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Abstract: A mattress-type non-influencing sleep apnea monitoring system was designed to detect
sleep apnea-hypopnea syndrome (SAHS). The pressure signals generated during sleep on the mattress
were collected, and ballistocardiogram (BCG) and respiratory signals were extracted from the original
signals. In the experiment, wavelet transform (WT) was used to reduce noise and decompose
and reconstruct the signal to eliminate the influence of interference noise, which can directly and
accurately separate the BCG signal and respiratory signal. In feature extraction, based on the
five features commonly used in SAHS, an innovative respiratory waveform similarity feature was
proposed in this work for the first time. In the SAHS detection, the binomial logistic regression was
used to determine the sleep apnea symptoms in the signal segment. Simulation and experimental
results showed that the device, algorithm, and system designed in this work were effective methods
to detect, diagnose, and assist the diagnosis of SAHS.

Keywords: sleep apnea-hypopnea syndrome (SAHS); ballistocardiogram (BCG); respiratory signal;
wavelet transform (WT); waveform similarity

1. Introduction

Sleep apnea-hypopnea syndrome (SAHS) is one of the most common and serious sleep
problems. Its prevalence is increasing yearly, seriously endangering human health. Clinical
signs of SAHS are usually defined as more than 30 recurring episodes of apnea during a 7 h
sleep cycle, or an average of more than 5 episodes of apnea and hypopnea per hour during
sleep [1–3]. However, these sleep symptoms can be difficult to detect because the patient
is unconscious during sleep. The above factors directly lead to the low diagnosis rate of
SAHS. At the same time, long-term undiagnosed SAHS will lead to more complications,
such as the damage of multiple organs, for example, cardiovascular and cerebrovascular
organs, increasing the risk of disease [4–6]. Polysomnography (PSG) evolved from elec-
troencephalography (EEG) and is currently the internationally recognized gold standard for
the diagnosis of SAHS [7–10]. The PSG can simultaneously detect multiple physiological
signals and provide accurate diagnosis evidence to doctors. However, in the application
process of PSG, patients need to wear various sensors, which will bring a certain physical
and psychological burden to patients and affect the quality of their sleep. In addition, PSG
is expensive and difficult to promote to all patients. Therefore, the development of a new
diagnostic method can help doctors to improve the diagnostic rate of SAHS, which is of
great significance for early detection and diagnosis.

In recent years, some new indirect detection methods, such as smart watches, wearable
bracelets, and other sleep tracking devices, have been utilized to detect the sleep state
by the amplitude and frequency of human movements and calculate the apnea from the
collected cardiac signals [11–13]. These devices can help patients to improve their quality
of life, extend independent living, and reduce the time necessary for medical staff and
medical costs. However, respiratory conditions cannot be directly monitored, and the
resulting error is usually relatively high, which does not meet the standards of independent
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devices for healthcare applications [14,15]. Therefore, a mattress-based non-affecting
sleep apnea monitoring system was proposed in this work. First, pressure sensors in the
mattress were used to pick up signals generated by body movements during sleep and
breathing. Then, the wavelet threshold algorithm was used to separate and de-noise the
signals, effectively filter the interference noise of the signals, and reconstruct the effective
respiratory and ballistocardiogram (BCG) signals. Then, the logistic regression model
of apnea was established to extract the characteristic parameters. Finally, the reliable
monitoring of sleep apnea was realized.

2. Methods
2.1. System Composition and Signal

The diagram of a mattress-based non-influencing sleep apnea monitoring system
is shown in Figure 1. The whole system consisted of a hardware device and a mobile
application (APP). In the hardware device, a polyvinylidene difluoride (PVDF) sensor
was used to collect physiological signals such as heartbeat and respiration, and then sent
these signals to the APP via Bluetooth. Then, further analysis, characteristic parameter
calculation, and SAHS identification of the received signals were realized in the mobile APP.

Figure 1. Diagram of mattress-based non-influencing sleep apnea monitoring system.

PVDF is a typical high-strength polymer piezoelectric material based on the piezo-
electric effect, which can be used for pressure signal acquisition. When external forces are
applied to the surface of the material, the material will deform, and polarization will occur
within the material; then, voltage signals will be generated on the surface of the material.
However, when the external force is eliminated, the voltage signal will disappear.

The PVDF sensor used in this work was 800 mm in length, with the capacitance range
of 5.49 nF to 9.25 nF, and the sampling rate was set at 50 Hz (Figure 2). The sensor was
placed under the mattress or bed sheet to collect the dynamic pressure generated by the
human body during sleep in a non-influencing manner, and then obtained physiological
signals such as respiration and BCG. This method showed high sensitivity and was suitable
for practical application in sleep monitoring.

Figure 2. Physical picture of PVDF sensor.
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The respiratory signal is the periodic expansion and contraction of the chest during
sleep, with a frequency of about 0.2 to 0.4 Hz [16]. The respiration waveform has a relatively
intuitive periodicity, reflecting the process of breathing and thoracic cavity activity. The
complete cycle of the respiratory signal waveform should include the process of exhalation
and inhalation. From beginning to end, the respiratory waveform corresponds to the
movement of the chest as it contracts and relaxes. After being collected by the pressure
sensor, the breathing movement is morphologically expressed as the relationship of the
voltage converted by the vibration pressure with time.

BCG is a signal indicating the mechanical activity of the heart. It is obtained by detect-
ing the vibrations caused by blood pumping from the heart into the artery. The frequency
distribution of BCG is 0.5 to 20 Hz [17]. BCG is quite different from an electrocardiogram
(ECG) in waveform shape. As shown in Figure 3, a typical BCG signal waveform has
7 wave peaks which are labeled as H, I, J, K, L, M, and N. The H, I, J, and K wave peaks
indicate the pressure of blood hitting the aorta and large vessels after heart contraction. The
L, M, and N wave peaks indicate the diastolic process of heart. The essence of BCG signal
acquisition is the acquisition of pressure signal, which can be considered as a non-stationary
signal [18]. BCG has special advantages in some medical applications because it can be
made into a mattress without the need for users to wear it, with low cost and sufficient
performance [19]. The mattress-based pressure sensor was used to collect the BCG signal
instead of the ECG signal in our design. The specific performance comparison between
BCG and ECG is shown in Table 1.

Figure 3. An example of BCG waveform.

Table 1. Comparison of performance between BCG and ECG.

Comparative Item BCG (Our System) ECG

Signal properties Mechanical vibration signal Electrophysiological signal
Signal accuracy Medium High

Channels of electrodes One channel Multi channels or one channel
Cost Low High

Form of signal acquisition equipment Mattress Holter monitoring, wearable devices, etc.

The SAHS signal processing process is shown in Figure 4, which can be divided into
three stages: signal preprocessing, feature parameter extraction, and classification of apnea
models. In the preprocessing stage, signal separation and the soft threshold denoising
method [20] based on wavelet transform were adopted to effectively eliminate the low-
frequency interference, reduce the complexity and calculation of signal extraction, improve
the extraction accuracy, and successfully extract the respiratory signal and BCG signal.
Then, in the feature extraction stage, the peak searching algorithm based on physiological
signal feature optimization was used to extract the feature, which improved the accuracy
of index calculation. Finally, in the classification stage, a binary logistic regression model
was used to identify SAHS.
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Figure 4. Signal processing algorithm process flow chart.

2.2. Device and Testing

The actual picture of the acquisition system used in the experiment is shown in Figure 5.
The acquisition system included hardware acquisition circuits, Android phones, and other
environmental items such as mattresses and marketing devices for data comparison. In
addition, the acquisition system in this work and TI company’s product ADS1298RECG
monitoring device were used to conduct signal acquisition simultaneously.

Figure 5. Acquisition system physical picture.

Twenty adults were selected, including 15 males and 5 females, aged between 22
and 28. All participants expressed their willingness to participate in the test and received
instructions during the test. The experiment was carried out on a mattress, the mattress was
flattened, and the increased area of the sensing belt was placed at the projection position
of the chest when the human body was lying on the bed. The subjects were placed in bed
and simulated breathing during normal sleep, randomly simulating post-inhalation apnea
and post-exhalation apnea. Each experimenter collected about 50 groups of respiratory
frame data, and a total of about 1000 groups of data were taken. Among them, about
800 groups of data from 16 individuals were randomly selected as sample data for model
establishment, and 200 groups of data from the remaining 4 individuals were used as
experimental verification data.
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3. Experiments and Results
3.1. Signal Preprocessing

During sleep, the pressure signal generated by chest and abdominal vibrations of
the human body includes respiratory, BCG, and noise components. The frequency of the
respiratory signal is about 0.3 and 2 Hz, and the highest frequency component of the BCG
vital sign in the 1–20 Hz frequency range [21]. The noise components include human
myoelectric noise, 50 Hz/60 Hz power-line interference, and body motion noise. Therefore,
in order to effectively preserve the respiratory and cardiac impulse signals and filter out
the impact of various interference noises, we adopted a 40 Hz low-pass filter. During
the test, although the low-pass filter had attenuated most of the high-frequency noise,
there were still some interferences in the collected original signal, such as the interference
generated by the body movement and the noise introduced by the PVDF piezoelectric film
material when the elastic deformation occurred. The above interference owned a wide
frequency distribution range and was close to the frequency of the effective signal, so it
was difficult to be eliminated by the hardware filter. Therefore, the signal after hardware
filtering still needed to be processed again by the denoising method. Commonly used
signal separation and denoising methods mainly include empirical mode decomposition
(EMD), digital bandpass filtering, and wavelet transform (WT) [22,23]. Among them, WT
is often used in signal time–frequency analysis and processing. The process of wavelet
denoising is decomposition, wavelet packet coefficient thresholding, denoising, and recon-
struction. Firstly, the appropriate wavelet basis function is selected. Then, the threshold
function and threshold are set to process each decomposition layer, and the new wavelet
coefficient is obtained. Finally, the new coefficient is used for wavelet reconstruction, and
the cleaned signal waveform is obtained after processing. Therefore, we can conclude that
the noise removed by wavelet denoising is theoretically Gaussian noise covering the whole
frequency band. This work is to make use of the characteristics of wavelet decomposition
by layer (frequency band) and improve the wavelet denoising process into hierarchical
decomposition by the frequency band, wavelet packet coefficient threshold, denoising,
reconstruction, and separation to obtain the denoised respiratory signal and BCG signal.
The advantage of this improvement is that the noise can be removed at the same time of
separation, which can improve engineering efficiency. The actual collected sleep signals
can be expressed as follows:

f (t) = x(t) + n(t) (1)

where f (t) is the collected original sleep fusion signal with noise, x(t) is the clean sleep
piezoelectric signal, and n(t) is the interference noise.

The wavelet basis function selection is a challenge in the actual application of wavelet
analysis. Using a variety of different basis functions on the same signal produces a variety
of distinct outputs, which are mostly determined by the mathematical and waveform
features of the signal to be processed. On the basis of the foregoing principles and the
features of the collected pressure signal, the Daubechies transform at level 5 (DB5) function
was chosen for signal decomposition in this work. Ingrid Daubechies proposed the DB
wavelet function scheme [24]. It has orthogonality, approximate symmetry, a compact
support, and a hierarchical structure. Additionally, because the size function of DB5 is
comparable to that of a respiratory wave, it may achieve a high vanishing moment, which
is favorable to signal breakdown. The scaling function and wavelet function of DB5 are
depicted in Figure 6.

Then, the signal needs to be decomposed into enough layers to ensure that the res-
piration signal with low relative frequency can be completely preserved and separated
from the components of the BCG signal as far as possible in the time domain. The system
selects layers through the frequency range of different signal components. The spectrum
diagram of the original signal is shown in Figure 7. As can be seen from the figure, signals
are mainly concentrated in the low-frequency part, where the DC component is the baseline
generated by the level rise of the circuit. A large amount of energy between the 0–1 Hz
frequency is floating formed by respiratory signals.
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Figure 6. DB5 wavelet base function.

Figure 7. Spectrum diagram of the original signal.

Based on the above analysis, the system finally chose five wavelet decomposition
layers to concentrate the noise signal in the same layer as far as possible, and the purpose
of denoising can be achieved by removing the layer directly. Table 2 lists the frequency
range and signal components of each layer of wavelet decomposition, where the scale is
represented by j, the approximate component of the corresponding scale is represented by
Dj f , and the detail component is represented by Ad

j .

Table 2. Interval values and signal components of each part after wavelet decomposition.

Scale
(2j, j = 1, 2, . . . ) Main Frequency Band (Hz) The Signal Component

D1 f 12.5–25 Noise with a small ballistocardiogram component
D2 f 6.25–12.5 Ballistocardiogram is the main component
D3 f 3.125–6.25 Low frequency ballistocardiogram + body motion noise
D4 f 1.5625–3.125 Some body moving noise
D5 f 0.7813–1.5625 Partial body movement + partial respiration
Ad

j 0–0.7813 Respiratory signal and DC baseline

In order to show the effect of wavelet decomposition, the operation process of the
algorithm in the acquisition was simulated. The sleep signal with a length of 10 s which
was collected by the hardware device of this work was input. The quasi-reconstructed
signals of each approximate coefficient after wavelet decomposition are shown in Figure 8.

It can be seen that after decomposition, five high-frequency approximation coefficients
Dj f and one low-frequency approximation number Ad

j are obtained. The suction signal

has basically been decomposed into the reconstructed signal of Ad
j . Since the frequency

components of BCG are relatively complex and distributed in the reconstructed signals of
D1−3 f , it is necessary to select a scale covering both frequency components for reconstruc-
tion in the subsequent two signal reconstruction processes. The DB5 wavelet is used to
transform the original signal from the time domain to wavelet domain, and the appropriate
threshold function is selected for certain nonlinear processing to eliminate the noise coef-
ficient. Finally, according to the distribution of frequency components of the respiratory
signal and BCG in each scale, the appropriate approximate wavelet coefficients are selected
to reconstruct the dual signals, so as to achieve signal separation and denoising.
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Figure 8. Reconstructed signal graphs at various scales.

In the process of testing the preprocessing algorithm, in order to ensure the effective-
ness and intuitiveness of the effect, an actual signal about 10 s was randomly selected in
the experiment, which was collected by the hardware acquisition device of this design. The
process of signal separation and denoising in the whole experiment process was simulated,
and the spectrum of the separated signal was obtained as shown in Figure 9.

Figure 9. Spectrum diagram of separated signal.

As can be seen from Figure 9, the main components of BCG are between 3–15 Hz,
and the main components of the respiratory signal are between 0.3–0.8 Hz, which are
consistent with the expected frequency range, further indicating that the signal frequency
range reconstructed by the wavelet coefficient is clear, and the separated signal has obvious
waveform characteristics.
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A comprehensive comparison was made between EMD [22], complementary ensemble
empirical mode decomposition (CEEMD) [25], and our proposed wavelet decomposition
and reconstruction algorithm. The comparison of reconstruction effects of BCG is shown
in Figure 10.

Figure 10. Diagram of BCG signal reconstruction effects.

The above three methods were also used to reconstruct respiratory signals, and the
results are shown in Figure 11. As can be seen from the figure, respiratory signals recon-
structed by EMD are easy to be aliased into other IMF components that do not meet the
energy threshold, and signal loss phenomenon easily occurs. CEEMD is an improved
algorithm for the frequency aliasing phenomenon of EMD in essence, so the separation
results are relatively good. The decomposition and reconstruction based on WT can restore
the respiratory signal waveform with high stability.

Figure 11. Diagram of respiratory signal reconstruction effects.

3.2. Feature Parameter Extraction

After pretreatment, the reconstructed BCG signal is a relatively pure signal, and
without interference noise such as baseline drift, the J-peak can be extracted. Due to the
existence of a refractory period and arrhythmia, the J-peak should be corrected. A refractory
period means that the average person’s heart rate is less than 300 beats per minute, and after
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one heartbeat occurs, no other heartbeat occurs within a certain time interval. Therefore, the
specific process is as follows: first, solve the maximum value of the whole sequence, judge
whether its maximum value meets the set peak threshold USH , and judge it as a J-peak.
If a J-peak has been predetermined, other extreme points that meet the J-peak standard
detected within 220 ms of the signal sequence will be ignored to avoid false detection
caused by noise interference. At the same time, when the distance between an adjacent
J-peak is less than 0.4 meanjj (meanjj refers to the mean of all J-peak intervals, which is
temporarily determined as the mean of J-peak intervals of a breathing frame in this system),
the J-peak is considered to be wrongly detected, and the J-peak with the smaller amplitude
is removed if the larger amplitude is retained. When the distance between adjacent J-peaks
is greater than 1.66 meanjj, it is considered that a J-peak has been missed, and the threshold
value should be adjusted to be detected again in this interval. If the J-peak is still not found,
arrhythmia will be identified and the next J-peak will be determined [26]. The system
defines the threshold as follows, where bias is the adaptive offset value:

Peak threshold:
USH < 0.02 + bias (2)

Minimum peak-to-peak interval threshold:

DSH < 0.22 (3)

The position of a J-peak can be accurately calibrated. As shown in Figure 12, the
identified J-peaks are marked with red circles.

Figure 12. J-wave-peak extraction.

General heart rate refers to the number of beats of the heart per minute, which can be
indirectly expressed by the instantaneous heart rate, and the instantaneous heart rate can
be obtained by calculating the reciprocal of the time difference between BCG’s adjacent
J-wave peaks. Assume that the time point of peak J of each BCG signal is Bn in the sequence
of the current breathing frame, as shown in Figure 13.

Figure 13. Time point extraction.

The heartbeat times of normal people, namely HR, are generally between 60 and
120 times within 1 min. In this work, the average of normal-to-normal interval (AVNN) in-
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dex should be calculated using the mean value within a respiration wave, and its calculation
expression is as follows:

AVNN =
1

N − 1 ∑N−1
i=1

Fn

Bn+1 − Bn
(N > 1) (4)

where N is the number of J-peaks of BCG in a respiratory wave, and Fn is the sampling
frequency of hardware collection equipment.

The calculation of standard deviation (SD) during successive heartbeats is mainly
performed on all heartbeat intervals within each breathing frame in this work, and standard
deviation of normal-to-normal intervals (SDNN) can be obtained:

SDNN =
1

N − 1

N−1

∑
i=1

Fn

Bn+1 − Bn
(N > 1) (5)

The coefficient of variation (CV) is essentially the quotient of SD and mean heart rate
during successive heartbeats, which can be translated into the ratio of partial variability
and is easily predicts and reflect the variation in human physiological conditions. The
expression is as follows:

CV =
AVNN
SDNN

(6)

The breath wave period is the time length of a breath wave. In the process of breathing,
the end of exhalation corresponds to the peak of the breath wave and the end of inspiration
corresponds to the trough of the breath wave. Therefore, the breath wave period can be
obtained by subtracting two breath wave peaks or by subtracting two breath wave troughs.
A relatively complete breath wave was obtained in the single frame interception of signal
preprocessing. In order to reduce computation, the number of sampling points of the
current breath frame was used in this work and divides the sampling frequency to obtain
the breath wave period.

Equation (7) is the calculation formula of the breath wave period Ti, Ci is the number of
sampling points in the current breath frame, and Fn is the sampling frequency of hardware
acquisition equipment.

Ti = Ci/Fn (7)

The similarity of the respiratory waveform is the calculation of the similarity between
the normal and reconstructed respiratory waveform, which can directly reflect the abnormal
state of respiration. After the above single frame interception and respiration reconstruction,
a single respiration waveform can be obtained at this time. Since respiration intensity varies
from person to person, in order to uniformly use a normal respiration waveform, it is
necessary to normalize the entropy of reconstructed waveform data and then judge the
degree of cross-correlation. The cross-correlation judgment formula is as follows:

R f ,g(n) = ∑N
k=0 f ∗(k)·g(k + n) (8)

where f is the standard respiratory wave data series, g is the respiratory wave data series
obtained from actual collection and reconstruction, R f ,g is the correlation degree value
between f and g sequences, n is the delay time of correlation calculation, and n is less than
the sum of the length of f and g sequences.

Since respiratory signals have randomness of amplitude, frequency, and time, the
delay time cannot be determined by logical operation. Therefore, the maximum value of
the correlation of the two sequences is used as the similarity of the two signals, and the
formula is as follows:

ξ =
max

(
R f ,g

)
max

(
R f , f

) × 100% (9)
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where R f , f is the autocorrelation degree value of a standard respiratory wave data series.
By the calculated value of ξ, the current interception of breath and breathing normally wave
similarity can be learned, in addition to the breathing waveform capture setting adaptive
threshold and the entropy integral normalized processing, making the breathing waveform
similarity calculation have strong adaptability. As shown in Figure 14, the signal within
25 s is processed and a similarity of the respiratory waveform is calculated.

Figure 14. The schematic diagram of respiratory waveform similarity.

As can be seen from Figure 14, when calculating normal respiratory signals, the simi-
larity is over 70%, while when abnormal respiration occurs, the similarity is significantly
reduced, especially when apnea occurs, where the similarity is less than 40% and lasts for a
long time. It can be seen that the respiratory waveform similarity has a high sensitivity to
the signal during apnea time.

3.3. Classification of SAHS

Using physiological signal parameters to determine sleep apnea is essentially a di-
chotomous problem. The logistic regression model is mainly used for dichotomous de-
tection [27–29]. Compared with the existing machine learning model, the calculation is
faster and simpler, and more suitable for engineering projects [30]. Therefore, this project
designed a binomial logistic regression model to discriminate and classify.

In the binomial logistic regression model by the conditional probability distribution
P(Y|X), according to the independent variables in which previous calculation of the signal

characteristic parameters of X =
(

x(1), x(2), . . . . . . x(m)
)T

are valued as the real vector
space of m dimension Rm, the dependent variable is the output variable Y values of 1 and 0.
Assuming that the distribution of independent variable parameters of sleep apnea follows
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the property of a logistic regression model, the conditional probability distribution of the
model is shown in Equations (10) and (11) [31]:

P(Y = 1|X = x) =
exp(w·x + b)

1 + exp(w·x + b)
(10)

P(Y = 0|X = x) =
1

1 + exp(w·x + b)
(11)

where w = (w1, w2, . . . . . . , wm)
T ∈ Rm is the weight vector parameter and b ∈ R is the

offset parameter. In addition, w·x represents the inner product of w and x, namely wTx.
When uniformly classifying the weight vector parameters w and b, it can still be

denoted as w. In this case, w = (w1, w2, . . . . . . , wm, b)T is also denoted as

X =
(

x(1), x(2), . . . . . . x(m), 1
)T

. At this point, the binomial logistic regression model
can be expressed by Equations (12) and (13) [31]:

P(Y = 1|X = x) =
exp(w·x)

1 + exp(w·x) (12)

P(Y = 0|X = x) =
1

1 + exp(w·x) (13)

After using the experimental data for model parameters and determining the value
vector parameter w, the actual test data on the plug type and output parameters can
be obtained for the 1 s and 0 s P(Y = 1|X = x) and P(Y = 0|X = x) probability.
Then, according to the preset threshold v to judge the value of the output parameter Y, if
P(Y = 1|X = x) ≥ v, then the output parameter Y is judged as 1, otherwise it is 0, usually
the threshold v =0.5.

Maximum Likelihood Estimate (MLE) is used to solve the parameters to be esti-
mated in the Logit regression model [32,33]. Assume that P(Y = 1|X = x) = π(x), then
P(Y = 0|X = x) = 1− π(x), and for n samples of the training data set, the likelihood
function is shown in Equation (14):

L(w) =
n

∏
i=1

[π(xi)]
yi [1− π(xi)]

1−yi (14)

The logarithmic likelihood function is shown in Equation (15):

l(w) = ln(L(w)) = ∑n
i=1[yi(w·xi)− ln(1 + exp(w·xi))] (15)

Then, the estimated parameter ŵ can be obtained by solving the maximum value
of l(w). When solving ŵ, the gradient iteration method or Newton iteration method is
generally adopted, and the binomial Logit regression model estimated at last is shown in
Equations (16) and (17):

P(Y = 1|x) = exp(ŵ·x)
1 + exp(ŵ·x) (16)

P(Y = 0|x) = 1
1 + exp(ŵ·x) (17)

Assume that 800 groups of sample data are inserted into the model independent vari-
ables and the estimated parameter ŵ can be obtained after the above iterations. Therefore,
the binomial Logit regression model can be constructed.

4. Verification

Before the establishment of the model, in order to verify the accuracy of the parameters
obtained in the experiment, 100 groups of preprocessed breath frames were randomly
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selected from the experimental data, and the heartbeat times and duration of each breath
frame were taken as the analytical data for verification. These two parameters had a
decisive impact on the characteristic parameters of the model. The synchronous comparison
between the ECG monitoring device and the actual separated BCG signals is shown in
Figure 15.

Figure 15. The synchronization comparison between BCG and ECG.

As the conduction velocity of an electrical signal is much higher than that of a pressure
signal, the occurrence of BCG will lag behind that of ECG. It can be seen that only one
(blue circle in Figure 15) BCG signal was not detected due to partial interference or the
influence of human body motion. However, the J-peak of BCG and the R-peak of ECG
can be synchronized after phase shift, the overall detection rate of the BCG signal was
quite high, and part of the false detection and missing detection can be removed in the
subsequent equalization and depolarization.

In this work, the Pearson correlation coefficient and Bland–Altman diagram were
introduced for consistency assessment. Among them, the Pearson correlation coefficient
can be a good measure of linear correlation [34,35], and the Bland–Altman diagram can
intuitively show the consistency of reaction data [36,37]. The results are shown in Figure 16.

Figure 16. The correlation of respiratory wave duration (a) and Bland–Altman analysis diagram (b);
the correlation of heartbeat number (c) and Bland–Altman analysis chart in breathing frame (d).

The evaluation results showed that the duration of a single respiratory wave and the
number of jumps in the breathing frame measured by the sleep monitoring system had a
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strong correlation with the measured actual value, which indicated that the predicted value
was highly linear relative to the actual value (Figure 16a,c). Moreover, in the Bland–Altman
analysis, the variation in the average can be described by the SD. When the difference in
the measurement results follows a normal distribution, then 95% of the difference should
be between d− 1.96SD, d− 1.96SD, which is called the 95% limits of agreement (LoA) [38].
From the obtained results, it can be seen that 95% of the points in the breath detection fell
within the 95% LoA (Figure 16b). In the heartbeat detection, 97% of the points fell within
the 95% LoA (Figure 16d). Such results showed that the data collected and processed by
the system in this work were consistent with the actual situation, and also showed that the
physiological data parameters based on the system in this work can be used for the actual
model establishment and analysis.

The test data of four volunteers were substituted into the constructed binomial Logit
regression model as experimental verification data to classify apnea. The classification
results are shown in Table 3.

Table 3. The verification result statistics of test data of four volunteers.

Tester Actual Apnea The Model Identified
Apnea Times

Leaving Out the
Number

Percentage of
Accuracy

1 5 5 0 100%
2 4 4 0 100%
3 8 7 1 87.5%
4 3 2 1 66.7%

mean 5 4.5 0.5 90%

The results showed that the identification accuracy of apnea based on Logit regression
model was about 90%, which basically could identify apnea symptoms well. For the
undetected data, the reason might be due to the short duration of apnea, which was
at the boundary of the discriminant condition. If the fitting sample was large enough
and the output parameter threshold was optimized, the classification accuracy would be
greatly improved.

The research on the monitoring of sleep apnea based on mattresses is relatively limited,
and the conclusions of the research are inconsistent. For example, K. Nagatomo et al. [39]
compared the Nemuri SCAN (NSCAN) mattress produced by Paramount Bed Co., Ltd.
with the reference standard PSG for 24 h. The results showed that although the subjective
sleep evaluation of the Richards-Campbell Sleep Questionnaire was positively correlated
with the parameters measured by PSG, it was not correlated with the sleep parameters
measured by NSCAN, and the role of NSCAN in critical patients needed further explo-
ration. J. Toominen et al. [40] used the commercially available household sleep monitoring
device Beddit sleep Tracker (BST) to study the simultaneous sleep of PSG and BST for
two consecutive nights in 10 healthy young people. This research showed that this device
has poor correlation in estimating sleep continuity measurement and is not an effective
device for monitoring sleep. P. Edouard et al. [36] completed one night of simultaneous
PSG and Withings Sleep Analyzer (WAS) recording in a sleep clinic for 118 patients sus-
pected of obstructive sleep apnea syndrome. The best sensitivity that WAS obtained was
88%. The authors believe that WAS can accurately detect moderate to severe sleep apnea
syndrome in patients suspected of sleep apnea syndrome, which can have great clinical
value. In comparison, the 90% accuracy rate presented in our study is still considerable.
However, there are limitations to our study. First of all, only some important parameters
were selected from the extracted signal data to determine the binary model of apnea. In
fact, there are some special states in human sleep, such as turning over and snoring, which
are closely related to individual diseases and may lead to misleading judgment of apnea.
Secondly, more information can be mined during sleep, such as sleep stages, sleep quality
assessment, etc. More accurate sleep monitoring indicators can be obtained by using more
complex classification methods. Finally, although the symptoms targeted by this working
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system cover a large number of people, it is difficult to really extract the naturally occurring
apnea signal in the actual test. Therefore, it is hoped that in the future, there will be more
opportunities to truly apply it to the clinic and obtain more data to improve the model so
as to promote the accuracy and practicability of this system to a wider direction.

5. Conclusions

In this work, we designed a mattress-type non-affecting sleep apnea monitoring
system, which can extract BCG and respiratory signals from the pressure signals during
sleep. In signal pretreatment, WT was used for signal separation and denoising to directly
and accurately separate BCG and respiratory signals. In feature extraction, the respiratory
waveform similarity index was innovatively proposed on the basis of SAHS common
features. A binomial logistic regression model was used to determine the symptoms of
sleep apnea in the signal segment during apnea detection. Simulation and experimental
results showed that the algorithm has high availability. In this work, respiratory problems
were analyzed, but there is still a lot of information in sleep that can be mined, such as
sleep staging and sleep quality assessment. For this additional information, more complex
classification methods, such as support vector machines and decision trees, can be used to
build models so as to obtain more comprehensive analysis, which can also make the signals
extracted by the system in this work applied in a wider range.
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