it unsuitable for most inertial guidance
devices. Arasaratnam [19] et al. pointed out through theoretical analysis and simulation
verification that the UKF has poor filtering performance or even divergence in solving
the high−dimensional (≥20) nonlinear state estimation problem. For this reason, they
used the spherical radial rule to approximate the state posterior distribution in the optimal
framework, and then proposed the Cubature Kalman Filter (CKF), but the CKF has higher
computational complexity and requires more sampling and operations, resulting in poor
real−time performance, which is not suitable for some applications with high real−time
performance requirements. The extended Kalman filter thus remains the mainstream state
estimation algorithm, and developing a low−complexity filter with high accuracy is still
challenging [20,21].

To address this challenge, S. S Kourabbaslou [22] presents a flexible design framework
utilizing symbolic engines to represent and linearize system and measurement models. A
robust fixed−lag smoothing approach is proposed in case there is a mismatch between the
nominal model and the actual model [23,24]. To improve the accuracy of vehicle stand−alone
localization in highly dynamic driving conditions during GNSS outages, Gao [25] proposed
a vehicle localization system based on vehicle chassis sensors considering vehicle lateral
velocity. The Kalman filter combines vehicle states obtained from vehicle kinematics and dy-
namics to improve the reliability and accuracy of autonomous driving. A consensus−based
and vehicle kinematics/dynamics integrated autonomous vehicle sideslip angle estimation
algorithm based on GNSS/INS was proposed [26,27]. Madyastha [28] proposed a Kalman fil-
tering method based on attitude error states. The error state Kalman filter (ESKF) is designed
for covariance estimation, which serves as a weight for the inertial odometry optimization
process [29–31]. These results validate the ESKF’s effectiveness for error−state estimation,
although a full−state estimation based on ESKF is not available yet. Further exploration of
state estimation based on ESKF is thus favorable.

The major challenge in designing a sensor fusion algorithm for state estimation is to
address GNSS signal errors and low−cost hardware limitations with a smoother approach.
The errors of inertial navigation systems accumulate over time, while GNSS signals are
heavily influenced by satellite signal quality and urban obstructions [32–34]. These would
lead to significant localization errors. Using INS alone cannot provide accurate position esti-
mation for a long term in signal−obscured environments [35–37]. In such cases, real−time
high−accuracy localization is necessary, and data fusion from multiple sensors is often re-
quired [38,39]. In order to provide reliable localization information, simultaneous localization
and map construction (SLAM) systems can be used, as well as multi−sensor integrated
systems that combine LiDAR [40] and navigation systems to solve problems caused by
GNSS antenna failures. To reduce GNSS and Inertial Measurement Unit (IMU) fusion costs
and achieve desired accuracy, different navigation satellite [41–43] constellations need to be
combined, especially in urban working environments.

In this paper, the low−cost sensor combination of only GNSS and IMU is considered,
and effects of GNSS signal error and different fusion algorithm design are investigated.
The extended Kalman filter and error state Kalman filter are designed in Section 2. The
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application of the error−extended Kalman filter and the RTS optimal smoothing algorithm
is investigated in Section 3 for combined inertial guidance and GNSS localization in urban
working environments. The insights and conclusions on the performance of the designed
sensor fusion algorithms are further analyzed.

2. GNSS and IMU Integrated Filter Design

The overall sensor fusion framework integrating the GNSS and IMU sensor data with
significant GNSS signal errors is illustrated in Figure 1. It mainly consists of four proce-
dures, including data analysis, prediction process, update process and reverse smoothing,
contributing to the developed ESKF−RTS smoothing localization algorithm. In particular,
the algorithm defines a nominal state without considering the measurement noise of IMU
and system disturbance, and an error state containing the noise and disturbance informa-
tion is used for state estimation. The nominal state condition and error state prediction
are updated simultaneously, and the error state is corrected using GNSS signal measure-
ment and injected into the nominal state. The error state and its covariance matrix are
subsequently reset. The acquisition frequency for GNSS data is 1 Hz, while the IMU data
are acquired at a frequency of 100 Hz. The reverse time update and reverse segmentation
smoothing are parallelly performed, which will be detailed below.
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2.1. Extended Kalman Filter

The extended Kalman filter (EKF) is also designed for comparison, using the sensor
measurements directly. The EKF procedure is described briefly.
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The developed discrete nonlinear vehicle system equations are:{
Xk = f (Xk−1) + Wk−1
ZK = h(Xk) + Vk

, (1)

where f (·) and h(·) represent the state function and measurement function of nonlinear vehi-
cle systems, W and V are Gaussian white noise of state X and measurement Z, respectively,
and k represents the discrete time step.

The state function of the nonlinear vehicle system in Equation (1) is approximated
through local linearization. The nonlinear equation is expanded using a Taylor series, and
only the first−order term is retained while ignoring the second and higher−order terms.
This yields the following expression:

Xk = f (
^
Xk−1) + Fk−1(Xk−1 −

^
Xk−1) + Wk−1, (2)

where Fk−1 is the Jacobian matrix of the function of the function f (Xk−1).
The statistical characteristics of the predicted state can be obtained based on the results

of the linearization in the form of

_
Xk,k−1 = E[ f (

^
Xk−1) + Fk−1(Xk−1 −

^
Xk−1) + Wk−1] = f (

^
Xk−1). (3)

It is possible to further predict the variance matrix as

Pk,k−1 = E[(Xk −
^
Xk,k−1)(Xk −

^
Xk,k−1)

T
]

= E
{
[Fk−1(Xk−1 −

^
Xk−1) + Wk−1][Fk−1(Xk−1 −

^
Xk−1) + Wk−1]

T}
.

= Fk−1Pk−1FT
k−1

+ Qk−1

(4)

The same method is used for the measurement function h(xk) at the point x̂k , which
can be obtained as

ZK = h(
^
Xk) + Hk(Xk −

^
Xk) + Vk, (5)

where Hk is the Jacobian matrix of the function of the function h(Xk−1). The prediction of
measurement is calculated as

_
Zk,k−1 = E[h(

^
Xk−1) + Hk−1(Xk−1 −

^
Xk−1) + Vk−1] = h(

^
Xk−1). (6)

Then, the collaborative variance can be further predicted as

Pk,k−1 = E[(Zk −
^
Zk,k−1)(Zk −

^
Zk,k−1)

T
]

= E
{
[Hk−1(Xk−1 −

^
Xk−1) + Vk−1][Hk−1(Xk−1 −

^
Xk−1) + Vk−1]

T}
.

= Hk−1Pk−1HT
k−1 + Rk−1

(7)

Using the information above, the iterative process of the EKF algorithm for the sensor
fused localization can be summarized as

^
Xk = f (

^
Xk−1)

^
Pk = Fk−1Pk−1FT

k−1
+ Qk−1

Kk+1 =
^
P
−
k+1HT

k+1(Hk+1
^
P
−
k+1HT

k+1 + Vk+1)
−1

.

Xk+1 = Kk+1(Zk+1 − h(
^
Xk+1))

Pk+1 = (I − Kk+1Hk+1)
^
P
−
k+1

(8)



Sensors 2023, 23, 3676 5 of 21

2.2. Error State Kalman filter

For the formulation of the error state filter, the system states are defined as the true,
nominal, and error state values. The true state is expressed as a combination of the nominal
and error states. The approach is to treat the nominal state as a dominant signal, which
is highly nonlinear, and the error state as a small signal, which is linearly effective and
suitable for linear Gaussian filtering. The nominal state vector of [p, v, q, ab,ωb]

T is used in
this study, where the additional dimension appears due to the quaternion representation
used for rotation, the quaternion method is widely used in attitude update because it
only requires the calculation of matrix differential equations, which is relatively small
in computation and can avoid the singular value problem of Euler angles. In this paper,
the quaternion method is used to solve the attitude of the carrier. The operators q and R
represent, respectively, the quaternion corresponding to the axial angular vector θ and its
rotation matrix. In addition, the error state vector is [δp, δv, δq, δab,δωb]

T . The relevant
symbol definitions of true, nominal, and error state are listed and compared in Table 1.

Table 1. The definition of variable symbols.

Name True State Nominal State Error States

All states xt x δx
Location pt p δp

Speed vt v δv
Quaternion qt q δq

Rotation matrix Rt R δR
Angular vectors θt θ δθ
Acceleration bias abt ab δab

Angular velocity bias ωbt ωb δωb

2.2.1. Continuous Time Kinetic Model

The nominal state kinematics refers to the system modelled with system noise or
external perturbations in the form of

.
pt = vt.
vt = Rt(am − abt − an) + gt.
qt =

1
2 qt ⊗ (ωm − ωbt − ωn)..

abt = aω.
ωbt = ωω

(9)

The acceleration and angular velocity measurements are represented by am and ωm,
respectively, while an and ωn represent the corresponding noise vectors, and aω and ωω

represent the bias vectors for acceleration and angular velocity, respectively. The equations
driving the system dynamics in the nominal state are as follows, where the nominal state
refers to the modeled system without any noise or perturbations:

.
p = v
.
v = R(am − ab) + g
.
q = 1

2 q ⊗ (ωm − ωb)..
ab = 0
.

ωb = 0

(10)
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Solving for the error state and simplifying all second−order infinitesimals. The kinetic
equation for the error state can be obtained from Equations (9) and (10).

ffi
.
p = ffiv

ffi
.
v = R(am − ab)ffiθ− Rffiab − Ran

ffi
.
θ = −(ωm − ωb)ffi` − ffiωb − ωn.

ffi
.
ab = aω

ffi
.

ωb = ωω

(11)

2.2.2. Discrete Time Kinetic Model

In order to apply the derived state and measurement equations to the sensor fusion
filter, they must be discretized based on the sampling time. The original continuous time
equations are transformed into their discrete time form.

The recursive expression for the motion model of the nominal state is

p(k+1) = pk + vk∆t + 1
2 [Rk(amk − abk) + g]∆t2

v(k+1) = vk + [Rk(amk − abk) + gk]∆t
q(k+1) = qk ⊗ qk((ωmk − ωbk)∆t)
ab(k + 1) = abk
ωb(k + 1) = ωbk

(12)

The kinematic model of the error state is expressed recursively as a function of the
non−negative integer k representing the kth time step:

ffipk+1 = ffipk + ffivk∆t
ffivk+1 = [−Rk(amk − abk)ffiθk − Rkffiabk]∆t + ffivk − wvk
ffiθk+1 = RT

k ((ωmk − ωbk)∆t)ffiθk − ffiωbk∆t + w`k
ffiab(k+1) = ffiabk + wak
ffiωb(k+1) = ffiωbk + wwk

(13)

The Gauss random noise for velocity, attitude, acceleration bias, and angular velocity
bias are denoted as wvk, w`k, wak, , w!k, their mean is zero, and their covariance matrices are
obtained by integrating the covariances of σan , σωn , σaω and σωω over the step time ∆t.

Wv = σ2
an ∆t2I

W` = σ2
ωn ∆t2I

WA = σ2
a!

∆tI
WΩ = σ2

ω!∆tI

(14)

The standard deviation of Gaussian white noise for acceleration and angular velocity are
denoted by σan and σωn , respectively. Similarly, σaω and σωω are used to represent the standard
deviation of Gaussian white noise for acceleration and angular velocity bias, respectively.

2.2.3. Development of the Error State Model

The discrete vector forms for all states, error states, IMU measurements, and noise are
defined as follows:

xk = [xk, vk, qk, abk, ωbk]
T , ffixk = [ffipk, ffivk, ffiqk, ffiabk, ffiωbk]

T ,
umk = [amk, ωmk]

T , wk = [wvk, w`k, wak, w!k]
T (15)

The recursive equation for all the error state is derived by combining Equations (5)
and (7) in the form of

ffixk+1 = fffi(xk, ffixk, umk, wk) = Fxk(xk, umk) + Fwkwk, (16)
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where fδ(·) represents the recursive function of the error state, the Fxk and Fwk are the
Jacobian matrices corresponding to the error and noise states, respectively, which can be
derived as

Fxk =


I I∆t 0 0 0
0 I −RT

k (ωmk − ωbk)∆t −Rk∆t 0
0 0 RT

k (ωmk − ωbk)∆t 0 −I∆t
0 0 0 I 0
0 0 0 0 I

, Fwk =


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

. (17)

2.2.4. The ESKF Prediction Process

The error states and the covariance prediction process can be obtained as

ffi
^
x
−
k+1 = Fxk(

_
x k, umk)ffixk

^
P
−
(k+1) = Fxk

^
PkFT

xk + FwkQwFT
wk

(18)

where Qw represents the noise covariance matrix of the form:

Qw =


Wv 0 0 0
0 Wθ 0 0
0 0 WA 0
0 0 0 WΩ

. (19)

2.2.5. The ESKF Observation Process

Once the GNSS information becomes available, the observation is incorporated to
continuously update the filter. This process also involves calibrating for the accelerometer
and gyroscope biases.

The observation equation is typically expressed in a more uniform form within the
filter in the form of

zk = h(xtk) + wmk, (20)

where zk is the measurement signal vector, wmk represents the Gaussian white noise of
the measurement signal, and its covariance is V. The error calibration update equation is
derived as

Kk+1 =
^
P
−
k+1HT

k+1(Hk+1
^
P
−
k+1HT

k+1 + Vk+1)
−1

ffi
_
Xk+1 = Kk+1(Zk+1 − H(

^
Xk+1))

_
Pk+1 = (I − Kk+1Hk+1)

^
P
−
k+1

(21)

The Jacobian matrix H is required to be defined with respect to the error state ffix, and
evaluated at the best true state estimate x̂t = x ⊕ ffix̂. As the error state mean is zero at
this stage (we have not observed it yet), we have xt = x, and we can use the nominal error
x as the evaluation point, leading to

H =
∂h
∂xt

∣∣∣∣
x

∂xt

∂ffix

∣∣∣∣
x
= HxXffix, (22)

in which

Xffix ,
∂xt

∂ffix

∣∣∣∣
x
=

I6 0 0
0 Qffiθ 0
0 0 I6

, (23)

Qffiθ =
1
2


−qx −qy −qz
qw −qz qy
qz qw −qx
−qy qx qw

. (24)
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2.2.6. Combination of ESKF Error State and Nominal State Process

Based on the recurrence of the a priori system state and the calibration of the error
state, the updated form is obtained as follows:

_
x k =

_
x
−
k
⊕ ffi

_
x k. (25)

Each of these system states corresponds to the following:

_
p k =

_
p
−
k + ffi

_
p k

_
v k =

_
v
−
k + ffi

_
v k

_
q k =

_
q
−
k ⊗_

q ffi
_
θ k.

_
a bk =

_
a
−
bk + ffi

_
a bk

_
ωbk =

_
ω

−
bk + ffi

_
ωbk

(26)

2.2.7. ESKF Error State Reset

After injecting the error state into the nominal state, the a priori error state and the
corresponding covariance need to be reset, as

ffi
_
x = 0

P = GkPkGT
k

(27)

where G is the reset function g(ffix) = ffix 	 ffix̂ of the Jacobi matrix, which is defined in the
form of

G ,
∂g

∂ffix

∣∣∣∣
ffi
_
x
=

I6 0 0

0 I − ( 1
2 ffi

_
θ) 0

0 0 I9

. (28)

3. Robust Localization via RTS Smoothing
3.1. Reliability of Measurement Information

In the case of a GNSS signal loss, when there are no available GNSS measurements
to update, the covariance matrix in Equation (21) tends to be infinite. The Kalman gain K
tends to zero, so that when the measurement information is zero or differs too much from
the predicted information, the update equation changes to the following form:

ffi
_
x k+1 = ffi

_
x k

_
Pk+1 =

^
P
−
k

(29)

3.2. RTS Fundamental Design

The RTS smoothing can be regarded as a technique for obtaining an optimal state
estimate when observations are available from moment 1 to moment N; it involves us-
ing previous estimates obtained through Kalman filtering in order to perform backward
smoothing from moment k + 1 to moment k resulting in a more precise estimate. This
method falls under the category of fixed interval smoothing and is considered as a fixed
interval smoother, which is convenient for implementation.

The RTS smoother involves a two−step process: a forward filter followed by a back-
ward smoothing. The forward filter is a standard Kalman filter described by Equation (18),
which maintains all the predicted and updated estimates as well as their corresponding
covariances for each epoch during the entire mission. The backward smoothing procedure
begins at the end of the forward filter at time tN , with an initial condition ffixN,N and
tN,N . Therefore, the backward smoothing can be seen as an update to the forward filter for
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obtaining an enhanced estimate. The equation for the RTS algorithm can be represented in
the form of

ffi
_
x k,N = ffi

_
x k,k + Uk(

_
x k+1,N −_

x k+1,k)
_
Pk,N =

_
Pk,k + Uk(

_
Pk+1,N −

_
Pk+1,k)UT

k

(30)

where delta ffixk,N is the smoothed estimate of the state vector, and Uk is the smoothing
gain matrix, which is calculated by the following equation:

Uk =
_
Pk,kFT

k+1,k
_
P
−1

k+1,k, (31)

where k = N − 1, N − 2, . . . . . . , 0. The RTS smoothing algorithm uses the results of the
forward filter and backward smoothing to obtain an improved estimate. The inverse
smoothing starts from the last filter result and proceeds forward one by one, so it must
obtain N filter results to smooth the observations within the period [0, N]. However, if N
is too large, the inverse smoothing process can be obviously lagged, which would limit
the algorithm’s application in real time. Therefore, a segmented RTS smoothing method is
designed in this study.

3.3. Segmented RTS Smoothing Algorithm

Assuming the duration of a dynamic system is k = 1, 2 . . . . . . , N, the segmented RTS
smoothing algorithm involves forward filtering and inverse smoothing of N observations
in segments. The segment length is L, where 1 < L < N. In other words, the RTS inverse
smoothing process is performed immediately after obtaining the filtering results for the seg-
mented period, without waiting for subsequent filtering results. This approach significantly
reduces the lag time of the inverse smoothing process. Additionally, the segmentation
length can be varied, avoiding the issue of poor real−time performance associated with
RTS smoothing. In this study, the segmented RTS smoothing algorithm is applied to the
potential probability assumption density filtering algorithm, effectively addressing the
problem of poor real−time performance resulting from the use of RTS smoothing.

Step 1 Output variables are cleared: ffix̂k = [ ], p̂k = [ ].
Step 2 Local filtering result variable clearing ffix̆k = [ ],p̆k = [ ]. The filtered result

variable after local association is cleared xk = [ ], Qk = [ ], the segmented smoothing
counter count is cleared to zero.

Step 3 If the tracking of the target is not finished, action continues down the track,
otherwise the smoothing result ffix̂k, p̂k is output; then, the entire segmented RTS smoothing
algorithm ends.

Step 4 Upon receiving the current filtering result, it is stored in the variables ffix̆k and
p̆k. the Hungarian algorithm is used to correlate the trajectories and estimates, obtaining
the filter value for each target. The correlated filter result is saved in variables xk and Qk,
and they are counted using a counter called count.

Step 5 If count == L, after performing local correlation using xk and Qk for each
target’s filtering results, the inverse smoothing process uses the RTS smoothing algorithm.
The results of the smoothing process are stored in variables delta ffix̆k and p̆k before being
transferred to Step 2. In order to significantly reduce the lag time of the inverse smoothing
process, it is carried out immediately following the acquisition of the filtered data without
waiting for subsequent data. Real−time performance of the fusion algorithm can be
improved by decreasing the segment length L.

To correct the position, velocity, and attitude values that have been calculated in
the forward filtering, it is recommended to use the state error smoothing values. These
smoothing values can be utilized to derive the final optimal smoothed values for these
states using the following equations.
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4. Results and Discussions

The proposed sensor fusion algorithm is demonstrated in a relatively open environ-
ment, which allows for uninterrupted satellite signal and individualized GNSS localization.
The acquisition frequency for GNSS data is 1 Hz, while the IMU data are acquired at a
frequency of 100 Hz; the smooth dimension L is selected as 10. These parameters provide ac-
ceptable conditions for analyzing the accuracy of combined GNSS/IMU localization, even
in the event of GNSS signal loss, as demonstrated by the trajectory shown in Figure 2. In
order to evaluate the localization accuracy of the GNSS/IMU combined localization process,
the simulation involves artificially inducing the loss of lock by introducing exaggerated
errors to the GNSS satellite observation information based on raw GNSS data.
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Figure 2. Oval shape motion trajectory.

4.1. Oval Track Simulation Analysis

Figure 2 illustrates the simulated oval shape trajectory, which comprises a long straight
line with small angle turns in two dimensions.

The localization results for the various filtering algorithms are shown in Figures 3–5
and Table 2. It can be seen that the ESKF algorithm exhibits better target tracking accuracy
compared to the EKF algorithm, as evidenced by its RMS values of 1.633 m, 1.782 m, and
1.476 m for Lateral, Longitudinal, and Vertical directions, respectively. By reducing the
error state parameter, the accuracy of the three poses is improved by 2.8%, 2.1%, and 52.0%,
respectively. After performing the backward smoothing filtering process, the RMS values
of the three attitudes are further optimized to 1.463 m, 1.588 m, and 1.393 m, respectively.
Moreover, the target tracking accuracy of ESKF–RTS is superior to ESKF, with the attitude
accuracy in the three directions improving by 10.4%, 10.9%, and 5.6%, respectively. The
trajectory also reveals that the curve of ESKF–RTS is smoother, further highlighting the
advantages of ESKF–RTS over the other two algorithms in addressing the problem of
smooth estimation of nonlinear states.
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Figure 3. Lateral, Longitudinal and Vertical positions of EKF (Oval).
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Figure 4. Lateral, Longitudinal and Vertical positions of ESKF (Oval).
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Figure 5. Lateral, Longitudinal and Vertical positions of ESKF–RTS (Oval).

Table 2. RMS values of localization errors for different algorithms (Oval).

Position Error RMS (m) Lateral Longitudinal Vertical

GNSS 2.049 2.598 2.619
EKF 1.680 1.820 3.075

ESKF 1.633 1.782 1.476
ESKF–RTS 1.463 1.588 1.393

4.2. Serpentine Track Simulation Analysis

Further verification of the designed algorithms is performed in a serpentine trajectory,
as shown in Figure 6, and the localization results are compared as shown in Figures 7–9
and Table 3.
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Figure 6. Serpentine shape motion trajectory.
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Figure 7. Lateral, Longitudinal and Vertical positions of EKF (Serpentine 1).
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Figure 8. Lateral, Longitudinal and Vertical positions of ESKF (Serpentine 1).
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Figure 9. Lateral, Longitudinal and Vertical positions of ESKF−RTS (Serpentine 1).
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Table 3. RMS values of localization errors for different algorithms (Serpentine 1).

Position Error RMS (m) Lateral Longitudinal Vertical

GNSS 1.912 1.793 5.680
EKF 0.955 1.585 5.823

ESKF 0.464 0.641 1.700
ESKF−RTS 0.206 0.243 0.912

Table 3 illustrates the improved performance of the ESKF and ESKF−RTS algorithms
compared to the EKF algorithm in the serpentine condition. The RMS of Lateral, Longitudi-
nal, and Vertical in EKF are 0.955 m, 1.585 m, and 5.823 m, respectively. After reducing the
state value, the RMS of the three positions for the ESKF algorithm are 0.464 m, 0.641 m, and
1.700 m, which are 51.4%, 59.6%, and 70.8% better than the EKF algorithm. The ESKF−RTS
algorithm further improves the position accuracy, with RMS values of 0.206 m, 0.243 m,
and 0.912 m for the three directions, respectively, which are 55.6%, 62.1%, and 46.4% higher
than those of the ESKF algorithm. Figures 7–9 show the comparison of the root mean
square errors, which further demonstrates the superior performance and stability of the
ESKF−RTS algorithm. However, since the simulation was conducted with a relatively good
GNSS signal, the robustness of the algorithm could not be well evaluated. Subsequently,
the GNSS data for the serpentine condition are partitioned into eight segments, and the
error magnitude is amplified by a factor of two at intervals of 600 s in order to evaluate the
algorithm’s robustness.

The serpentine working condition with further exaggerated GNSS signal error is ana-
lyzed, as shown in Figures 10–12 and Table 4. The RMS values for the Lateral, Longitudinal,
and Vertical directions are 1.231 m, 1.735 m, and 1.453 m, respectively, for the EKF algo-
rithm. Meanwhile, the ESKF algorithm improves these values by 48.4%, 48.7%, and 34.1%,
respectively, resulting in the RMS values of 0.635 m, 0.890 m, and 0.957 m. Moreover, the
ESKF−RTS algorithm improves the position accuracy in three directions by 42.1%, 52.6%,
and 52.1%, respectively, compared to the ESKF algorithm, with RMS values of 0.368 m,
0.422 m, and 1.456 m. Even though the accuracy of ESKF−RTS decreases on the Vertical
axis, the higher degree of smoothing in Figure 12 suggests that the ESKF−RTS smoothing
algorithm can significantly enhance robustness and achieve precise localization, even with
lower accuracy of GNSS sensors.
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Figure 10. Lateral, Longitudinal and Vertical positions of EKF (Serpentine 2).
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Figure 11. Lateral, Longitudinal and Vertical positions of ESKF (Serpentine 2).
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Figure 12. Lateral, Longitudinal and Vertical positions of ESKF−RTS (Serpentine 2).

Table 4. RMS values of localization errors for different algorithms (Serpentine 2).

Position Error RMS (m) Lateral Longitudinal Vertical

GNSS 3.370 3.308 8.988
EKF 1.231 1.735 1.453

ESKF 0.635 0.890 0.957
ESKF−RTS 0.368 0.422 1.456

Next, we continued the simulation of circular operating conditions and divided the
entire simulation process into four sections to validate the feasibility of the algorithm by
doubling the GNSS signal error, as shown in Figures 13–16. The experimental results shown
in Table 5 once again demonstrated the feasibility and robustness of the error state Kalman
filtering algorithm, indicating that the algorithm can achieve stable and accurate integrated
navigation under various operating conditions.
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Table 5. RMS values of localization errors for different algorithms (Polygonal).

Position Error RMS (m) Lateral Longitudinal Vertical

GNSS 2.601 2.677 8.516
EKF 1.243 1.289 4.328

ESKF 1.253 1.320 1.237
ESKF−RTS 0.900 0.896 1.999

The above data show the results of testing the navigation system using EKF, ESKF, and
ESKF−RTS algorithms. By analyzing these results, we can draw the following conclusions.
The above data demonstrate the performance of three different filtering algorithms in GNSS
navigation. First, we can see that the performance of the EKF and ESKF algorithms is
relatively similar, with position errors around 1.3 m. This is because both algorithms use
Kalman filtering, but the ESKF algorithm introduces error states while considering errors,
which can more accurately estimate errors and improve accuracy. At the same time, the
ESKF algorithm can also reduce the impact of errors in future time by predicting error
states, thus improving the stability of the algorithm.



Sensors 2023, 23, 3676 18 of 21

On the other hand, the ESKF−RTS algorithm performs even better, with position
errors even lower than 1 m. This is because the ESKF−RTS algorithm uses segmental
smoothing to optimize the filtering results, which can more accurately estimate and correct
errors. In the ESKF−RTS algorithm, RTS stands for “Recursive Least Squares Smoothing”
which can combine the prediction results of the ESKF algorithm with the observation results
to obtain more accurate state estimation results.

Overall, the above data indicate that the ESKF−RTS algorithm performs well in GNSS
navigation. The advantage of this algorithm is that it not only considers error states, but also
further optimizes the filtering results through smoothing algorithms. Therefore, in practical
applications, selecting the ESKF−RTS algorithm for navigation filtering can achieve more
accurate and stable results, improving the reliability and accuracy of the navigation system.

5. Conclusions and Future Work

This paper introduces an error state extended Kalman filter algorithm and segmented
Rauch–Tung–Striebel (RTS) smoothing algorithm to enhance the localization accuracy and
robustness of GNSS and IMU sensors. The cumulative error of INS over time are overcome
when GNSS signal is disturbed. The simulation results show that the proposed method
is more linear and has higher localization accuracy than the traditional EKF algorithm. It
also demonstrates good robustness in achieving better accuracy with low−quality GNSS
signals. The algorithm can serve as a foundation for low−cost sensor fusion processing
and is a valuable reference for further research.

Over the next few years, combined navigation systems will see increased usage and
development across a range of applications. As sensor and communication technologies
progress, and the demands for navigation safety and reliability continue to rise, there will
be a greater need for more accurate and dependable navigation systems.

Furthermore, the RTS smoothing algorithm−assisted combined navigation algorithm
presented in this paper was simulated for offline computation. For practical applications
in the future, real−world testing will be necessary to verify the hardware feasibility of
the algorithm, and to consider real−time data transmission and computation to achieve
unmanned driving. Overall, positioning is a crucial component of intelligent driving, and
its potential impact on society and the economy is vast. Combined navigation will be more
and more widely used in production and practical life.
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Abbreviations

GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
INS Inertial Navigation System
RTS Rauch–Tung–Striebel
EKF Extended Kalman filter
CKF Cubature Kalman Filter
ESKF Error state Kalman filter
RMS Root mean square
Symbols
X System state
^
X Prediction of the system state
_
X Update of the system state
δ
_
x k,N The smoothed estimate of the state vector

Uk The smoothing gain matrix
_
Pk,N The covariance of smoothing estimates
W Gaussian white noise
Z System measurement
Vk Measurement of Gaussian white noise
f (·) State functions of nonlinear systems
h(·) Measurement functions for nonlinear systems
Fk The Jacobi matrix of f (·) at xk
Hk The Jacobi matrix of h(·) at xk
pk Covariance matrix of states
qk Covariance matrix of noise
δ Error character
xt True state
x Nominal state
pt Position at time t
vt Velocity at time t
qt Quaternion at time t
Rt Rotation matrix at time t
θt The angular vector at time t
abt Acceleration bias at time t
ωbt Angular velocity bias at time t
am Acceleration measurement
ωm Angular velocity measurement
an Acceleration noise vector
ωn Angular velocity noise vector
aω Acceleration bias vector
ωω Angular velocity bias vector
∆t Time interval from k to k+1
wvk Velocity Gaussian random noise
wθk Angular Gaussian random noise
wak Acceleration bias Gaussian random noise
wωk Velocity biased Gaussian random noise
Wv Corresponding covariance matrix of wvk
v Corresponding covariance matrix of wmk
σan Acceleration Gaussian white noise
Fxk Error state Jacobi matrix
Fwk Noise state Jacobi matrix
qw Noise covariance matrix
Uk Smoothing gain matrix
count Smooth counter
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