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Abstract: The identification of ground intrusion is a key and important technology in the national
public security field. In this paper, a novel variational mode decomposition (VMD) and Hilbert
transform (HT) is proposed for the classification of seismic signals generated by ground intrusion
activities using a seismic sensing system. Firstly, the representative seismic data, including bicycles,
vehicles, footsteps, excavations, and environmental noises, were collected through the designed ex-
periment. Secondly, each original datum is decomposed through VMD and five Band-limited intrinsic
mode functions (BIMF) are obtained, respectively, which will be used to generate a corresponding
marginal spectrum that can reflect the actual frequency component of the signal accurately by HT.
Then, three features related to the marginal spectrum, including marginal spectrum energy, marginal
spectrum entropy, and marginal spectrum dominant frequency, are extracted for the analysis of the
multi-classification using the support vector machine (SVM) classifier with the LIBSVM library. For
the sake of testing and verifying the effectiveness of the proposed variational mode decomposition
and Hilbert transform (VMD-HT) technique, the evaluation indicators including accuracy, precision,
recall, and F1-Score are used and the results are compared with the time domain, frequency domain,
ensemble empirical mode decomposition (EEMD), and empirical wavelet transform (EWT) combined
with the HT analysis method. The performance of the VMD-HT method for ground intrusion activity
classification provides an average value of 99.50%, 98.76%, 98.76%, and 98.75% for the four evaluation
indicators, which are higher than all the other contrasted methods.

Keywords: ground intrusion activity; seismic signal analysis; variational mode decomposition;
Hilbert transform; feature extraction; marginal spectrum; support vector machine

1. Introduction

Ground intrusion activities refer to illegal, unregistered, or prohibited users entering
the designated area, thus causing acts endangering public security. For example, smuggling,
drug trafficking, and illegal immigration in border areas. The theft of oil, gas, and chemical
products through illegal vandalism and punching and theft in banks, vaults, museums,
ancient tombs, and other places, and even some military actions that threaten national
homeland security. Such intrusions pose a great threat to national security and the safety of
people’s lives and property.

At present, the commonly used monitoring methods for intrusion mainly include
infrared detection [1], pulse electronic fence [2], intelligent video analysis [3], Wi-Fi Net-
works [4], and microwave detection [5]. Although the above monitoring methods have
achieved good intrusion detection results, there are still some limitations in terms of environ-
ment, electromagnetic interference, and concealment. The intrusion activities monitoring
based on the seismic sensing system is to use the friction and impact between the intrusion
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activity and the ground to cause slight surface deformation, which will induce the seismic
signal transmitted through the ground. The seismic sensing system can effectively respond
to such stress and strain and convert the seismic signal into an electrical signal. In prac-
tice, the seismic sensor can be completely buried underground, closely coupled with the
soil, and thus highly hidden from the surrounding environment. In addition, the seismic
sensing system belongs to non-line-of-sight sensing and is not limited by topographic and
geomorphic factors. Therefore, the seismic sensing system has the unique advantage of
ground intrusion activity classification [6].

In recent years, many scholars have studied the classification and identification of
intrusion signals using seismic sensing systems. It mainly includes the following cases: clas-
sification of different types of targets [7–11], such as human, animal, vehicle, excavation, etc.
Classification of different vehicles [12–14], including light vehicles, heavy vehicles, wheeled
vehicles, and tracked vehicles. Classification of human attributes [15–17], such as gender,
height, weight, etc. There is also the classification of individual targets and noises [18–20].
The above-presented studies of various researchers reported that time-domain analysis can-
not provide oscillation information on account of nonlinear and non-stationary intrusion
signals, and the seismic waves propagate in different forms, directions, and speeds, leading
to the complexity of seismic signal waveforms. Furthermore, frequency-domain analysis
cannot observe the information about the frequency change of non-stationary seismic
signals with time, and it provides the distribution of all signals in each frequency band due
to the underlying non-stationary nature of the observed seismic signals. The seismic signals
generated by ground intrusion activities have the characteristics of frequency varying with
time. Therefore, the time-frequency analysis method can more deeply reflect the variation
law of seismic signals. Many scholars have used time-frequency analysis methods to study
the classification and recognition of ground seismic signals.

Short time-Fourier transform (STFT) [21–23] is one of the basic time-frequency analysis
techniques and it has been used for the classification and identification of intrusion signals.
Jinhui Lan et al. proposed a vehicle detection and noise removal solution based on STFT and
solved the recognition problem for moving ground targets effectively [24], but STFT requires
predefined window lengths, resulting in a fixed time and frequency resolution. In order
to solve this problem, wavelet transform and wavelet packet transform that overcomes
the fixed time-frequency resolution by adaptive windows are performed [25]. Wavelet
transform has the problem of selecting the mother wavelet, which depends on the similarity
between the mother wavelet and the signal to be analyzed. For this, Manish Kalra [26]
proposed different modes of seismic signal extraction based on empirical wavelet transform
(EWT), calculated statistical characteristics such as mean value, energy concentration,
kurtosis, and entropy by EWT time-frequency coefficient, and obtained the classification
accuracy of 83% for ground moving targets. For the sake of avoiding the selection of
the parent wavelet function, Huang et al. proposed an empirical mode decomposition
(EMD) method to construct an adaptive representation [27], and Kun Liu et al. decomposed
the intrusion signal into intrinsic mode function (IMF) through EMD as a preprocessing
step and then extracted the kurtosis feature. The proposed scheme can work well in
extracting the feature vectors and in discriminating intrusion events [28]. Although EMD
is a highly adaptive technique, it is an iterative algorithm without any theoretical and
mathematical basis, and there is mode aliasing effect, which affects the performance and
effect of classification. On the basis of EMD, ensemble empirical mode decomposition
(EEMD) introduces white noise perturbation and ensemble average of signals, so as to
avoid the problem of scale mixing and ensure the physical uniqueness of each component.
Liu Zhiqiang et al. proposed an EEMD method combined with the advantages of principal
component analysis to retain most of the relevant features [29]. Qu Hongquan et al. used
the EEMD method to construct feature vectors with the energy ratio of each component of
the IMF and then achieved ideal recognition accuracy [30].

Compared with EMD, the EEMD method and variational mode decomposition (VMD)
method constructs the Wiener filter according to the center frequency of the component
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and takes the narrow-band property of the component into full consideration [31], so
the frequency band of filtering is more concentrated, and the signal can be decomposed
into components with coefficient characteristics adaptively [32]. With a solid theoretical
foundation, the VMD method has been successfully applied in many fields such as seismic
data analysis [33–35], Time-Varying system identification [36], structural health monitor-
ing [37,38], Micro-Motion signal processing [39], fault detection and classification [40].

In this paper, a time-frequency analysis method based on VMD and Hilbert transform
(HT) joint processing is proposed to extract the time-frequency-domain features of several
typical ground intrusion seismic signals, including bicycles, vehicles, footsteps, excavations,
and environmental noises, and then the classification of ground intrusion signal is studied
by support vector machine (SVM) classifiers. The main contributions of this paper are
summarized as follows:

• The self-developed continuous seismic data acquisition sensing system is introduced
into the classification research of ground intrusion activities, which provides an intru-
sion monitoring method with concealability and non-invasion of personal privacy.

• A novel time-frequency technique combined with VMD and HT is proposed for seismic
signals analysis. Three more representative features that can be further analyzed by
the change rules of seismic signals are extracted, including marginal spectrum energy,
marginal spectrum entropy, and marginal spectrum dominant frequency.

• The proposed variational mode decomposition and Hilbert transform (VMD-HT)
method increases the classification accuracy, precision, recall, and F1-Score of ground
intrusion signals compared with the time-domain analysis, the frequency-domain anal-
ysis, the ensemble empirical mode decomposition and Hilbert transform (EEMD-HT)
time-frequency analysis, and the empirical wavelet transform and Hilbert transform
(EWT-HT) time-frequency analysis method. We consider that the proposed method
has broad application prospects for the classification of ground intrusion activity.

The rest of the paper is organized as follows: Section 2 describes the main theories,
steps, and methods including the dataset, data preprocessing, VMD, HT, feature extraction,
and classifier for the classification algorithm of ground intrusion activities. In Section 3,
the comparison experiments of performance analysis with other features and methods are
given, respectively. Finally, some conclusions and future work are presented in Section 4.

2. Methods

This section introduces the main steps involved in the classification algorithm of
ground intrusion activities based on VMD and HT. As shown in Figure 1, it mainly includes
experimental design and implementation of ground intrusion seismic signals acquisition,
preprocessing of seismic signals, time-frequency-domain feature analysis and extraction
based on VMD-HT, and the classification of different ground intrusion seismic signals by
SVM classifier.

2.1. Dataset

The Continuous Data Acquisition System [41] is used for collecting the seismic signals
generated by ground intrusion activities and the experimental design and implementa-
tion are shown in Figure 2. Twelve three-component moving-coil sensors with a natural
frequency of 4.5 Hz and a sensitivity of 1.8 V/cm/s and collection stations with 1 KHz
sampling frequency are arranged along the roadside in a straight line with 2 m spacing.
Only one target moved near the sensor at a time during data acquisition and the trajectory
of the controlled target is a straight line parallel to the road. To avoid the unacceptable
differences in seismic energy between different target types, the effective data recording
distance range of vehicles, bicycles, and personnel are (−50, 50 m), (−30, 30 m), (−15, 15 m),
respectively. The excavation activities were carried out randomly within (−12, 12 m) along
the route. The data set of ground intrusion seismic signals also includes the background
noise of earth pulsation and the environmental noise in addition to the seismic signals of
other targets during the experiment. The durations of seismic signals induced by bicycles,
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vehicles, footsteps, and excavations are different, the duration of vehicles is relatively
long, and the footsteps and excavations are relatively short. Therefore, the segmentation
lengths of different types of ground intrusion seismic signals are 2.5 s for vehicles, 2.0 s for
bicycles, 0.25 s for footsteps, 0.3 s for excavations, and 1.5 s for noises, respectively. Finally,
1500 segmentations of data corresponding to each class are used for analysis.
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Figure 1. The algorithm flow chart of the classification for ground intrusion activities based on
variational mode decomposition (VMD) and Hilbert transform (HT) time-frequency technique.
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Figure 2. Experimental design and implementation of ground intrusion seismic signals acquisition
using continuous seismic data acquisition sensing system.

2.2. Data Preprocessing

To improve the classification accuracy of ground intrusion seismic signals, it is nec-
essary to preprocess the original signals, including data segmentation, removal of direct-
current (DC) component, and data normalization. The data segmentation preprocessing
operation is mentioned in Section 2.1.

The collected original seismic signal often contains a DC component due to the in-
fluence of the acquisition circuit. The frequency spectrum leakage of the DC component
affects the accuracy of the low-frequency spectrum seriously. In order to ensure that the
initial seismic energy of each acquisition unit is at the same level, it is necessary to remove
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the DC component of the original seismic signals before feature extraction and classification.
The DC component is called the mean value in statistics. Therefore, this paper adopts the
method of removing the mean value from the time domain to remove the DC component.

Since the energy of seismic signals generated by different intrusion activities are quite
different, if the absolute value of energy is not converted into a relative relationship and
the data with different energy sizes are directly input into the classifier, the classification
accuracy will be affected. Here, we utilize the maximum-minimum normalization method
to normalize the seismic data. After that, the value range of the original data is converted
to an interval [0, 1]. As shown in Equation (1), X represents the original data, Xmax and
Xmin represent the maximum and minimum values in the original data, and Xnorm is the
data after normalization.

Xnorm =
X− Xmin

Xmax − Xmin
(1)

2.3. Variational Mode Decomposition

The overall framework of VMD is variational problem, which is a completely non-
recursive adaptive signal processing method. The band-limited intrinsic mode function
(BIMF) is defined as an amplitude and frequency modulation signal, and its expression is
described as follows:

uk(t) = Ak(t) cos(ωk(t)) (2)

where uk(t) is the k-th BIMF, Ak(t) is the instantaneous amplitude of uk(t), ωk(t) is instan-
taneous frequency of uk(t).

The k modal functions uk(t) are sought through iterative search, and the sum of the
estimated bandwidth of each mode is minimized on the premise that the sum of all BIMF
components is the original signal. The following steps are utilized for the implementation
of VMD:

(1) Perform Hilbert transformation to obtain the analytical signal of each modal
function uk(t). Thus, the unilateral spectrum of each modal function is obtained, and the
relevant analytic signal is as follows:

Sanalytic = (δ(t) +
j

πt
) ∗ uk(t) (3)

where δ(t) is unit impulse function, j is an imaginary unit, t is the time-domain variable,
and ∗ is convolution.

(2) Add an estimated center frequency e−jωkt to the analytical signal of each mode and
modulate the spectrum to the corresponding baseband:

Sbase−band = [(δ(t) +
j

πt
) ∗ uk(t)]e−jωkt (4)

(3) Find the squared L2-norm of the gradient in Equation (4), then the variational
problem can be expressed as follows:

min
{uk},{ωk}

{
∑
k

∂t

∥∥∥∥[(δ(t) + j
πt

) ∗ uk(t)]e−jωkt
∥∥∥∥2

2

}
(5)

s.t.∑
k

uk = f (6)

where {uk} = {u1, . . . , uK} and {ωk} = {ω1, . . . , ωK} are shorthand notations for the set

of all modes and their center frequencies, respectively. Equally, ∑
k
=

K
∑

k=1
is understood as

the summation over all modes, ∂t represents the first partial derivative of a function with
respect to time, and f is the decomposed signal.
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The quadratic penalty factor α and Lagrange multiplication operator λ(t) are intro-
duced to change the constrained variational problem into a non-constrained one. The
expanded Lagrangian expression is as follows:

ûn+1
k (ω) =

f̂ (ω)−∑i<k ûn+1
i (ω)−∑i>k ûn

i (ω) +
λ̂n(ω)

2

1 + 2α
(
ω−ωn

k
)2 (7)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

(8)

λ̂n+1(ω) = λ̂n(ω) + τ( f̂ (ω)−∑
k

ûn+1
k (w)) (9)

whereˆis the Fourier transform, ω is the frequency-domain variable, i ∈ {K|i 6= k}, n is the
number of iterations, and τ is the iteration step.

The VMD algorithm process is as follows:

(i) First, initialize
{

û1
k
}

,
{

ω1
k
}

,
{

λ̂1}, and n = 0.
(ii) Execute Loop n = n + 1.
(iii) Update ûn+1

k , ωn+1
k , and λ̂n+1, according to Equations (7)–(9).

(iv) For the given discrimination accuracy e > 0, if ∑
k

‖ûn+1
k −ûn

k‖
2
2

‖ûn
k‖

2
2

< e, then stop iteration;

otherwise, return to step (ii).

Before VMD of the preprocessed ground intrusion seismic signals, we first initialize
the parameter α to 2000, the noise tolerance τ to 0, the maximum number of iterations to
500, and K to 5. Then, five BIMF components are obtained after VMD algorithm as shown
in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 20 
 

 

(ii) Execute Loop = + 1n n . 

(iii) Update $ 1n

ku
+

,  +1n

k
, and $

+1n

, according to Equations (7)–(9). 

(iv) For the given discrimination accuracy  0e , if 

$ $

$

+

−



2
1

2

2

2

n n

k k

nk
k

u u

e

u

, then stop iteration; 

otherwise, return to step (ii). 

Before VMD of the preprocessed ground intrusion seismic signals, we first initialize 

the parameter   to 2000, the noise tolerance   to 0, the maximum number of iterations 

to 500, and K  to 5. Then, five BIMF components are obtained after VMD algorithm as 

shown in Figure 3. 

 

 

 
 

(a) (b) (c) 

   
(d)                             (e) 

Figure 3. VMD of different ground intrusion seismic signals to obtain band-limited intrinsic mode 

function (BIMF). (a) Five BIMF components of one bicycle signal. (b) Five BIMF components of one 

vehicle signal. (c) Five BIMF components of one footstep signal. (d) Five BIMF components of one 

noise signal. (e) Five BIMF components of one excavation signal. 

2.4. Hilbert Transform 

In order to analyze the change rule of intrusion seismic signals, Hilbert transform 

which has good time-frequency resolution and self-adaptability and can effectively avoid 

high-frequency interference in the analysis of nonlinear and non-stationary signal is car-

ried out for each BIMF component after VMD decomposition. The marginal spectrum ob-

tained by VMD-HT is used to reflect the actual frequency component information of the 

BIMF. The transformation process is as follows: 

µ
'

'

( )1 1
( ) ( ( )) ( )i

i i i

u t
u t H u t d u t

tt t


 



−
= = = 

−
 , (10) 

=( )( 1,2,3,4,5)
i

u t i  is the i-th BIMF component, µ( )
i

u t  is the Hilbert transform of ( )
i

u t , 

H  is the Hilbert operator, 1/ t  is the impulse response, t  and 't  is the time-domain 

−1

−2 −0.1

−0.2

−0.05

−0.05

−0.1

Figure 3. VMD of different ground intrusion seismic signals to obtain band-limited intrinsic mode
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vehicle signal. (c) Five BIMF components of one footstep signal. (d) Five BIMF components of one
noise signal. (e) Five BIMF components of one excavation signal.
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2.4. Hilbert Transform

In order to analyze the change rule of intrusion seismic signals, Hilbert transform
which has good time-frequency resolution and self-adaptability and can effectively avoid
high-frequency interference in the analysis of nonlinear and non-stationary signal is carried
out for each BIMF component after VMD decomposition. The marginal spectrum obtained
by VMD-HT is used to reflect the actual frequency component information of the BIMF.
The transformation process is as follows:

ûi(t) = H(ui(t)) =
1
π

∫ ∞

−∞

ui(t′)
t− t′

dτ = ui(t) ∗
1

πt
(10)

ui(t)(i = 1, 2, 3, 4, 5) is the i-th BIMF component, ûi(t) is the Hilbert transform of ui(t), H is
the Hilbert operator, 1/πt is the impulse response, t and t′ is the time-domain variable, and
∗ is convolution. Then, the analytic function zi(t) of the original signal can be expressed
as follows:

zi(t) = ui(t) + jûi(t) = Ai(t)ejθi(t) (11)

The instantaneous amplitude, phase, and frequency of analytic function, respectively,
are as follows:

Ai(t) =
√

u2
i (t) + ûi

2(t) (12)

θi(t) = arctan[
ûi(t)
ui(t)

] (13)

ωi(t) =
dθi(t)

dt
(14)

The Hilbert spectrum can be established as follows:

H(ω, t) = Re[
K

∑
i=1

Ai(t)ejωi(t)] = Re[
n

∑
i=1

Ai(t)ej
∫

ωi(t)dt] (15)

where Re[] means the real part of the signal. As can be seen from Equation (15), the signal
can obtain a three-dimensional Hilbert spectrum of time-frequency-energy through HT.
Frequency and amplitude are functions of time, and both are constants in Fourier analysis.
So, HT is more suitable for analyzing the time-frequency characteristics of a nonlinear
and non-stationary signal. By integrating H(ω, t) over time, the marginal spectrum can be
further defined as follows:

h(ω) =

∞∫
−∞

H(ω, t)dt (16)

In a statistical sense, the marginal spectrum represents the cumulative amplitude dis-
tribution of each frequency point of the whole data. If there is a frequency of energy present
in the signal, it means that there must be seismic waves of that frequency. In other words,
marginal spectrum can reflect the actual frequency components more accurately. Compared
with the existing signal feature extraction methods, it has better noise robustness [42]. In
consideration of the mentioned advantages of marginal spectrum, this paper uses it as
feature information to characterize the original seismic signals for ground intrusion activity
classification purposes. The work related to feature extraction will be elaborated on in the
next section.

2.5. Feature Extraction

Feature is a concise representation of signal. Feature extraction is to transform the
target signal and extract feature information that reflects the essential attributes of the
target. Its goal is to extract low-dimensional data that contains feature information from
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high-dimensional data [43]. For classification and recognition problems, feature extraction
is an important step. The more representative, robust, and effective the extracted features
are, the better the classification and recognition effect will be. According to the description
in Section 2.3, marginal spectrum-related information is used to construct features. In the
present article, three features, including marginal spectrum energy, marginal spectrum
entropy, and marginal spectrum dominant frequency value, have been used to classify the
different ground intrusion activities. The detailed introduction is as follows:

(1) Marginal Spectrum Energy [44]: The marginal spectrum energy is given by the
following equation:

E(ω) =
∫ ω2

ω1

h2(ω)dω (17)

ω1, ω2 is the starting and cutoff frequency of the marginal spectrum h(ω). The energy
value is normalized as follows:

NEk = Ek/
K

∑
k=1

Ek (18)

NE is the normalized energy, and Ek represents the energy value of the k-th BIMF compo-
nent in Equation (18). The energy value is calculated by squaring the marginal spectrum
which can reflect the actual frequency components. Therefore, the marginal spectrum en-
ergy enhances the actual frequency component of the seismic signals, which can suppress
the influence of noise.

(2) Marginal Spectrum Entropy [45]: Shannon applied entropy to deal with information
theory problems and defined information entropy as measure of uncertainty of the event,
which is generally used to evaluate the complexity and irregularity of signal. The more
complex and irregular the signal is, the higher the entropy value will be. As a kind of
nonlinear index, marginal spectrum entropy has good ability to distinguish complexity
and anti-interference. Hence, it is used to classify different ground intrusion activities that
are defined in Equation (19):

HHE = −
K

∑
k=1

pk ln pk (19)

where pk = h(k)/
K
∑

k=1
h(k) represents the probability of occurrence of the amplitude cor-

responding to the k-th frequency, and h(k) is the k-th marginal spectrum amplitude. The
normalization of marginal spectrum entropy can be obtained:

HE =
HHE
ln L

(20)

where L is the sequence length of h(k) in Equation (20).
(3) Marginal Spectrum Dominant Frequency [46]: The dominant frequency of marginal

spectrum is the frequency corresponding to the maximum amplitude of the signal. The
marginal spectrum dominant frequency of each BIMF component from one of the seismic
signals generated by different intrusion activities after VMD-HT is shown in Figure 4. It is
extracted and used for ground intrusion activity classification.

We obtain a total of 7500 samples dataset through the experiment in Section 2.1. To
select the optimal SVM classifier hyperparameters and train and test the classifier model.
We first divide the entire dataset into a training set and a testing set in terms of 70% and
30%. Therefore, the total number of training set samples is 5250 (5 classes, 1050 for each
class), and the number of testing set samples is 2250 (5 classes, 450 for each class). Then,
we introduce the method of five-fold cross-validation to divide the training samples into
5 copies, each of which serves as a cross-validation set (1050 samples in total, with a total of
5 classes, and 210 samples in each class), so as to obtain the optimal SVM classifier model.
After that, the testing set samples will be used for evaluating the classification effect of
the ground intrusion activities. Since the total number of BIMF is five for each sample, a
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total of 15(5× 3) features for each sample are extracted in time-frequency domain. These
features are then fed to the classifier for ground intrusion activities classification.
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2.6. Classifier

The design of the classifier is an important part to distinguish ground intrusion
activities accurately. A wide range of algorithms has been proposed for classification in
the literature, which include, but are not limited to, maximum likelihood (ML), k-nearest
neighbor (KNN), decision tree (DT), Gaussian mixture model (GMM), SVM, and artificial
neural network (ANN). SVM [47,48] is the most commonly used model for seismic signal
classification tasks [49].

The basic idea of SVM algorithm is to map samples in low-dimensional space to
high-dimensional space through kernel function, construct optimal hyperplane, and find
appropriate decision function to maximize the distance between samples separated by
hyperplane. Introducing the parameter penalty factor c and relaxation variable ξi, the
objective function and constraint conditions of the optimal hyperplane are as follows:

min
w,b

1
2
‖w‖2 + c

N

∑
i=1

ξi (21)

yi(w·xi + b) ≥ 1− ξi (22)



Sensors 2023, 23, 3674 11 of 19

where w is the weight, b is the deviation, i = 1, 2, . . . , N is the number of training samples,
xi is the i-th training sample, and yi is the classification result output.

The Lagrange function is as follows:

L(w, b, ξ) =
1
2
‖w‖2 −

N

∑
i=1

αi[yi(w·xi + b)− 1 + ξi] (23)

where αi is the Lagrange multiplier corresponding to the i-th training sample. By converting
the planning problem into the dual problem through the Lagrange function, the decision
function of the hyperplane is obtained as follows:

F(x) = sgn

(
N

∑
i=1

yiαiK(xi, xj) + b

)
(24)

where K(xi, xj) is the kernel function which represents the degree of similarity between
the xi and xj samples. Since radial basis function (RBF) kernel function is not limited by
the number of samples and feature dimensions, has fewer parameters to be determined,
and less complexity, the SVM classifier in this paper adopts RBF kernel function, whose
expression is as follows:

K(xi, xj) = exp (−g
∥∥xi − xj

∥∥)2 (25)

g is the RBF kernel function parameter, which determines the sample interval scale range.
The classification of the ground intrusion activities in this paper is a multi-classification

problem, so the LIBSVM [50] support vector library which establishes a classification
hyperplane as a decision surface is introduced. The isolation edge between positive and
negative examples can be maximized, which is a machine learning method developed
in accordance with the principle of structural risk minimization. Based on the above
methodology, the experimental results and analysis are presented in next section.

3. Experimental Results and Analysis

In this section, four evaluation indicators [51] are used to evaluate the excellent
performance of the features extracted by the proposed VMD-HT time-frequency method
and the other four methods including time-domain analysis, frequency-domain analysis,
the EEMD-HT time-frequency analysis, and the EWT-HT time-frequency analysis. The
four evaluation indicators are accuracy, precision, recall, and F1 scores, respectively. The
expression of the four evaluation indicators is as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(26)

Precision =
TP

TP + FP
(27)

Recall =
TP

TP + FN
(28)

F1− score =
2 ∗ Recall ∗ Precision

Recall + Precision
(29)

where TP means true positive, TN means true negative, FP means false positive, and FN is
false negative. The accuracy is the percentage of correct results in the total sample. The
precision represents the proportion of the number of correctly classified positive examples
to the number of positive. The recall represents the proportion of the number of positive
cases correctly classified to the actual number. F1-score is a comprehensive evaluation
based on the harmonic average of recall and precision. In order to prove the effectiveness
of the proposed VMD-HT time-frequency method, the results of a classification in a time
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domain and frequency domain and its features were compared with the time-frequency
features extracted by the proposed method. At the same time, it was also compared with
the time-frequency features extracted by EEMD, EWT time-frequency analysis method
with HT.

3.1. SVM Model Parameter Selection

In this paper, the radial basis kernel function with strong anti-interference to the noise
was selected. Then, the grid search method was used to select the penalty parameter c
and kernel function parameter g. As shown in Figure 5, we have used a quadratic SVM
kernel with five-fold cross-validation to evaluate the performance of the algorithm. The
penalty and kernel function parameters with the highest classification accuracy value in the
VMD-HT time-frequency-domain features training set were used as the model parameters
where c = 32 and g = 0.0078125. This method has also been used for other feature training
set data.
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Figure 5. The support vector machine (SVM) model parameter selection for VMD-HT time-frequency-
domain features training set (a) Contour map of SVM model parameter selection (b) 3D graphics of
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3.2. Classification Performance of Time, Frequency, and Proposed VMD-HT
Time-Frequency-Domain Features

The time domain includes 13 features such as mean value, kurtosis, and pulse factor.
The frequency domain includes 13 features such as center-of-gravity frequency, root-mean-
square frequency, and power spectrum density entropy. To analyze the superiority of the
proposed VMD-HT time-frequency method, these features were input into the classifier
model as feature vectors separately.

The confusion matrices are obtained from different domain features of the testing set,
which were not included in the training set of the classifier model shown in Figure 6a–c.
In the confusion matrix, the performance parameters including TP, TN, FP, and FN are
presented and can be used to calculate the four evaluation indicators shown in Figure 7a–d.
In comparison with other domain features, the VMD-HT time-frequency features produce
a 25.25% improved accuracy in the classification of bicycles, 9.14% for vehicles, 8.44% for
footsteps, 6.45% for noise, and 14.38% in the case of excavation. The improved precision,
recall, and F1-Score for all classes are shown in Table 1.
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Figure 6. The confusion matrices obtained from feature testing sets generated in different domains.
(a) Time-domain features. (b) Frequency-domain features. (c) VMD-HT time-frequency features.

Table 1. The improvement of proposed VMD-HT method on each class and each evaluation indicator
compared with other domain features.

Bicycle Vehicle Footstep Noise Excavation

Accuracy 25.25% 9.14% 8.44% 6.45% 14.38%
Precision 32.56% 9.87% 12.99% 0.81% 35.26%

Recall 11.36% 41.59% 32.25% 32.55% 41.44%
F1-Score 32.11% 35.36% 24.06% 27.51% 43.13%

Although it is slightly lower than the classification effect of time and frequency-domain
features in some individual classes such as accuracy for noise and precision for bicycles, it
can be seen from the comprehensive performance, as shown in Table 2. The average value
of the four evaluation indicators increased by 4.74%, 9.81%, 11.87%, and 11.59% compared
with time-domain features and increased by 20.71%, 26.85%, 51.80%, and 53.26% compared
with frequency-domain features. The results fully illustrated that the proposed method
produces an improved result for ground intrusion activities classification in comparison
with others, especially in the frequency domain.
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Table 2. Comprehensive classification performance of different domain features.

Accuracy Precision Recall F1-Score

Time-Domain Features 94.76% 88.95% 86.89% 87.16%
Frequency-Domain Features 78.79% 71.91% 46.96% 45.49%

VMD-HT Time-Frequency Features 99.50% 98.76% 98.76% 98.75%

3.3. Classification Performance Compared with EEMD-HT and EWT-HT Methods

In order to demonstrate the excellent performance of the proposed VMD-HT time-
frequency analysis method in the classification of ground intrusion activities. The EEMD
and EWT methods were used for elaborated analysis in this section. According to the
process of the VMD-HT algorithm, EEMD and EWT decomposition were performed on
the preprocessed seismic data, and the IMF of EWT decomposition was set as five. Since
the EEMD method cannot fix the number of decomposition components, we selected
5 IMF with the highest correlation to the original seismic signals after EEMD. Then, the HT
transform was executed for the obtained IMF. Three features, including marginal spectrum
energy, marginal spectrum entropy, and marginal spectrum dominant frequency, were
extracted and the feature sets which would be input to the SVM classifier were constructed.

As shown in Figure 8, the confusion matrices of EEMD-HT and EWT-HT methods
were obtained by using the feature testing set on the corresponding optimal SVM model,
and the four evaluation indicators of the three time-frequency analysis methods were
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obtained through calculation displayed in Figure 9. As can be seen from Figure 9a, the
classification accuracy by the three time-frequency analysis methods can all reach more
than 96% in the five classes, and in the bicycle and footstep class, the classification accuracy
of the EEMD-HT method is slightly higher than that of VMD-HT method proposed in this
paper. As can be seen from Figure 9b, in terms of the classification accuracy index, the
VMD-HT method is slightly higher than the EEMD-HT method in the other four classes
except for vehicles. As shown in Figure 9c, the recall rates of the three methods are similar
in the footstep class, and the performance of the VMD-HT method is more outstanding in
the other four classes. Figure 9d also illustrates the excellent performance of the proposed
method from the F1-score indicator. Although the EEMD-HT method and EWT-HT method
also show good performance in some indicators and some classes, it can be seen from
Table 3 that the VMD-HT method proposed in this paper has a certain improvement in
average performance compared with the other two methods in terms of four evaluation
indicators in all classes. As shown in Table 4, the VMD-HT time-frequency analysis method
has shown the best performance in accuracy, precision, recall, and F1-Score for each class
and the overall classification effect. The average value of the four evaluation indicators
increased by 0.92%, 2.21%, 2.30%, and 2.30% compared with the EEMD-HT method and
increased by 3.07%, 10.81%, 7.68%, and 9.48% compared with the EWT-HT method. It can
also be seen that the features extracted by the time-frequency analysis method, including
VMD, EEMD, and EWT can obtain better classification effects compared with the time or
frequency-domain analysis method in the classification of ground intrusion activities.
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Figure 8. The confusion matrices obtained from testing sets generated by different time-frequency meth-
ods. (a) Ensemble empirical mode decomposition and Hilbert transform (EEMD-HT) time-frequency
features. (b) Empirical wavelet transform and Hilbert transform (EWT-HT) time-frequency features.

Table 3. The improvement of proposed VMD-HT method on each class and each evaluation indicator
compared with EEMD-HT and EWT-HT time-frequency methods.

Bicycle Vehicle Footstep Noise Excavation

Accuracy 0.98% 1.63% 1.91% 2.91% 2.58%
Precision 0.68% 5.82% 7.65% 4.41% 6.03%

Recall 4.35% 1.90% 0.45% 10.50% 7.75%
F1-Score 2.54% 3.94% 4.37% 7.58% 11.09%
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Table 4. Comprehensive classification performance of different time-frequency methods.

Accuracy Precision Recall F1-Score

EEMD-HT Time-Frequency method 98.58% 96.55% 96.46% 96.45%
EWT-HT Time-Frequency method 96.43% 87.95% 91.08% 89.27%
VMD-HT Time-Frequency method 99.50% 98.76% 98.76% 98.75%

4. Conclusions and Future Work

In this paper, we have proposed and investigated the potential of variational mode
decomposition and Hilbert transform-based time-frequency analysis as an effective tool for
ground intrusion activity classification using a continuous seismic data acquisition sensing
system. VMD was used to decompose seismic signals of bicycles, vehicles, footsteps, ex-
cavations, and environment noises adaptively, and then the marginal spectrum that can
more accurately reflect the actual frequency component was obtained through HT. Three
features, including marginal spectrum energy, marginal spectrum entropy, and marginal
spectrum dominant frequency, were extracted and input into the SVM classifier to classify
ground intrusion activities. The experimental results showed that the VMD-HT method
produced an average value of 99.50% for accuracy, 98.76% for precision, 98.76% for recall,
and 98.75% for F1-Score, which are higher than time-domain analysis, frequency-domain
analysis, EEMD-HT, and EWT-HT time-frequency analysis methods. The features extracted
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by the VMD-HT time-frequency analysis method are more representative than common
time-domain and frequency-domain features, which can achieve better classification ef-
fects. Compared with the traditional time-frequency analysis methods of EEMD and EWT
combined with HT for feature extraction and classification, the VMD-HT time-frequency
analysis method shows the best performance and has broad application prospects in the
classification of ground intrusion activities.

Based on this study, future work will focus on the classification of more than two
seismic signals appearing simultaneously. In this paper, only one kind of intrusion activity
occurs in the acquisition process. More than two kinds of intrusion activities will increase
the complexity of seismic signals. How to separate different types of signals from mixed
data and complete the classification will face challenges. However, this situation is more
in line with the actual application and will be more meaningful for the classification and
identification of intrusion activities. By arranging various observation systems, including
cross array, diamond array, meter array, encircled array, etc., the positioning accuracy and
error of different observation systems will also be studied.
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