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Abstract: In this work, we propose a novel data-driven approach to recover missing or corrupted
motion capture data, either in the form of 3D skeleton joints or 3D marker trajectories. We construct a
knowledge-base that contains prior existing knowledge, which helps us to make it possible to infer
missing or corrupted information of the motion capture data. We then build a kd-tree in parallel
fashion on the GPU for fast search and retrieval of this already available knowledge in the form
of nearest neighbors from the knowledge-base efficiently. We exploit the concept of histograms
to organize the data and use an off-the-shelf radix sort algorithm to sort the keys within a single
processor of GPU. We query the motion missing joints or markers, and as a result, we fetch a fixed
number of nearest neighbors for the given input query motion. We employ an objective function with
multiple error terms that substantially recover 3D joints or marker trajectories in parallel on the GPU.
We perform comprehensive experiments to evaluate our approach quantitatively and qualitatively
on publicly available motion capture datasets, namely CMU and HDM05. From the results, it is
observed that the recovery of boxing, jumptwist, run, martial arts, salsa, and acrobatic motion sequences
works best, while the recovery of motion sequences of kicking and jumping results in slightly larger
errors. However, on average, our approach executes outstanding results. Generally, our approach
outperforms all the competing state-of-the-art methods in the most test cases with different action
sequences and executes reliable results with minimal errors and without any user interaction.

Keywords: 3D recovery; human motion capture; missing joints or markers; kd-tree; K-nearest
neighbors; optimization; GPU

1. Introduction

The capturing, synthesis, and analysis of human motions have been very active
research areas in computer graphics and animation for the last few decades. Motion is
always considered an essential hint or cue for analyzing and understanding human actions,
activities, and behaviors. Thus, the motion sequences are recorded in the format of 3D
marker trajectories in an indoor studio-like environment. These 3D marker trajectories
are further transformed into a 3D skeleton that is comprised of a number of 3D kinematic
joints [1,2]. In general, the motion capture (MoCap) data are generated in 3D articulated
movements of the connected joints of the human skeleton. The final MoCap data consist
of spatiotemporal trajectories of human skeleton joints [3]. The recorded MoCap data are
widely deployed in a variety of applications in order to execute natural-looking animations,
i.e., in the generation of the animated characters in movies, video games, sports training,
reality-based virtual applications, performance analysis of the players, human–computer
interaction, biomechanics, and medical rehabilitation [4–7]. As a result, the demand for
robust and accurate MoCap data is growing day by day.

Even with the sophisticated indoor professional-like environment and up-to-date
software, the process involved in MoCap data acquisition is not mature enough to handle
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various artifacts and to produce exactly accurate motion captured data efficiently. The raw
motion captured data are often corrupted due to the marker loss, noise, marker swaps,
the lack of precise and proper equipment, joint occlusions, marker sheddings, etc. [5,8].
Consequently, all these factors hinder the production of accurate MoCap data. As a
treatment, either the poses carrying incomplete markers information are entirely discarded,
or intensive manual postprocessing is performed in order to cure the original data. The
existing automated systems are not robust enough for postprocessing to detect and fix the
corrupted or missing markers/joints properly. Eventually, professionally trained artists
are hired to manually set the missing, corrupted, or noisy markers/joints, which is very
labor-intensive and time-consuming. Such expensive treatments are highly required, as all
applications are depending upon the accuracy and the precision of the MoCap data.

Moreover, due to the costly indoor studio-like environment, the reuse of the motion
capture data or creating new realistic motion sequences from the existing motion clips
are gaining significant importance [9]. Nevertheless, all these methods of reutilization of
MoCap data require fast and efficient similarity search and retrieval techniques. MoCap
data are generally high-dimensional, and due to its high dimensionality, there is a lack of
efficient and fast similarity searching techniques, which need to be addressed. The lack of
fast similarity search and retrieval in a high-dimensional MoCap dataset may be considered
as the bottleneck in the performance of most of the MoCap data-dependent applications.

The first part of the research is dedicated to the parallel nearest neighbor search and
retrieval from the MoCap dataset on GPU. Parallel processing provides a suitable solution
for handling multiple queries simultaneously at a time and finding similar poses in a
timely fashion as well. After retrieving the fixed number of K-nearest neighbors, we aim
to utilize these similar poses to infer the 3D human poses and ultimately recover the
missing markers/joints information of MoCap data. We propose an objective function
with a variety of energy terms for recovery and reconstruction of the missing data. Our
proposed approach is a frame-by-frame data-driven approach in order to recover missing
3D joints/markers from the given sequence of the 3D MoCap data that may be acquired
through any sensor system such as magnetic, mechanical, inertial, optic, non-optic sensors,
Kinect (depth) sensors, images/videos or hybrid systems.

The paper is organized as follows: Section 2 provides the details of the literature
review and the state-of-the-art approaches that deal with the search and retrieval of nearest
neighbors and the recovery of missing or corrupted 3D MoCap data. Section 3 demonstrates
all the steps involved in our proposed pipeline. Section 4 explores the details of experiments,
the comparisons with other state-of-the-art methods, and the evaluations (quantitative and
qualitative), along with the conclusive remarks. In the end, we describe the limitations of
our approach in Section 5 and conclude our work in Section 6. We also discuss a few future
directions in Section 6.

2. Related Work

In this section, we discuss the related research works and techniques in the area
of the fast searching and then retrieval of K-nearest neighbors from the MoCap dataset
and 3D recovery of the motion sequences with missing/corrupted markers/joints in the
MoCap dataset.

2.1. Approaches for Search and Retrieval

This subsection provides a review of the literature dealing with 3D human motion
search and retrieval from MoCap dataset. There exist a variety of techniques in literature
for search and retrieval of similar frames or poses from the dataset, i.e., clustering and
segmentation based techniques [3,10–13], graph-based techniques [13–16], and methods
based on data structures such as kd-tree [17–22].

Xiao et al. [10] propose quaternion and EMD-based nearest neighbors retrieval ap-
proach that depends on two steps: indexing and matching. They employ a K-means
clustering strategy to categorize the features in the MoCap dataset. The matching part
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creates the distance matrix according to the clustering results. They deploy only 21 joints
to represent the skeleton due to which the retrieval error is reduced. In our case, we are
dealing with 40 to 50 markers, and the skeleton consists of 31 joints. Bernard et al. [11]
propose MotionExplorer, a search system for the huge amount of motion capture data that
exploit the hierarchical clustering method to generate the spatial aggregations of the MoCap
dataset. The clustering in their approach is an interactive clustering since it requires user
interactions in order to find useful cluster parameters as well as to interpret the acquired
cluster. Vögele et al. [12] employ neighborhood graphs to partition the data and ultimately
generate similar clusters based on similarity information collected from the neighborhood
graph. In this way, they create motion primitives with semantic significance. Their method
neither requires any assumptions about the input query sequences nor the user interaction.
This method is extended further with kernel-based feature handling [13].

The recent works on graph-based retrieval from large motion capture databases deal
with adaptive and weighted graphs [14–16]. The graphs are constructed adaptively ac-
cording to the characteristics of the given motion. The graph kernel is then calculated by
matching the two graphs [14]. Plantard et al. [15] developed a graphical structure called
Filtered Pose Graph in order to evaluate the nodes that may contribute significantly to the
process of pose reconstruction. In this way, they enhance system performance by improving
the selected poses’ relevance and reducing the computation time. They provide such exam-
ples of the skeleton captured by Kinect that require reconstruction of only unreliable parts
of the skeleton. For their system, it is mandatory to have information about which part
of the skeleton is captured reliably and which part is recorded inaccurately. Panagiotakis
et al. [16] perform an efficient graph-based searching strategy on the matrices of pairwise
distances of poses of two sequences. An objective function further supports the result of
the search.

The kd-tree-based local neighborhood searches, which lead to global similarity searches,
were proposed [18]. The authors employ Euclidean distance measures to search the near-
est neighbor from the developed kd-tree. The kd-tree-based neighborhood searches are
extended further on 2D synthetic landmarks as well as 2D skeletons extracted from RGB
images [17,23]. Yasin et al. [24] use kd-tree for the search and then retrieval of K-nearest
neighbors (KNNs) which are employed further for human action classification and segmen-
tation. The Surface Area Heuristic (SAH) kd-tree [19–21] have been constructed on GPUs
in which the Surface Area Heuristic is calculated at each node to find the splitting plane
axes instead of a median point. The computation of this cost function involves the costs for
traversing to an inner node, intersecting triangles, and the surface areas of left/right/parent
bounding boxes. All of these costs make these techniques applicable to ray tracing applica-
tions only. Hu et al. [25] propose an algorithm for kd-tree construction and KNNs search
that utilizes GPUs’ Massive Parallel Architecture (MPA). Breadth-first search at each step
of the kd-tree construction spawns a new thread for every node at an equal distance from
the root node. Wehr and Radkowski [26] propose a parallel kd-tree construction algorithm
with an adaptive strategy of split and sort. Only the construction algorithm has been
presented without dealing with high-dimensional data. The kd-tree-based neighborhood
search methods [17,18,21,23,25] require enough memory space to fit the kd-tree well into
memory for proper running and execution of the system; otherwise, these methods do not
scale well. Sedmidubsky et al. [27] discuss the existing techniques of the content-based
management of the skeleton data. They also discuss a few future research directions for the
management of large and diverse motion capture skeleton data. Lv et al. [28] propose a
hash-based convolution neural network where they extract deep features using the VGG16
network. They introduce the hash layer to create the hash code and, as a result, CNN is
fine-tuned. In the end, they retrieve the data using the learned hash codes.

2.2. Approaches for 3D MoCap Recovery

A bulk of methods have been proposed in order to recover missing information in the
motion capture dataset. We categorize these approaches into two classes, the systems that
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deal with the recovery of missing markers and the techniques that deal with the recovery
and reconstruction of missing joints.

2.2.1. Approaches for 3D Recovery of Missing Markers

A number of approaches exist that deal with the 3D recovery of markers [29–35].
One of the early techniques is the interpolation method for estimating missing MoCap
data [36]. Piazza et al. [29] use an extrapolation algorithm that is combined further with a
constraint matrix for the recovery of missing markers from a pre-selected set of principal
markers, after the prediction of immediate motion type, i.e., linear, circular, or both. Their
prediction algorithm is independent of the human kinematic model. Baumann et al. [30]
construct kd-tree for a structural organization of data and efficient retrieval of the nearest
neighbors and then adapt an optimization method for recovery of the missing markers. In
optimization, they also incorporate the velocity and acceleration of body joints to improve
the system’s performance. This work focuses only on marker-based motion sequences and
was tested on a very small data-set, only. The proposed optimization scheme is very simple,
and does not consider any constraints such as bone lengths or other anatomical properties.
Aristidou and Lasenby [31] recover 3D markers in occluded scenarios by employing the
markers’ set of fixed relative positions. This information aid in an Unscented Kalman Filter
(UKF) using a Variable Turn Model to predict the occluded markers automatically. The
prediction is used further for joint localization and re-positioning of the joints through
inverse kinematics. The proposed approach benefits from the assumption that the missing
markers are visible to and captured by at least one camera, reducing the marker estimation
error significantly.

Liu et al. [37,38] present data-driven, piecewise, and low-dimensional linear models
in order to estimate and recover missing markers. The local linear model is identified
for input query with missing markers, which fits the marker positions with the least
square method. Peng et al. [32] propose an adaptive non-negative matrix factorization
approach, which exploits the low-rank and the non-negative characteristics of MoCap data
simultaneously in order to recover the incomplete block-based motion clips with missing
markers, without considering any training priors and the user interference. The concept of
mapping motions into blocks is implemented by utilizing the hierarchy of the defined body
model. Wang et al. [33] present the data-driven approach for missing markers recovery
based on the traditional sparse coding process. They design an objective function that
comprises statistical and kinematical properties of motion capture data. They also exploit
the Poselet model combined with the moving window to learn the motion dictionaries in
parallel. Their approach does not work well when there is a motion with some sudden or
abrupt change, but in our case, we introduce the smoothness error term which endorses
the smoothness and avoids the jerkiness artifacts.

Kucherenko et al. [35] propose using neural network architecture for missing markers
recovery. They perform experiments with two different artificial neural networks, i.e.,
Long Short-Term Memory (LSTM)-based and time-window-based. In window-based
architecture, they deploy a fully connected artificial neural network, which is trained by the
current input pose along with a range of previous time-steps. As a limitation, both methods,
LSTM-based and time-window-based, are less stable and produce worse performance when
the testing motion is not the part of the training data. In short, both methods do not contain
generalization properties. On the other hand, our approach executes very good results
even when the testing input query motion sequences are from the other MoCap dataset.
Burke and Lasenby [39] combine the dynamic modeling-based tracking approaches with
low-ranked matrix completion to solve the problem of missing markers recovery without
having any prior knowledge of the marker positions. Their proposed methodology not
only outperforms but also improves the position error. Hu et al. [34] introduce a novel
approach in order to recover the incomplete MoCap data by exploiting a new matrix norm,
called the truncated nuclear norm, that is based on the augmented Lagrange multiplier.



Sensors 2023, 23, 3664 5 of 28

A Probabilistic Model Averaging (PMA) scheme for recovery of missing markers,
proposed by Tits et al. [6], is a weighted combination of numerous recovery models based
on interpolation, inter-correlations, and low-rank properties. It exploits the likelihood of the
distances between the skeleton joints. In the reconstruction process, they impose skeleton
constraints by introducing two heuristic algorithms. Their method is automatic, data-
driven, self-sufficient, and independent from any pre-trained data model. As a limitation,
the method does not deal efficiently with isolated markers as well as the markers when
they are placed very close to each other. Moreover, PMA requires three present markers
at least for reference points in order to evaluate the distance probabilities. Park et al. [40]
apply PCA on marker positions in order to learn a statistical model. In low-dimensional
space, the missing markers are recovered through the best fit of the available markers.
This method is very effective when dense marker sets exist. Gløersen et al. [41] propose
a reconstruction of corrupted marker trajectories, but their method is restricted to cyclic
motions only, i.e., running or walking. A few strong assumptions are imposed, e.g., the
existence of every marker for at least one-time step. The recovery of the markers in complex
motions gives implausible results sometimes because of the linear basis models. Their
approach is not perfect enough especially on the motion sequences with repeated movement
patterns. Li et al. [42] propose a simple recovery method based on principal component
analysis. They claim that their method has low time complexity and is numerically stable
as well. As a limitation, their method does not deal with those markers that are missed
in the whole motion sequence. Moreover, their method has limited ability to generalize
with the addition of more training samples. Hai et al. [43] introduce the locally weighted
PCA (LWPCA) regression method to recover the missing markers from motion capture
data. The authors apply the weighted least square method combined with the sparsity
constraints to PCA regression and improve the accuracy drastically. LWPCA executes high
error on the joints-9,14 for the HDM05 mocap dataset and the joints-21,30,33 for the CMU
mocap dataset.

2.2.2. Approaches for 3D Recovery of Missing Joints

Much research has been carried out on the recovery of missing joints of 3D skeleton
motion data [7,44–48]. Li et al. [44] propose a novel approach for 3D recovery of miss-
ing joints based on bidirectional recurrent autoencoder, with which they extract motion
manifold grouped with smoothness and bone length constraints. Their method is nei-
ther action-dependent nor does it require the noise amplitude. Li et al. [45] propose a
perceptual-based bidirectional recurrent autoencoder approach named BRA-P to refine the
3D skeleton motion data. They perform experiments on synthetic noise data as well as on
raw motion data captured by MS Kinect. Xia et al. [7] present a tailored nonlinear matrix
completion model, where multiple kernel learning processes have been exploited for com-
bined learning of low-rank kernels. They transform the 3D motion data into Hilbert space,
and then by employing an already learned kernel, they use low-rank matrix completion for
3D recovery of motions with missing joints. They also enforce the kinematic constraints to
the recovered poses to maintain the human motions’ kinematic property, but the kinematic
constraints are not sufficient to ensure the kinematic property. Moreover, their method is
time-consuming and does not find a solution for the end-joint contact issue.

Lai et al. [46] exploit the low-rank matrix property for the recovery of MoCap data
with some missing joints through the matrix completion method, namely Singular Value
Thresholding (SVT), which was initially proposed by Cai et al. [49]. They deploy this simple
first-order and iterative algorithm (SVT) and consider the missing joints’ recovery process
as a problem of convex optimization. The authors apply soft-thresholding on singular
values of the matrices efficiently to address the problem where the optimal solution has
a low rank. The SVT method does not fit well when the missing values exist in a long
period of time and are of larger proportion. Li et al. [47] propose an approach, BoLeRO
(Bone Length constrained-based Reconstruction for Occlusion), that focuses on preserving
the bone-length constraints in the 3D recovery of the missing joints. They consider the
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recovery problem a constrained optimization problem with hard and soft constraints.
Tan et al. [48] extend the SVT method by grouping it with skeleton constraints, called
Skeleton Constrained SVT (SCSVT), that aims to preserve the distances between joints
during recovering MoCap data, ensuring that the problem still remains convex. Such
methods [47,48] usually employ a specific skeleton model on the basis of the predefined
marker set, which ultimately results in high computational complexity. BoLeRO [47]
endorses the skeleton constraint which is not only tighter but also needs a much longer
processing time as compared to SCSVT [48].

Using the self-similarity method to reconstruct the missing joints is proposed by
Aristidou et al. [50] to analyze the motion capture data automatically. A dictionary of
motion-words is defined consisting of joint transformations short sequences. To perform
comparison of motion-words with K-nearest neighbors, a similarity measure invariant to
time and scale has been exploited. This comparison can only be performed between similar
kinds of motions. This research work deals only with joint rotation errors while ignoring
the possibility of bone-length violations. Moreover, they do not find errors generated
through self-collision or the contact failures. If they search for the short motion sequences,
they may not be able to find similar KNNs. Several methods deal with the recovery and
reconstruction of the human skeleton from noisy and 2D data [17,22,51]. The local models
in low-dimensional PCA space can be developed and further optimized by introducing
energy constraints [17,22,23].

MoCap data are sequential in nature and very suitable and effective for the recurrent
neural models in deep learning. Therefore, several approaches develop various recurrent
networks and variants of LSTM [8,34,52,53]. Mall et al. [52] introduce a bidirectional, re-
current neural network architecture for cleaning and refining the MoCap data with noisy
and missing joints. It deploys temporal coherence as well as the joint correlations to re-
cover the noisy and incomplete MoCap data. Their approach is a supervised approach,
due to which the network must have sufficient data of a new motion type before it can
train and learn to clean that motion robustly and reliably. A deep bidirectional attention
network [8,53] exploits long-term dependencies, and the attention mechanism is embedded
at the encoding and decoding stages in a bidirectional LSTM structure. Cui et al. [54]
introduce a feedforward temporal convolutional generative adversarial network (TCGAN)
that utilizes hierarchical temporal convolution to model the short-term and reasonable
long-term patterns of human motion. Furthermore, they embed the fidelity and consistency
discriminators in TCGAN to obtain optimal results. Their method deploys a special prepro-
cessing step of normalization of subjects’ height and scale, in order to reshape the complete
mocap data to a uniform height. They further normalize the data by transforming it to in
the range of [−1, 1]. On the other hand, we do not perform subjects’ height normalization.
For an accurate recovery, we assume that the skeleton size of the input query should not be
modified and given to the system as it is.

3. Methodology

In this work, we propose a novel data-driven framework to infer corrupted, noisy
or missing markers/joints of the MoCap data. We present an automated postprocessing
technique to recover the missing markers/joints of the MoCap data, as well as fast searching
and robust retrieval of nearest neighbors from large MoCap datasets. In order to exploit
the prior information, we first construct a knowledge-base from the existing clean MoCap
dataset. To deal with fast searching and retrieving of similar poses from the developed
knowledge-base, we propose a parallel architecture to build a kd-tree using Compute
Unified Device Architecture (CUDA) and the parallel searching strategy of the nearest
neighbors from GPU-based kd-tree. We also obtain benefits from the CUBLAS library, a
GPU-accelerated implementation of the BLAS (Basic Linear Algebra Subroutines) on top of
the CUDA, for computations [55]. We query a sequence of input 3D skeleton poses with
missing markers/joints to the system to search for nearest neighbors in parallel from the
developed knowledge-base. These nearest neighbors are employed further in the recovery
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process of the missing markers/joints of the MoCap data. For recovery purposes, we
present an objective function with four error terms. The objective function is implemented
in such a way that we enforce all these four error constraints in a parallel fashion. The
optimization process is performed in parallel by using Massive Parallel Architecture (MPA)
of GPU. The overall architecture of our proposed framework is shown in Figure 1. We
discuss the significance of the proposed parallel approach over the serial method in detail
in Section 4.

Retrieved KNN

MoCap Dataset

Left chunks 

of data

Right chunks

of data

Histogram in shared memory 

Global memory distributionKd tree stored in array

Median 
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Figure 1. System architecture of the proposed framework. The pre-processing phase is reported in a
reddish color while the testing input query phase is depicted in a light gray color.

3.1. Problem Formulation

First, we describe the notations, symbols, and the representation of the joint-based
or marker-based skeleton pose used in the paper. For both the CMU MoCap dataset [56]
and the HDM05 MoCap dataset [9], a single joint-based 3D skeleton pose is represented
by P that contains N = 31 total number of joints. A pose with markers is also expressed
by P, but the total number of markers is N = 41 in the CMU Mocap dataset [56], while
in case of the HDM05 MoCap dataset [9], the total number of markers may vary from
40 to 50. The details of markers, joints, and the skeleton for both the CMU MoCap
dataset [56] and the HDM05 MoCap dataset [9] are shown in Figures 2 and 3. Each
joint or marker J ∈ R3 has x, y, and z components represented as jx, jy, and jz, re-
spectively. The distance between two adjacent joints is referred to as limb length, and
the total number of limbs is denoted as s. A joint/marker, e.g., the joint/marker 1,
the root joint/marker, is expressed as J 1 = [j1x, j1y, j1z]. In this way, a pose becomes
P = [J 1,J 2, . . . ,J N ]

T = [j1x, j1y, j1z, j2x, j2y, j2z, . . . , jNx, jNy, jNz]
T , and a motion with F

number of poses is represented as Ω = [P1, P2, . . . , PF]. Jmm is the missing joint/marker
set, while a number of missing joints or markers is represented with m. For instance, a miss-
ing joint set with m = 6 missing joints is represented as Jm6 = {J 9,J 21,J 19,J 5,J 4,J 13}
or shortly, Jm6 = {9, 21, 19, 5, 4, 13} with randomly selected missing joints/markers,
J 9,J 21,J 19,J 5,J 4, and J 13.

Our proposed framework is subdivided into two major modules. The first module
is all about the preprocessing that involves the process of the normalization as well as
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GPU-based kd-tree development. The second module is purely relevant to searching and
retrieving nearest neighbors and recovering 3D MoCap data with missing joints or markers.
We discuss our proposed framework stepwise as follows.

(a) (b)

(d)

(c)

(e) (f)

𝑥

𝑦

Figure 2. (a) The details of the markers (c3d file), (b) AMC file, and (c) the skeleton (ASF file) of the
HDM05 MoCap dataset [9], while (d–f) elaborate on the details of the marker (c3d file), the AMC file
and the skeleton (ASF file) of the CMU MoCap dataset [56], respectively.
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Joints Details Joints Details
1 Root 17 Head
2 Right Hip 18 Right Shoulder
3 Right Knee 19 Right Elbow
4 Right Ankle 20 Right Radius
5 Right Foot 21 Right Wrist
6 Right Toe 22 Right Hand
7 Left Hip 23 Right Fingers
8 Left Knee 24 Right Thumb
9 Left Ankle 25 Left Shoulder
10 Left Foot 26 Left Elbow
11 Left Toe 27 Left Radius
12 Belly 28 Left Wrist
13 Chest 29 Left Hand
14 Neck 30 Left Fingers
15 Upper Neck 31 Left Thumb
16 Lower Head

(a) Skeleton model. (b) Joints’ details.
Figure 3. (a) The skeleton model P with all joints J = 31 for both MoCap dataset, CMU MoCap
dataset [56] as well as HDM05 MoCap dataset [9], while (b) illustrates all joint details.

3.2. Normalization

In preprocessing, we normalize our MoCap data first and discard pose variations
that are due to the translational or orientation information. Because of translation and/or
orientation, the two poses with the same joint angle configurations may have different joint
coordinates. In short, we normalize our MoCap data by discarding the translational and
orientation information from the MoCap dataset.
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3.2.1. Translational Normalization

In translational normalization, we translate the pose to its origin axis at the coordinates
(0,0,0) in the Euclidean space, as shown in Figure 4b. In fact, we move the root joint to
the position at the origin coordinates (0,0,0) and subtract the root joint coordinates of
the skeleton from all other joints. In this way, we eliminate the translational information
from the pose, and the center of the body mass becomes close to the root joint of the 3D
articulated human pose, i.e., the root joint J 1 of the skeleton is at the origin axis with
coordinates (0,0,0). Mathematically,

Ĵ i = J i −J 1 and i ∈ {1, 2, 3, . . . , N}. (1)

(a) (b) (c) (d)

Figure 4. Normalization. (a) the original pose; (b) the translational normalization; (c) orientation
normalization; (d) multiple normalized poses.

3.2.2. Orientational Normalization

In case of orientational normalization, we discard the pose’s orientation by rotating
the skeleton along the y-axis so that the view of the pose is transformed into a frontal view
as shown in Figure 4c. In other words, we rotate all the side-viewed poses with different
view angles to just only frontal-viewed poses so that we can avoid any ambiguity that may
arise due to the presence of different view angles. In line with [23], all the joints/markers
are rotated along the y-axis, keeping hip joints’ coordinates parallel to the z-axis. For an
example, in case of the skeleton with 31 joints, we compute the rotation angle θ at which all
the skeleton joints are rotated, using left and right hip joints as,

θ = arctan
{

j7x − j2x

j7z − j2z

}
. (2)

Every joint/marker is then rotated by this angle θ, keeping the y-axis unchanged,
jix
jiy
jiz
1


T

=


jix
jiy
jiz
1


T

cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1

, (3)

where i ∈ {1, 2, 3, . . . , N}.
Finally, we have poses that are entirely free from translational and orientation infor-

mation. All the poses contain only the knowledge of the performed action. An example of
the normalization process is presented in Figure 4. We, after the process of normalization,
have only normalized poses in our MoCap dataset, which are the basis for the next step.
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3.3. Construction of Parallel kd-Tree

We utilize kd-tree for KNNs search as a kd-tree-based nearest neighbor search together
with medium-dimensional feature sets are inordinately practical even for a huge and high-
dimensional MoCap datasets [18]. To further speed up the KNNs search, we build a parallel
kd-tree on the GPU, where the most complex part is sorting the data. In line with [57], we
have utilized an off-the-shelf radix sort algorithm. A radix sort algorithm sorts the data by
sorting the keys (digits) in two ways i.e., the most significant key and the least significant
key. Starting from the least significant key, it sorts a new digit every time and ends up with
sorting the whole array. This is the stable sort and can be parallel. The following steps are
involved in the parallel radix sort algorithm,

1. The input dataset is divided into multiple subsets, and each subset is assigned to a
processor that handles each chunk of data independently.

2. All threads in a block perform the following subsequent tasks for their assigned data;

• Compute bucket index for all elements in its bucket;
• Count the number of elements in its bucket;
• Save this entry histogram of each block in memory;

3. The keys are shifted to the suitable buckets within a processor.

After sorting, the second complicated part of the parallel kd-tree is memory access. To
keep the implementation simple and efficient, we store the kd-tree in the form of arrays,
where each node can have two children, and a node at index i has its first child at index
2× i and second child at index 2× i + 1. The kd-tree is constructed by iteratively splitting
the data into halves. The median point is used to separate the data into two parts. If
the node has the size in the power of 2, we split it using median point, e.g., we split 2n

elements into two nodes of 2n−1 elements. For instance, if the node has 24 = 16 elements,
it is split into two nodes of size 24−1 = 23 = 8 elements. If the node size is less than
2n, the splitting is performed in such a way that the left child node must be the size of
2n−1. During the computation of histogram bins, we have used shared memory for fast
access, and the execution is performed for one point of data by one thread. The reason
behind enforcing the constraint of one data point execution by one thread is to benefit from
high-speed atomic operations through local memory. The histogram bins are then copied
to the appropriate locations in the global memory.

3.4. Nearest Neighbors Search

After building the kd-tree, we can use it to search a defined number of K-nearest
neighbors from the developed kd-tree. For that purpose, we first copy the query frames to
GPU memory. To search and find K-nearest neighbors, we efficiently utilize a double-ended
queue with K as a limit to store enqueued elements. We do not use stacks and arrays to
store the data points as backtracking is involved in searching the nearest neighbors. The
basic binary search strategy is adopted to explore similar poses from the kd-tree, which
is then extended to the parallel architecture. We use Euclidean distance to compare the
distance between the reference point in dataset and the query point in order to retain only
K-nearest neighbors, which is also computed in parallel by one thread for one query point.
We use only the available joints in the query pose to search and retrieve the K-nearest
neighbors. Our proposed 3D recovery framework depends upon these retrieved nearest
neighbors significantly. The impact of the number of K-nearest neighbors is elaborated in
detail in Section 4.

3.5. 3D Recovery

To recover the final 3D pose(s), we use the prior domain knowledge available in
the motion capture dataset, extracted through the nearest neighbors. To this end, we
have K-nearest neighbors in hands for each input pose at time t, expressed as Pt =
{Pt,k|k = 1, . . . ,K} ∈ R. Based on these retrieved K-nearest neighbors, we have developed
our local model by applying Principal Component Analysis (PCA). We first compute the 3D
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local pose model in low-dimensional PCA-based subspace using joint angle configurations
of the retrieved KNNs,

Pr
t =

V

∑
v=1

ht,vbt,v + P̂t, (4)

Pr
t = HtBt + P̂t. (5)

The 3D recovered pose at time t, denoted as Pr
t , is the linear combination of a set of V

number of basis vectors Bt = {bt,v|v = 1, . . . , V} at current time-frame t that are basically
the principal components (PC) calculated from the KNNs. More precisely, the principal
component (PC) coefficients are the eigenvectors having the largest eigenvalues of the
covariance matrix of KNNs. The P̂t is the mean pose at the current time-frame t of the
retrieved KNNs. The notation Ht is the representation of the current frame with a low
dimension in coordinates of PCA space. The number of PC is computed dynamically based
on the variance. Next, we design our frame-by-frame objective function, which consists of
four error terms, i.e., retrieval error Er, input error Ein, limb length error El , and smoothing
error term Es. These error terms collectively enforce the local model towards optimal
recovered pose(s). Mathematically,

E = arg min
Pr

(wrEr + winEin + wlEl + wsEs), (6)

where the notations wr, win, wl , and ws denote the weights for the corresponding error
terms. These adjacent weights show the significance of each error term. The details about
the importance of each error term and an analysis of the contribution of the weight are
presented in Section 4.1.5.

3.5.1. Retrieval Error

The retrieval error Er computes the prior likelihood of the current pose and enforces
the local pose model according to the pre-existing knowledge available in the MoCap
dataset. For that purpose, we utilize Mahalanobis distance,

Er = [Pr
t − P̂t]

TC−1[Pr
t − P̂t], (7)

where Pr
t denotes the recovered pose at frame t, P̂t represents the mean pose at frame t,

and C−1 is the inverse covariance matrix. The expression [Pr
t − P̂t]T is the transpose of the

difference between the mean pose and the recovered pose at frame t in PCA space. This
term penalizes the deviations of the recovered pose from the retrieved KNNs and therefore
bounds the recovered pose implicitly.

3.5.2. Input Error

The input error Ein penalizes the deviations between each joint of the input query
pose J q

i,t and the recovered pose J r
i,t as,

Ein =
1
N̂

N̂

∑
i=1

∥∥J r
i,t −J

q
i,t

∥∥2. (8)

The input error is only computed for the available number of joints of the correspond-
ing pose, denoted as N̂, and N̂ ≤ N.

3.5.3. Limb Length Error

Besides the input error, we also enforce limb length error, where each limb length
of the recovered pose Pr

t is forced to be as close to the limb length of the query pose Pq
t

as possible,

El =
1
ŝ

ŝ

∑
i=1

∥∥Lr
i,t − Lq

i,t

∥∥2. (9)
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where Lr
i,t and Lq

i,t are the corresponding limb lengths between two joints of the recovered
and query poses respectively at frame t. ŝ represents the available number of limbs in the
input skeleton pose, ŝ ≤ s. This term explicitly enforces anthropometric constraints on the
available limbs.

3.5.4. Smoothing Error

The pose reconstruction benefits from enforcing smoothness of the resulting motions.
Thus, we add a smoothing error to avoid the jerkiness and jittering artifacts of the high
frequency that may arise in the recovered motion,

Es =
1
N

N

∑
i=1

∥∥∥J r
i,t −

3J r
i,t−1 + 2J r

i,t−2 + J r
i,t−3

6

∥∥∥2
, (10)

where J r
i,t, J r

i,t−1, J r
i,t−2, and J r

i,t−3 are the ith joints of the recovered poses at frames t,
t− 1, t− 2, and t− 3, respectively.

We implement all these error terms in a parallel fashion in CUDA C language on the
GPU. For the optimization process, we utilize a nonlinear gradient optimizer, for which
the maximum number of function evaluations is set to be 10 K. In contrast, the maximum
number of iterations is set to 50 K. The termination tolerance for the function value and a
lower bound on the step size are both kept at 1 · e−4.

4. Results and Discussion

We evaluate our proposed methodology thoroughly on popular and publicly available
benchmark MoCap datasets, CMU [56] and HDM05 [9]. We conduct a bulk of experiments
to assess and analyze our proposed framework from various perspectives. In particular,
we analyze our approach on different numbers of missing 3D joints/markers: (i) with
3 and 6 numbers of missing joints at different time interval lengths, i.e., 15–120 frames
(0.25–2 s) and (ii) with 3/31 ≈ 10%, 6/31 ≈ 20%, and 9/31 ≈ 30% missing markers.
We also carried out experiments to see the impact of the GPU parameters, the impact of
the retrieved nearest neighbors on the overall system’s performance, and the impact of
increasing the missing joints or missing body parts for different motion categories. We
compare our proposed approach with other existing competitive state-of-the-art techniques
and conclude that our proposed pipeline performs almost outstanding comparatively in
terms of accuracy. As mentioned earlier, we evaluate the proposed approach on datasets,
CMU [56] and HDM05 [9], and for both datasets, we deploy all the categories of motion
sequences that exist in the datasets in order to develop the knowledge-base. We follow, in
this paper, two different protocols mentioned in previous works [35,48]:

1. In the first case, we deal with the recovery of missing joints [48]. The skeleton model,
in this protocol, consists of 31 joints, and the details of the joints are described in
Figure 3. In contrast, the details about Acclaim Motion Capture (AMC) file and the
Acclaim Skeleton File (ASF) are shown in Figure 2b,c, respectively, for the HDM05
MoCap dataset [9], and for the CMU MoCap dataset [56], the AMC and the ASF files
are shown in Figure 2e,f;

2. In the second case, in the line of Kucherenko et al. [35], we deal with the recovery of
missing markers rather than joints, and the number of markers is N = 41 in case of
the CMU MoCap dataset [56]. We also assess the performance of our approach with
the HDM05 MoCap dataset [9], which contains markers that vary from 40 to 50. The
markers (c3d file) for HDM05 and CMU MoCap dataset are shown in Figure 2a,d,
respectively.
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For both protocols [35,48], we employ Root Mean Squared Error (RMSE) in order to
measure the recovery error,

Err =

√√√√ 1
FN
·

F

∑
t=1

N

∑
i=1

∥∥J r
t,i −J

g
t,i

∥∥2, (11)

where J r
t,i denotes the ith joint of the recovered pose Pr

t at time t, while J g
t,i means the ith

joint of the ground-truth pose Pg
t at time t.

We first tune the parameters by conducting various experiments that have profound
impacts on the performance of our proposed approach. Finally, we thoroughly evalu-
ate the performance of our proposed method by comparing it with other state-of-the-
art approaches.

4.1. Parameters

We start by conducting preliminary experiments to select and fix the parameters. All
these experiments are discussed one by one in the following Subsection.

4.1.1. GPU Memory

First, we carry out experiments to select the type of GPU memory, i.e., global memory
or texture memory, for efficient search and retrieval of similar poses. We compare and
evaluate both types of memory, especially in terms of elapsed time and memory capacity.
For this experiment, we use CMU MoCap datasets with three different sizes, i.e., 45,535,
55,535, and 65,535 number of poses. Furthermore, we conduct this experiment with three
different query sizes as well, i.e., 1024, 2048, and 4096 number of poses. We fix the number
of nearest neighbors to 64 and then perform searching and retrieval of nearest neighbors.

The results reported in Figure 5 demonstrate that texture memory is fast and efficient
compared to global memory, but unfortunately, when we increase the size of the query or
dataset, the texture memory goes out of bounds, and the proposed framework halts. There
is a trade-off between memory capacity and time complexity. Since we deal with huge and
high-dimensional datasets, global memory with large and shared memory capacity is a
suitable option for further experiments.
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Figure 5. The comparison between the texture and global memories regarding elapsed computa-
tional time. For this experiment, KNNs is fixed to be 64, and the computational time is measured
in milliseconds.
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4.1.2. CUBLAS API

We employ CUBLAS API to enhance and optimize the performance of the process for
parallel searching and retrieval of KNNs from the large motion capture datasets. CUBLAS
is a library on top of the NVIDIA CUDA, which provides the implementation of basic
linear algebra and helps in speeding up the matrices computation. We test CUBLAS API
by conducting similar experiments as in the previous Subsection. The results presented
in Figure 6 show that, for small sets of query frames, we obtain a 25% speedup in terms
of elapsed computational time, and with the increasing number of query frames in input
sets, we may achieve up to 50% speedup. Conclusively, we employ global memory and the
CUBLAS API for all other experiments.
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Figure 6. The comparison between CUDA and CUBLAS APIs with respect to elapsed computational
time. For this experiment, KNNs are fixed to be 64, and the computational time is measured
in milliseconds.

4.1.3. Nearest Neighbors

We conduct a few preparatory experiments to fix the number of nearest neighbors,
denoted as K. We evaluate the efficiency of the proposed system on the account of nearest
neighbors, when the input query sequences are with a different missing joint set, Jmm
with m = 6 and m = 3, i.e., Jm6 = {9, 21, 19, 5, 4, 13}, Jm6 = {11, 15, 27, 3, 24, 17}, Jm3 =
{8, 18, 26}, and Jm3 = {6, 14, 29}. These missing joints are selected randomly. For these
experiments, the values engaged for K are 32, 64, 128, 256, and 512. We conclude from the
results reported in Figure 7 that we achieve almost the best results at a particular number
of the nearest neighbors, i.e., K = 256. If we increase the number of nearest neighbors, the
accuracy remains nearly the same. We also see the impact of K-nearest neighbors in terms
of computational time. From the results presented in Figure 8, it is quite obvious that the
time increases linearly with the increase in the number of nearest neighbors. Generally, the
selection of the suitable number of nearest neighbors is a trade-off between the accuracy
and the computational time. There is no doubt that, if there is a smaller number of nearest
neighbors, the system will be faster, but we have to compromise the accuracy then. In short,
in this paper, the best suitable value for K is 256, and we fix this value for the rest of the
paper, independent of the datasets.
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Figure 7. The impact of the number of nearest neighbors in terms of accuracy with different missing
joint sets Jm6 and Jm3.
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Figure 8. The impact of the number of nearest neighbors in computational time with different missing
joint sets Jm6 and Jm3.

4.1.4. Principal Components

We apply PCA to predict the local linear model in a low-dimensional linear subspace
based on the retrieved nearest neighbors. To fix the number of principal components
(eigenposes), we adopt a frame-by-frame adaptive and dynamic approach that basically
depends on the captured variance of K retrieved nearest neighbors of the given input
query pose. Therefore, as a result, the number of principal components varies for each
input query pose. We demonstrate the impact of the number of principal components
(eigenposes) by an example depicted in Figure 9 that visualizes the accumulative variance
and the RMSE obtained for a different number of eigenposes for K retrieved nearest
neighbors of the given input query pose. We can observe that, at a certain number of
eigenposes, e.g., at 15 eigenposes in this case, the error becomes minimum with the highest
accumulative variance. By increasing the number of eigenposes, the accumulative variance
remains stable.

We have also observed that error optimization is much faster in a lower-dimensional
PCA space through experimentations. Therefore, it is worth having the overhead of
computing principal components for each input query pose. The findings about recovery
time and RMSE are reported in Figure 10.
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Figure 9. Accumulative variance (%) and RMSE for the dynamic selection of the number of princi-
pal components.
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Figure 10. RMSE and the recovery time in seconds for the dynamic selection of the number of
principal components.

4.1.5. Impact of Error Terms

The impact of error terms with their corresponding weights in Equation (6) is elabo-
rated in Figure 11. The input error term Ein contributes substantially as expected since this
error term endorses the recovered pose according to the input query pose with missing
joints. It is also observed that, with an increase in the number of missing joints, the impact
of this error term is reduced correspondingly. The error term Er executes the pre-existing
knowledge of the MoCap dataset and also plays a vital role in the 3D recovery process. The
retrieval error term (7) is biased towards larger joint sets since the pose variation of the
retrieved poses is larger for smaller joint sets, while the input error term Ein (8) is biased
towards a smaller number of joints. The trade-off between Ein (8) and Er (7) is steered by
the weights wr and win in (6). The error terms, El (9) and Es (10), do not result in a large
drop of the error, but they refine and smoothen the 3D recovered pose. We fix all these
weights as wr = 0.55, win = 0.9, wl = 0.3, and ws = 0.15 in our experiments.
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Figure 11. Impact of weights wr, win, wl , and ws used in (6).

4.2. Comparison with State-of-the-Art Methods

This section evaluates our proposed approach by comparing it with other state-of-the-
art techniques in terms of 3D recovery of missing joints and markers, respectively.

4.2.1. Missing Joints

In the first experiment, we follow the same protocol as mentioned by Tan et al. [48]
and deploy the same MoCap sequences of CMU [56], where each pose consists of 31 joints.
Similarly, we first partition the MoCap sequences into different time intervals, where
the interval length varies, i.e., 15–120 frames (0.25–2 s). We then randomly remove a
fixed number of joints from the MoCap sequence for each time interval. The number
of joints removed randomly defines the error rate of the MoCap sequence with missing
or corrupted joints. For example, a 3/31 ≈ 10% error rate means that a skeleton pose
contains three corrupted/missing joints, and a 6/31 ≈ 20% error rate means that a skeleton
pose includes six corrupted/missing joints. We then compare our approach with other
state-of-the-art methods [46–48] with different time intervals while the number of missing
joints are kept at m = 3 and m = 6. The results reported in Table 1 show that our proposed
approach almost outperforms all other state-of-the-art methods for most of the motion
categories. In very few cases such as kicking and jumping, our proposed method does not
provide extraordinary results and produces a slightly higher error as compared to other
competing state-of-the-art approaches [47,48]. However, the results of our approach are
still competitive as the gap is not too high.

We compute the mean values for all time intervals with both number of missing joints
m = 3 and m = 6. We also compute the mean values for all types of action sequences in
case of every state-of-the-art method. The results are reported in Table 1 which shows that
our proposed approach outpaces all the state-of-the-art techniques in almost every scenario
of mean computations.

Generally, RMSE increases when the number of missing joints increases. For example,
with m = 6 missing joints, the error increases for all the time intervals and motion categories.
Furthermore, RMSE also increases with the increase in time interval length. At the highest
time interval length, e.g., l = 120, the error becomes highest. In a few cases, the error
reduces when the time interval length increases, e.g., for motion category jumptwist, the
error reduces when time interval length jumps from l = 60 to l = 90. This is not as
surprising since the input query data are different for different time intervals. Due to this,
the retrieved nearest neighbors and the results for the final 3D recovery are different as
well. It might be possible that a few certain skeleton poses, having some vital information,
do not exist in the motion sequences generated with time interval length l = 60 but are
available in the case of interval length l = 90.



Sensors 2023, 23, 3664 18 of 28

Table 1. Comparison with other state-of-the-art methods in terms of RMSE of the recovered Mo-
Cap sequences.

Sequences Method
m = 3 m = 6

l = 15 l = 30 l = 60 l = 90 l = 120 Mean l = 15 l = 30 l = 60 l = 90 l = 120 Mean

14_01
BSVT [46] 0.052 0.051 0.053 0.056 0.061 0.055 ± 0.004 0.098 0.118 0.138 0.128 0.140 0.124 ± 0.017
SCSVT [48] 0.046 0.043 0.045 0.045 0.048 0.045 ± 0.002 0.085 0.104 0.118 0.102 0.105 0.103 ± 0.012

(Boxing) BoLeRO [47] 0.068 0.066 0.068 0.063 0.072 0.067 ± 0.003 0.100 0.112 0.143 0.112 0.130 0.119 ± 0.017
Our 0.025 0.027 0.043 0.061 0.063 0.044 ± 0.018 0.054 0.054 0.065 0.076 0.080 0.066 ± 0.012

85_02
BSVT [46] 0.281 0.613 1.563 2.038 2.499 1.399 ± 0.937 0.716 1.119 2.204 3.060 3.745 2.169 ± 1.274
SCSVT [48] 0.120 0.191 0.230 0.204 0.249 0.199 ± 0.050 0.248 0.315 0.354 0.485 0.321 0.344 ± 0.087

(Jumptwist) BoLeRO [47] 0.145 0.154 0.214 0.266 0.326 0.221 ± 0.076 0.290 0.340 0.366 0.538 0.397 0.386 ± 0.094
Our 0.042 0.027 0.044 0.010 0.011 0.027 ± 0.016 0.121 0.091 0.031 0.026 0.030 0.060 ± 0.044

143_04
BSVT [46] 0.075 0.136 0.510 0.380 1.261 0.472 ± 0.475 0.156 0.340 1.148 1.634 3.280 1.312 ± 1.253
SCSVT [48] 0.059 0.088 0.124 0.128 0.155 0.111 ± 0.038 0.117 0.193 0.220 0.270 0.290 0.218 ± 0.068

(Run fig 8) BoLeRO [47] 0.057 0.062 0.155 0.135 0.141 0.110 ± 0.047 0.105 0.143 0.174 0.314 0.403 0.228 ± 0.126
Our 0.039 0.038 0.037 0.050 0.051 0.043 ± 0.007 0.050 0.049 0.058 0.073 0.069 0.060 ± 0.011

49_02
BSVT [46] 0.046 0.065 0.111 0.091 0.238 0.110 ± 0.076 0.128 0.182 0.239 0.255 0.423 0.245 ± 0.111
SCSVT [48] 0.039 0.053 0.086 0.068 0.093 0.068 ± 0.022 0.119 0.140 0.132 0.146 0.153 0.138 ± 0.013

(Jumping) BoLeRO [47] 0.057 0.058 0.074 0.064 0.079 0.066 ± 0.010 0.103 0.099 0.139 0.133 0.233 0.141 ± 0.054
Our 0.056 0.062 0.095 0.111 0.130 0.091 ± 0.032 0.130 0.139 0.131 0.131 0.151 0.136 ± 0.009

135_02
BSVT [46] 0.097 0.120 0.168 0.166 0.209 0.152 ± 0.044 0.201 0.246 0.404 0.428 0.453 0.346 ± 0.115
SCSVT [48] 0.083 0.096 0.139 0.131 0.151 0.120 ± 0.029 0.181 0.211 0.333 0.247 0.280 0.250 ± 0.059

(Martial Arts) BoLeRO [47] 0.138 0.144 0.144 0.161 0.195 0.156 ± 0.023 0.216 0.228 0.287 0.266 0.282 0.256 ± 0.032
Our 0.073 0.086 0.129 0.175 0.219 0.136 ± 0.061 0.112 0.133 0.167 0.204 0.283 0.180 ± 0.067

135_11
BSVT [46] 0.057 0.071 0.144 0.261 0.288 0.164 ± 0.106 0.132 0.180 0.326 0.500 0.608 0.349 ± 0.204
SCSVT [48] 0.052 0.065 0.095 0.095 0.104 0.082 ± 0.022 0.125 0.150 0.184 0.160 0.157 0.155 ± 0.021

(Kicking) BoLeRO [47] 0.054 0.058 0.081 0.099 0.074 0.073 ± 0.018 0.092 0.102 0.383 0.154 0.114 0.169 ± 0.122
Our 0.071 0.112 0.165 0.258 0.302 0.182 ± 0.097 0.083 0.124 0.240 0.265 0.341 0.210 ± 0.106

61_05
BSVT [46] 0.070 0.086 0.102 0.167 0.174 0.120 ± 0.048 0.159 0.206 0.233 0.390 0.344 0.266 ± 0.097
SCSVT [48] 0.060 0.063 0.080 0.100 0.102 0.081 ± 0.020 0.137 0.168 0.144 0.185 0.179 0.163 ± 0.021

(Salsa) BoLeRO [47] 0.073 0.085 0.086 0.100 0.112 0.091 ± 0.015 0.123 0.145 0.156 0.151 0.209 0.157 ± 0.032
Our 0.042 0.048 0.054 0.084 0.100 0.066 ± 0.025 0.068 0.067 0.086 0.107 0.121 0.090 ± 0.024

88_04
BSVT [46] 0.131 0.202 0.274 0.342 0.347 0.259 ± 0.093 0.363 0.617 0.576 1.036 0.949 0.708 ± 0.279
SCSVT [48] 0.101 0.123 0.146 0.147 0.141 0.132 ± 0.020 0.265 0.432 0.317 0.314 0.261 0.318 ± 0.070

(Acrobatics) BoLeRO [47] 0.155 0.143 0.201 0.178 0.177 0.171 ± 0.023 0.270 0.286 0.341 0.302 0.297 0.299 ± 0.026
Our 0.090 0.103 0.148 0.211 0.244 0.159 ± 0.067 0.152 0.170 0.205 0.232 0.333 0.218 ± 0.071

Mean
BSVT [46] ‡ 0.101 0.179 0.366 0.438 0.635 0.344 ± 0.212 0.244 0.376 0.659 0.929 1.243 0.690 ± 0.407
SCSVT [48] 0.070 0.090 0.118 0.115 0.130 0.105 ± 0.024 0.160 0.214 0.225 0.239 0.218 0.211 ± 0.032
BoLeRO [47] 0.093 0.096 0.128 0.133 0.147 0.119 ± 0.024 0.162 0.182 0.249 0.246 0.258 0.229 ± 0.044
Our ‡ 0.055 0.063 0.089 0.120 0.140 0.093 ± 0.036 0.096 0.103 0.123 0.139 0.176 0.128 ± 0.032

BSVT [46] is Basic Singular Value Thresholding, SCSVT [48] is Skeleton Constrained Singular Value Thresholding,
and BoLeRO [47] is Bone Length constrained-based Reconstruction for Occlusion. The lowest error is shown
in bold. ‡ The methods are statistically significantly different from each other as the p-value < 0.05, when the
missing joints are m = 6.

We have also conducted a statistical analysis of the results of all the state-of-the-art
methods presented in Table 1. We performed the ANOVA (Analysis of Variance) tests
separately when the missing joints are m = 3 and m = 6. With m = 3 missing joints, we
obtain the F-statistic (the ratio of mean squared errors) as 2.15, and the p-value (probability)
equals 0.1165. Thus, the null hypothesis (the mean results of all the reported methods are
equal) is not rejected. In other words, this test indicates that the mean results of all methods
including our approach are not statistically significantly different from one another. With
m = 6 missing joints, the F-statistic is 4.0 and the p-value is 0.0173, which is less than
α = 0.05. It indicates that the null hypothesis is rejected, and a statistically significant
difference exists between the results of at least two methods. Based on a more detailed
statistical analysis, we found that the reported state-of-the-art methods, such as SVT [46],
SCSVT [48] and BoLeRO [47], have no statistically significantly different results from each
other, but our proposed method significantly differs from BSVT [46], and in comparison
to SCSVT [48] and BoLeRO [47], the mean results of our approach do not differ from
them significantly. However, in both cases with the missing joints m = 3 and m = 6, our
approach results in a lower recovery error (RMSE) compared to any other state-of-the-art
approach as reported in Table 1.

4.2.2. Missing Markers

We compare our methodology to other state-of-the-art approaches with a different
protocol in the second experiment. We follow the protocol of Kucherenko et al. [35] and
work with the same CMU MoCap sequences of basketball, jump turn, and boxing, where each
pose consists of 41 markers. We employ RMSE again to measure the recovery error. We
conduct this experiment with 10%, 20%, and 30% missing markers. The results reported
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in Table 2 show that, for all cases of missing markers, our approach again executes the
outstanding results compared to all other existing state-of-the-art techniques [32,35,39], in-
terpolation method, and the method based on PCA with 18 principal components. Notably,
the standard interpolation method also performs well, but it is suitable for the shorter gaps
(less than 0.1 sec) only. In our case, if a few specific joints are missing continuously in an
input motion sequence, our proposed scheme does not have as much impact on the 3D
recovery results since our approach is a frame-by-frame method and relies entirely on the
available joints of the input motion sequence.

Table 2. Comparison with other state-of-the-art approaches in terms of RMSE over the missing
markers of the recovered MoCap sequences. Ours-1 (training: CMU, testing: CMU), Ours-2 (training:
HDM05, testing: CMU).

(a) 10% Missing Markers

Method Training Dataset
Motion Sequences

Mean
BasketBall Boxing Jump Turn

PCA (PC-18) CMU 4.75± 1.50 5.29± 1.48 4.84± 3.40 4.96± 2.13
PCA (PC-18) HDM05 4.87± 1.63 5.49± 1.51 4.97± 3.51 5.11± 2.22
Interpolation * CMU 0.64± 0.03 1.06± 0.12 1.74± 0.3 1.15± 0.15
Peng et al. [32] * CMU n.a. n.a. n.a. n.a.
Burke and Lasenby[39] *‡ CMU 4.56± 0.17 3.47± 0.19 15.97± 1.34 8.00± 0.57
Kucherenko et al. [35] (Window) CMU 2.34± 0.27 2.61± 0.21 4.40± 0.5 3.12± 0.33
Kucherenko et al. [35] (LSTM) CMU 1.21± 0.02 1.44± 0.02 2.52± 0.3 1.72± 0.11
Ours-1 ‡ CMU 0.55± 0.22 0.7± 0.16 0.62± 0.27 0.62± 0.22
Ours-2 HDM05 1.14± 0.82 1.11± 0.50 1.28± 1.16 1.18± 0.83

(b) 20% Missing Markers

Method Training Dataset
Motion Sequences

Mean
BasketBall Boxing Jump Turn

PCA (PC-18) CMU 4.75± 1.68 5.32± 1.39 4.85± 3.41 4.96± 2.16
PCA (PC-18) HDM05 4.89± 1.89 5.51± 1.52 4.99± 3.53 5.13± 2.31
Interpolation * CMU 0.67± 0.04 1.09± 0.07 1.91± 0.31 1.22± 0.14
Peng et al. [32] * CMU n.a. 4.94 5.12 5.03
Burke and Lasenby [39] * CMU 4.18± 0.48 3.98± 0.07 27.1± 1.21 11.75± 0.59
Kucherenko et al. [35] (Window) CMU 2.42± 0.32 2.77± 0.13 4.30± 0.75 3.16± 0.40
Kucherenko et al. [35] (LSTM) CMU 1.34± 0.01 1.58± 0.04 2.67± 0.2 1.86± 0.08
Ours-1 CMU 0.63± 0.30 0.84± 0.37 0.81± 0.61 0.76± 0.43
Ours-2 HDM05 1.20± 1.91 1.17± 1.10 1.36± 1.34 1.24± 1.45

(c) 30% Missing Markers

Method Training Dataset
Motion Sequences

Mean
BasketBall Boxing Jump Turn

PCA (PC-18) CMU 4.76± 1.36 5.31± 1.33 4.89± 3.50 4.99± 2.06
PCA (PC-18) HDM05 4.90± 1.91 5.53± 1.55 5.01± 3.53 5.15± 2.33
Interpolation * CMU 0.7± 0.1 1.21± 0.14 2.29± 0.3 1.40± 0.18
Peng et al. [32] * CMU n.a. 4.36 4.9 4.63
Burke and Lasenby [39] * CMU 4.23± 0.57 4.01± 0.26 34.9± 2.55 14.38± 1.13
Kucherenko et al. [35] (Window) CMU 2.33± 0.13 2.63± 0.08 4.53± 0.48 3.16± 0.23
Kucherenko et al. [35] (LSTM) CMU 1.48± 0.03 1.75± 0.07 3.1± 0.25 2.11± 0.12
Ours-1 CMU 0.81± 0.58 0.97± 0.7 1.03± 1.51 0.94± 0.93
Ours-2 HDM05 1.32± 1.77 1.21± 1.38 1.39± 1.87 1.31± 1.67

(d) Mean

Method Training Dataset
Motion Sequences

Mean
BasketBall Boxing Jump Turn

PCA (PC-18) CMU 4.75± 1.51 5.31± 1.40 4.86± 3.44 4.97± 2.12
PCA (PC-18) HDM05 4.89± 1.81 5.51± 1.53 4.99± 3.52 5.13± 2.29
Interpolation CMU 0.67± 0.06 1.12± 0.11 1.98± 0.30 1.26± 0.16
Peng et al. [32] CMU n.a. 4.65 5.01 4.83
Burke and Lasenby [39] CMU 4.32± 0.41 3.82± 0.17 25.99± 1.70 11.38± 0.76
Kucherenko et al. [35] (Window) CMU 2.36± 0.24 2.67± 0.14 4.41± 0.58 3.15± 0.32
Kucherenko et al. [35] (LSTM) CMU 1.34± 0.02 1.59± 0.04 2.76± 0.25 1.90± 0.10
Ours-1 CMU 0.66± 0.37 0.84± 0.41 0.82± 0.80 0.77± 0.53
Ours-2 HDM05 1.22± 1.5 1.16± 0.99 1.34± 1.46 1.24± 1.32

* The numbers are extracted from [35]. The lowest error is shown in bold. ‡ The methods are statistically
significantly different from each other as the p-value < 0.05.

We also test our approach on the HDM05 MoCap dataset [9]. We train our model on
the HDM05 MoCap dataset and use the same CMU MoCap sequences for testing. As a
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result, error increases, but our approach still executes outstanding performance compared
to other state-of-the-art methods for all motion categories.

We also compute the mean values for all types of action sequences for every method
with 10%, 20%, and 30% missing markers. The results are reported in Table 2, which
interprets that our proposed approach evidently performs better as compared to all the
competing state-of-the-art approaches in every scenario of mean computations.

Similar to the statistical analysis performed for the values presented in Table 1, we
also conduct a statistical analysis of the results of all the state-of-the-art techniques for the
missing markers reported in Table 2. With 10% missing markers, we obtain the F-statistic
3.21, and the p-value equals 0.025, (<α = 0.05). Thus, at least two of the compared methods
differ from each other significantly. A more detailed statistical analysis shows that all of
the reported state-of-the-art approaches do not have a significant difference from each
other, but our approach is significantly different from Burke and Lasenby [39]. With 20%
missing markers, the F-statistic and p-value are 1.48 and 0.244, respectively, which indicates
that there is no significant difference between the mean results of all the state-of-the-art
methods including our approach. With 30% missing markers, the F-statistic and p-value
are 1.83 and 0.150, respectively, which shows that the mean results of all the methods are
not significantly different from each other. Nevertheless, in all cases of 10%, 20%, and 30%
missing markers, the results reported in Table 2 show that our approach results in lower
recovery error (RMSE) compared to any other reported state-of-the-art approach.

4.2.3. Parallel vs. Serial

We also perform experiments to justify our parallel approach. We conduct a compari-
son between the serial and parallel construction of kd-tree when the size of the dataset is
65,535 frames and the query consists of 2048 frames. The number of nearest neighbors is
fixed to 64 for this experiments. The results presented in Figure 12 show that the parallel
construction of kd-tree takes very few seconds in comparison to the serial approach as
expected. Similarly, another experiment is conducted to see the impact of the parallel recon-
struction. In this experiment, we utilize a different number of query frames as input. From
the results in Figure 13, it is quite obvious that the process of the parallel reconstruction is
significantly fast as compared to the serial reconstruction. With the larger number of query
frames, the difference of time between both increases substantially.
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Figure 12. Comparative analysis of serial and parallel construction of kd-tree when the sizes of
dataset and query are 65,535 and 2048, respectively. The number of nearest neighbors is fixed to 64
for these experiments.
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Figure 13. Comparative analysis of serial and parallel reconstruction with a different number of
query frames when K = 256.

4.3. Controlled Experiments

We perform a few controlled experiments in order to see the overall impact of missing
joints and missing whole body parts on the performance of our proposed approach. We
discuss these experiments as follows.

4.3.1. Impact of Missing Joints

In this experiment, we evaluate our proposed approach with a different number of
missing joints m, i.e., 3, 6, 9, 12, 15, 18, 21, 24, and 27. We conduct this experiment on
three motion categories: basketball, jump turn, and boxing. The results shown in Figure 14
elaborate that, as expected, the error increases with the increase in the number of missing
joints. The highest error is found when the input query poses have 27 missing joints.
The results show that, when the number of missing joints cross some specific value, i.e.,
18, the RMSE increases exponentially for all three motion categories. We may conclude
from this experiment that our proposed approach is reasonably able to endure up to
14–18 missing joints.
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Figure 14. The impact of the number of missing joints in terms of RMSE.
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4.3.2. Impact of Missing Body Parts

In the second experiment, instead of selecting missing joints randomly, we drop out
all the joints of some specific body parts. We test our approach when all the markers of the
following body parts are dropped out: right leg, left leg, right arm, left arm, upper body part,
lower body part, right body part, and left body part. We perform this experiment on various
motion classes such as boxing, jumptwist, run fig8, jumping, martial arts, kicking, salsa, acrobats,
basketball, etc. We observe from the results shown in Figure 15 that RMSE is at its peak
when the upper body part is missing. This is because, for most of the motions, the upper
body joints contribute significantly to performing actions compared to the other body joints.
However, in a few motion categories such as run fig8 and kicking, RMSE with missing upper
body parts is less than different motion categories such as boxing, jumptwist, martial arts,
etc., because the upper body joints do not contribute as much to the motion classes as
mentioned earlier. Conclusively, RMSE increases if the joints of the most contributing body
parts in performing some particular motion are missing.

Boxing Jumptwist Run fig8 Jumping MartialArts Kicking Salsa Acrobatics Basketball

Motion Categories

0.5

1

1.5

2

R
M

S
E

Right Leg Left Leg Right Arm Left Arm Upper BP Lower BP Right BP Left BP

Figure 15. The impact of the missing joints of the different body parts regarding RMSE.

4.4. Qualitative Evaluation

We also evaluate our proposed methodology qualitatively. For this purpose, we
conduct experiments in two different directions.

In the first part of the experiment, we fix the size of the missing joints as equal
to 6, which are selected randomly for different types of motion categories, i.e., boxing,
jumptwist, run fig8, jumping, martial arts, kicking, salsa, and acrobat, etc. We compare the 3D
recovery results of the proposed approach to ground-truth poses. The results reported in
Figure 16 show that our proposed method executes significantly good results compared to
the ground-truth poses for almost all motion categories.
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Figure 16. The 3D recovery results for different motion categories, when the number of missing joints
is m = 6. (a) Boxing; (b) Jumptwist; (c) Run fig8; (d) Jumping; (e) Martial Arts; (f) Kicking; (g) Salsa;
(h) Acrobat.

In the second part of the experiment, we drop all markers of the different body parts
(see details about body parts in Section 4.3.2) and then evaluate the proposed methodology
qualitatively. We conduct this experiment on the same motion categories, as mentioned
earlier in the first part of the experiment. As shown in Figure 17, the results are pretty
remarkable. Even with the missing joints of the complete body parts, our proposed
methodology still recovers the poses efficiently.
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Figure 17. The 3D recovery results for different motion categories when missing a whole body
part. (a) Boxing; (b) Jumptwist; (c) Run fig8; (d) Jumping; (e) Martial Arts; (f) Kicking; (g) Salsa;
(h) Acrobat.
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5. Limitations

Our framework depends on MoCap datasets forming the knowledge-base. If a partic-
ular motion class is missing from the knowledge-base, the retrieval step will find incorrect
samples and thus not yield good results.

A few body parts play a substantial role in performing some motions. The significance
of the body parts depends upon the types of activities. For example, the body parts, i.e.,
right arm, left arm, and the upper body part, are significant in boxing motion, but the right
leg and the left leg do not contribute a lot to performing that motion. Similarly, the upper
body part is noteworthy in the jumping motion, and the lower body part is vital for kicking
motion. In short, if the missing markers belong to the aforementioned body parts, our
approach may produce higher recovery error, as apparent in Figure 15. Furthermore, a few
qualitative examples of the failure cases are reported in Figure 18.
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Figure 18. A few worst or failure cases of 3D recovery when all the joints of a whole body part are
missing. (a) Kicking (all the joints of the lower body part are missing); (b) Acrobat (lower body part);
(c) Martial arts (upper body part); (d) Salsa (upper body part); (e) Basketball (right body part); (f) Boxing
(right arm); (g) Run fig8 (left body part); (h) Jumptwist (left leg); (i) Kicking (right leg); (j) Jumping (upper
body part); (k) Kicking (left leg); (l) Martial arts (right body part). The yellow circles point towards the
incorrect recovery of missing joints.

6. Conclusions and Future Work

We have proposed a novel approach for recovering 3D human motion capture data
with missing joints or markers. We normalize the 3D human poses and build a knowledge-
base using these normalized 3D poses. We develop a parallel kd-tree on GPU for fast search
and efficient retrieving of the nearest neighbors from MoCap data for the input query
poses. The retrieved nearest neighbors are employed to predict a prior local model, refined
further by introducing the optimization function with multiple error terms. We perform
all these steps in parallel on the GPU, and as a result, we make the proposed framework
significantly fast. We have conducted extensive quantitative and qualitative experiments
on publicly available benchmark MoCap datasets. We conclude from the results that our
proposed methodology results in lower RMSE compared to almost all other state-of-the-art
approaches with 10%, 20%, and 30% missing joints or markers. Our approach also works
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well, even though the joints of whole body parts are missing. Moreover, our experiments
demonstrate that the proposed framework achieves outstanding results even when the
training data are from a different MoCap dataset.

The proposed method focuses on the recovery of missing joints of a single person in
a scene, and may be extended to the recovery of the missing joints of multiple persons
simultaneously, interacting with each other in a scene. Furthermore, the proposed approach
might be shifted to video-based scenarios where the query is in 2D with some missing
skeleton information. Another essential direction for future work might be integrating the
recovery of missing joints with action recognition and person identification.
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