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Abstract: Due to its exceptional advantages, such as high specific strength, high specific modulus,
and good fatigue resistance, carbon-fiber-reinforced plastic (CFRP) is frequently utilized in aerospace,
aviation, automotive, rail transportation, and other areas. Composite components typically need
to be joined and integrated. In the equipment manufacturing industry, the most used methods for
processing composite components are cutting, drilling, and surface treatment. The quality of CFRP is
significantly impacted by traditional mechanical processing, causing flaws like delamination, burrs,
and tears. Laser processing technology has emerged as a crucial method for processing CFRP for
its high quality, non-contact, simple control, and automation features. The most recent research on
the laser processing of CFRP is presented in this paper, supporting scientists and engineers who
work in the field in using this unconventional manufacturing technique. This paper gives a general
overview of the key features of laser processing technology and the numerous machining techniques
available. The concepts and benefits of laser processing technology are discussed in terms of the
material properties, mode of operation, and laser characteristics, as well as the methods to achieve
high efficiency, low damage, and high precision. This paper reviews the research development of laser
processing of carbon-fiber-reinforced plastics, and a summary of the factors affecting the quality of
CFRP laser processing. Therefore, the research content of this article can be used as a theoretical basis
for reducing thermal damage and improving the processing quality of laser-processed composite
materials, while, on this basis, we analyze the development trend of CFRP laser processing technology.

Keywords: carbon-fiber-reinforced plastic; laser processing; high efficiency; processing technology;
thermal damage; high precision

1. Introduction

Carbon-fiber-reinforced plastic (CFRP) is one of the most advanced composite materi-
als available nowadays. CFRP is molded by epoxy as the matrix and carbon fiber as the
reinforcement. Its low density (roughly 1.3–2.0 g/cm3, only about one-quarter of ordinary
steel), high specific strength, designability, corrosion resistance, and other advantages
are unmatched by other fiber composite materials. CFRP is widely used as lightweight
materials in the aerospace, automotive, wind-power, construction, and other industrial
fields [1–7].

CFRP is often prepared entirely at once by using hot press cans, film pressure, etc. [8].
However, further processing of CFRP, such as trimming, drilling, cutting, and joining, is
necessary because of the assembly requirements of manufacturing [9]. The two types of sec-
ondary processing methods are conventional mechanical processing and special processing.
Drilling, milling, sawing, and wire cutting are methods of traditional mechanical processing
technologies that can harm materials by causing fractures, rips, and delamination [10,11].
Therefore, researchers developed novel processing technologies, such as laser processing,
abrasive water-jet processing [12], electrical discharge machining (EDM) processing [13],
ultrasonic vibration processing [14], novel processing technologies, etc. However, due to
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CFRP’s high strength, high hardness, high wear resistance, multi-layer diverse materials,
and other variables, as well as the properties of inhomogeneity and anisotropy, it becomes
a challenging material to process. Despite reducing mechanical damage, abrasive water-jet
processing still causes processing defects such as kerf deformation and material delami-
nation, and it has certain limitations for cutting complex parts. The EDM process, on the
other hand, produces little mechanical damage but has low machining efficiency and poor
machining accuracy. Although the ultrasonic vibration processing method reduces cutting
force, fiber delamination pull-out and internal cracking still occur [12–14].

As a mature processing method, laser processing has no tool loss, fast processing speed,
and easy automation control in the process. Many scholars have compared laser processing
methods and other special processing methods. In terms of processing damage and defects,
laser processing has the least impact on the fatigue strength and tensile strength of fiber
composites. In terms of economic efficiency and cost, laser processing is the most efficient
and cost-effective method of processing [15–18]. In terms of processing, laser processing is
a highly controllable contactless processing that can be used in drilling, polishing, cutting,
milling, surface pre-treatment, and almost all common types of work. Laser processing
can be combined with other energy fields, such as water jets, ultrasound, electromagnetic
fields, and other auxiliary laser processing compound energy-field processing. Many
countries have realized the industrial production of laser processing CFRP with easy
automation control and high flexibility. A five-axis laser cutting machine for CFRP of 3D
molded samples is created in Japan [19], laser robots are used in Germany to cut high-end
automotive carbon fiber composite parts [20], and the near-infrared nanosecond laser
robot with a power of 1.5 kW has completed the cutting process of a space-curved vehicle
structure made of CFRP material with a maximum thickness of 5 mm [21]. Researchers in
Russia used laser processing to create the lightest aerospace solar panel [22].

With the tremendous advancement of laser technology, there are increasingly more
types of lasers, and dozens of different types of lasers are used in CFRP processing. Ac-
cording to the classification of excitation material, they can be divided into semiconductor
diode laser, solid-state laser, and gaseous laser. They are classified into ultraviolet laser,
visible laser, infrared laser, and so on based on wavelength. Continuous laser, long pulse
laser (microsecond, millisecond), short pulse laser (nanosecond), and ultrafast laser are the
output modes (picosecond and femtosecond).

The first ruby laser in the world was created in 1960, and laser cutting was first used to
drill holes in diamond molds in 1965. Since then, laser irradiation processing has been used
to process materials in a variety of ways in industry. Tagliaferri et al. [23] investigated the
laser processing of CFRP for the first time in 1985. In the past few decades, there have been
both challenges and opportunities for the laser processing of composite materials. First,
resin materials are classified as thermosetting and thermoplastic materials. Fiber-reinforced
composites can be divided into short-fiber-reinforced composites with discontinuous short
fibers as the reinforcing phase and long-fiber-reinforced composites with continuous long
fibers as the reinforcing phase. Second, the physical properties of carbon fiber and epoxy
resin differ greatly. For example, the gasification temperature of carbon fiber exceeds
3300 ◦C, whereas the resin begins to gasify at 500 ◦C. On the other hand, the thermal
conductivity of the resin is only 0.2 W/(m·K), while the carbon fiber is anisotropic. The
axial thermal conductivity (50 W/(m·K)) is much greater than the radial (5 W/(m·K)) [24].
Due to the variability of composite materials, laser processing can lead to severe thermal
damage such as a heat-affected zone (HAZ), fiber pull-out, laminar delamination, and
fiber-end expansion [25]. These damages not only affect the appearance and quality of the
structure being machined, but also seriously affect the geometric accuracy and quality of
the structure being machined, despite having a lower impact on the mechanical properties
than the rest of the special and conventional machining methods. According to studies,
the main reason for the decline in mechanical properties of CFRP is that HAZ makes the
exposed carbon fibers unable to withstand the load. The bending strength, compressive
strength, and tensile strength of CFRP all decrease linearly with the expansion of a HAZ
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region [17]. Because of the significant influence of the heat-affected zone, the size of the
HAZ has now become a criterion for determining the processing quality of CFRP. According
to the statistics of research in the field of CFRP laser processing carried out by EL-Hofy [26],
the research on the HAZ accounts for 76.8%. Although it is nearly impossible to get
undamaged CFRP samples in laser processing, the quality of the samples can be improved
by optimizing the process parameters (laser pulse width, wavelength, scanning speed,
etc.) [27]. Carbon fiber can endure relatively high temperatures, while the resin matrix will
experience mechanical degradation as temperature increases. The resin is prone to water
absorption and deliquescence, which causes the expansion of the HAZ during processing
and lowers the processing quality [28–31]. Shorter wavelengths and narrower pulse widths
can lessen the thermal impact and thermal diffusion damage. The gas- and liquid-assisted
laser processing can be used to cool the processing area and reduce heat accumulation. The
width of the HAZ during the laser processing of CFRP can be influenced by a variety of
factors. Figure 1 provides an overview of the factors influencing laser processing.
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Figure 1. Influencing factors of CFRP laser processing.

However, for continuous lasers and millisecond or even nanosecond short-pulse lasers
processing, the thermal damage region is large. As a new processing technology, ultrashort
pulse laser processing with extreme physical characteristics, such as picosecond laser and
femtosecond laser, has the advantages of tiny scale, strong controllability, environmental
friendliness, no restriction of material types, non-contact processing, and no heat transfer.
Currently, laser processing has emerged as a viable method for overcoming the technical
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barrier of the precision processing of fiber-reinforced composites. This technology has
been successfully applied to surface cleaning and activation, surface metallization, and
other manufacturing techniques, meeting new requirements like connection or functional
surface preparation. It is anticipated that laser processing can overcome the shortcomings
in processing accuracy and damage. Nowadays, laser processing on CFRP has a wide range
of applications, such as drilling, cutting, milling [32], cleaning, connecting [33], auxiliary
molding [34], and other processes [35], as indicated in Figure 2.
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Figure 2. Laser technology used in CFRP [5,20,32–34].

This article summarizes the main factors affecting the processing quality of laser
cutting CFRP. First, the process of laser and CFRP processing and the mechanism of action
are discussed. Then the laser wavelength, pulse width, and other laser characteristics,
as well as the scanning speed, repetition frequency, and other laser parameters on the
processing quality and processing efficiency of the law, was analyzed. New laser processing
methods that can improve processing quality are summarized. To further elucidate the
CFRP laser removal mechanism, the progress of numerical simulation studies of CFRP laser
processing of CFRP is also reviewed. Finally, the development trend of laser processing
of CFRP is foreseen. This paper can provide a reference for the development of laser
processing CFRP technology.

2. CFRP and Laser Interaction Mechanism
2.1. The Basic Process of Laser Processing CFRP

The surface of CFRP is exposed to high-energy density laser irradiation during pro-
cessing. Thermal deterioration and evaporation, which can be further broken down into
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heating and sublimation phases, occur initially on the substrate. Carbon fibers are oxidized
and break down in the presence of high temperatures and oxygen to produce organic
gases like CO, carbon dioxide, etc., forming mixed vapor. When the vapor on the surface
continues to absorb heat and the temperature rises above the sublimation point, it will form
the plasma. Following this, the volume of vapor/plasma rapidly expands, and the rebound
pressure created by the vapor continues to act on the outside. Subsequently, the fibers
on both sides break and start splashing out in large quantities. This state is maintained
until the end of the laser pulse. The melted liquid-phase resin will clump on the substrate
surface, forming a recast layer. Therefore, in the process of laser processing CFRP, there are
three forms of interaction between the laser beam and CFRP: ablation, combustion, and me-
chanical effect caused by recoil pressure. According to the processing duration and energy
density, the laser processing process can be divided into the following stages: evaporation
and oxidation stage (stage I), gas expansion stage (stage II), and mechanical removal stage
(stage III), as illustrated in Figure 3. As can be observed from the processing process, laser
parameters are the main factors affecting the quality of CFRP processing [36,37].
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2.2. Materials Evolution in Laser Processing

The energy transfer between the laser and the composite is affected by the laser
wavelength and pulse width. The process contains a variety of ablative damage behaviors,
and the processing mechanism is rather complicated.

The microstructure of carbon fiber is a layered structure, as shown in Figure 4A. Each
carbon atom is connected to the other three carbon atoms by two C–C bonds and one C=C
bond. In its natural state, the bond energy of the C–C bond is 3.45 eV, whereas of the C=C
bond is 6.34 eV. Figure 4B illustrates the basic structure of epoxy resin. It primarily consists
of C–O, C–H, C–C, and C=C bonds, with a bond energy of 7.56 eV for the C–O bond and
4.30 eV for the C–H bond [38].



Sensors 2023, 23, 3659 6 of 33

Sensors 2023, 23, x FOR PEER REVIEW 6 of 33 
 

 

2.2. Materials Evolution in Laser Processing 

The energy transfer between the laser and the composite is affected by the laser wave-

length and pulse width. The process contains a variety of ablative damage behaviors, and 

the processing mechanism is rather complicated. 

The microstructure of carbon fiber is a layered structure, as shown in Figure 4A. Each 

carbon atom is connected to the other three carbon atoms by two C–C bonds and one C=C 

bond. In its natural state, the bond energy of the C–C bond is 3.45 eV, whereas of the C=C 

bond is 6.34 eV. Figure 4B illustrates the basic structure of epoxy resin. It primarily consists 

of C–O, C–H, C–C, and C=C bonds, with a bond energy of 7.56 eV for the C–O bond and 

4.30 eV for the C–H bond [38]. 

 

Figure 4. Microstructure of carbon fiber and epoxy resin: (A) microstructure of carbon fiber; (B) 

main structure of epoxy resin [38]. 

The processing mechanism of CFRP by an IR laser and a UV laser is different. Com-

pared with the ultraviolet laser, resin has greater transmi�ance to an IR laser, and the 

single photon energy of the IR laser with a wavelength of 1064 nm is 1.17 eV, which is 

insufficient to break the chemical bond. Therefore, the IR laser can remove the carbon fiber 

by gasification through a photothermal mechanism, and the resin is eliminated by the 

combined action of the heat conduction of the carbon fiber and the gas pressure. When 

the wavelength of the UV laser is 355 nm, the single photon energy is 3.49 eV, which is 

higher than the C–C bond energy of 3.45 eV found in the main structure of both materials. 

Therefore, UV laser processing is a photochemical reaction process that can break the C–C 

bond of carbon fiber and epoxy resin directly, achieving the “cold processing” of the ma-

terial. The processing principle of both is shown in Figure 5 [38–41]. 

 

Figure 5. Laser cu�ing process of CFRP, which depends on the wavelength of the laser: (A) infrared 

laser and (B) UV laser processing CFRP mechanism [40]. 

According to the pulse width of the laser, the laser processing process can be divided 

into thermodynamic and non-thermodynamic processes. The first category includes con-

tinuous lasers, long-pulse lasers, and short-pulse lasers. When the pulse width is greater 

than 10−11s, several heat transfer and diffusion processes will occur when the material ab-

sorbs the laser energy, including electron excitation, electron–phonon relaxation, and pho-

non–phonon relaxation. Therefore, in the process of laser processing, the melting, evapo-

ration, and removal of the material are achieved by thermal effects, which cause serious 

thermal effects and harm to the edge of the laser-burned area, as shown in Figure 6A. 

Figure 4. Microstructure of carbon fiber and epoxy resin: (A) microstructure of carbon fiber; (B) main
structure of epoxy resin [38].

The processing mechanism of CFRP by an IR laser and a UV laser is different. Com-
pared with the ultraviolet laser, resin has greater transmittance to an IR laser, and the
single photon energy of the IR laser with a wavelength of 1064 nm is 1.17 eV, which is
insufficient to break the chemical bond. Therefore, the IR laser can remove the carbon
fiber by gasification through a photothermal mechanism, and the resin is eliminated by the
combined action of the heat conduction of the carbon fiber and the gas pressure. When
the wavelength of the UV laser is 355 nm, the single photon energy is 3.49 eV, which is
higher than the C–C bond energy of 3.45 eV found in the main structure of both materials.
Therefore, UV laser processing is a photochemical reaction process that can break the
C–C bond of carbon fiber and epoxy resin directly, achieving the “cold processing” of the
material. The processing principle of both is shown in Figure 5 [38–41].
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Figure 5. Laser cutting process of CFRP, which depends on the wavelength of the laser: (A) infrared
laser and (B) UV laser processing CFRP mechanism [40].

According to the pulse width of the laser, the laser processing process can be divided
into thermodynamic and non-thermodynamic processes. The first category includes con-
tinuous lasers, long-pulse lasers, and short-pulse lasers. When the pulse width is greater
than 10−11 s, several heat transfer and diffusion processes will occur when the material
absorbs the laser energy, including electron excitation, electron–phonon relaxation, and
phonon–phonon relaxation. Therefore, in the process of laser processing, the melting, evap-
oration, and removal of the material are achieved by thermal effects, which cause serious
thermal effects and harm to the edge of the laser-burned area, as shown in Figure 6A. When
the CFRP is processed by the picosecond and femtosecond lasers, the laser pulse duration
is shorter than the electron–lattice energy relaxation period. The laser energy has been
absorbed by the electrons before the energy coupling between electron and lattice, and the
lattice and electrons are in a non-equilibrium state. The “cold processing” mechanism of the
interaction between the ultrashort-pulse laser and material is shown in Figure 6B. During
the pulse duration, the lattice motion and heat conduction are negligible. The material
undergoes an instantaneous non-thermal phase change, and the material is ejected with
the formed plasma before the laser energy can diffuse to the periphery. This prevents the
thermal effects and damage caused by thermal diffusion and creates a neat and precise
processed edge [41,42].
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2.3. Laser-Induced Plasma

The laser processing process is significantly impacted by the plasma produced during
the laser processing. Plasma, also known as the fourth state of matter, is mostly made up of
atoms, molecules, electrons, free radicals, and different reactive groups. When irradiated by
a high-energy density laser, CFRP produces partially ionized plasma. Under the influence
of plasma, more oxygen and nitrogen polar groups are produced on the surface of CFRP,
and the interfacial bonding strength is greatly increased [43]. However, the plasma cluster
concentrating at the processing site may reduce the target’s ability to absorb laser energy,
lowering processing effectiveness and ablation quality [44]. Besides, the plasma eruption
and plume smoke in CFRP laser processing cannot be effectively predicted by temperature-
field simulation. To further explore the removal mechanism of CFRP, researchers use
high-speed cameras to directly record the laser ablation process of CFRP.

Figure 7A illustrates the results of CFRP laser ablation studies carried out by Tao
et al. [36] in both air and vacuum. Small solid particles floating on the surface of the
workpiece and the plasma mixture will be swept away by the tangential airflow. Ma
et al. [45] investigated the impact of the plasma produced during laser manufacturing on
the damage process and recorded the plasma plume by a high-speed camera, as shown in
Figure 7D. It was found that the formation plasma and the temperature on the surface of the
material was related to the change in pulse number. Faas et al. [46] used high-speed imaging
technology to analyze the thermal plume of the ablation products created during CFRP
laser drilling, as shown in Figure 7C. It was found that compression waves had formed in
the flowing evaporated material, and the flow rate of the thermal ablation products could
be estimated by examining the location of these compression shocks. Ohkubo et al. [47]
noticed mushroom-like eruptions during laser processing CFRP using a high-speed camera.
Meanwhile, they performed numerical simulations to study the dynamics of the processing
process, as shown in Figure 7B. According to the findings, the degradation of the resin
material is significant at low processing depths, and the thermal influence is more severe
at high processing depths. Bluemel et al. [48] investigated CFRP laser processing under
various process conditions with a 1.5 kW fiber nanosecond-pulsed laser. The plasma
and plume smoke produced in laser processing CFRP were analyzed, showing that the
laser-induced plasma lifetime ranged from 20 to 200 ns.
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Figure 7. Plasma expansion of laser-processed CFRP captured by high-speed camera: (A) plasma in
various air ambiances [36]; (B) burning waves at various pulse counts [47]; (C) diagram of a plasma
plume in smoke [46]; (D) the phenomena of mushroom-like eruptions [45].

With the further investigation of the plasma’s mechanism, Wang et al. [49] proposed
the use of laser-induced plasma micro-drilling to reduce taper and improve surface in-
tegrity after processing. As shown in Figure 8A, it can effectively enhance the quality and
roundness of micro-hole edge. Under the same parameters, the photo-induced plasma
micro-drilling method reduced the hole taper by 32.02% compared to the traditional method,
as shown in Figure 8B.
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(A) schematic of LIPMD process; (B) schematic of LIA process [49].

In conclusion, the laser processing process is accompanied by many intricate physical
effects, including photothermal, photochemical, and photomechanical effects. The action
mechanism of the laser on CFRP mainly depends on the wavelength and pulse width.
In addition, variations in pulse width and wavelength are expected to alter the relative
importance of numerous effects. The proper use of plasma can enhance processing quality
and interface bonding strength, but plasma processing is a significant challenge in laser
processing research. The current analysis of the dynamic observation results of the laser
processing process mostly uses high-speed cameras to capture the plasma effect in the laser
processing process.



Sensors 2023, 23, 3659 9 of 33

3. Main Factors Affecting the Laser Processing of CFRP Materials
3.1. Laser Wavelength

The amount of laser energy that is absorbed by the CFRP when it is exposed to laser
radiation dictates how much of the total laser energy is used. Epoxy resin is employed
as the material matrix, and the epoxy resin’s absorption property of the laser defines the
first laser action process. The laser action process on the carbon fiber composite material is
closely related to the laser wavelength. The removal mechanism of the action process is
determined by the energy of the single laser photon, which increases as the wavelength
decreases.

Romoli et al. [50] measured the absorption rates of polymers as the matrix to lasers
at different wavelength by the spectrophotometer, as illustrated in Figure 9A. The rate of
absorption increases with decreasing wavelength. When the wavelength is longer than
650 nm, the resin can hardly absorb the laser. Friedrich et al. [51] investigated the effect of a
polarized laser on the interaction between laser and carbon fibers. Based on the Fresnel
equation, a theoretical model was used to determine that the absorption of carbon fiber
textiles and CFRP decreases with increasing wavelength. Figure 9B shows the absorption
of a polarized laser at different wavelengths by carbon fibers. For the vertically incident
laser beam, the absorption rate in the direction of polarization parallel to the carbon fiber is
slightly lower than that of the polarization direction perpendicular to the carbon fiber.
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tively: (A) absorption spectra of resin materials [50]; (B) the average absorption curves of single
carbon fiber for different laser wavelengths [51].

The absorption rate of CFRP to laser decreases with the increase in laser wavelength,
and the smaller the spot diameter and higher the laser power, the more significant the
absorption rate fluctuation is. Besides, the volume fraction of randomly distributed carbon
fibers also influences the absorption rate. The bulk absorption of the material decreases
with increasing material thickness. The laser wavelength of 10.6 µm is the only wavelength
that has higher absorption performance in epoxy materials than in composites or carbon
fibers [52,53].

In the laser processing process, the laser wavelength not only affects the rate of CFRP
absorption, but also significantly affects the HAZ in the material. The HAZ created during
the laser processing shrinks as the wavelength is shrunk. Wolynski et al. [54] processed
CFRP by laser in wavelengths of 1064 nm, 532 nm, and 355 nm, respectively. The results
showed that the HAZ produced by laser cutting with the 1064 nm wavelength was twice
as large as that produced by cutting with a 532 nm wavelength. Dell’erba et al. [55]
demonstrated that there is no heat transfer between the excimer laser and the composite
material, and excellent cutting quality is obtained. However, the processing efficiency of
the excimer laser is incredibly low, making it unsuitable for industrial applications. As
a result, excimer wavelength lasers are used less frequently for laser processing CFRP to
ensure processing efficiency. Table 1 summarizes the research on the size of the HAZ by
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wavelength in recent years, and it can be seen that the heat-affected zone shrinks as the
wavelength decreases.

Table 1. Effect of wavelength on the size of the HAZ.

Reference Year Wavelength Pulse Length Machining Condition HAZ

[39] 2016 1064 nm
266 nm 6 ns Average power 39 mW

Repetition rate 10 Hz
700 µm
200 µm

[38] 2020 532 nm
355 nm 12 ps Repetition rate 0~2000 KHZ

Maximum average power 90 W
200 µm
70 µm

[52] 2008
10,600 nm
1064 nm
1030 nm

–
Pulse Continuous

Max power 3000 W
Average power 300 W

Max power 500 W

1200 µm
600 µm

1400 µm

[53] 2012 10,600 nm
1070 nm

8 µs
–

Average power 800 W
Pulse frequency 20 KHZ

Continuous wave power 300 W

1200 µm
650 µm

[56] 2021 266 nm 30 ns The single pulse energy >1 mJ
Repetition rate 1~100 Hz 82 µm

The absorption rate of CFRP to laser increases as the wavelength decreases and the
energy of individual photons also increases. When the laser wavelength is ultraviolet, pho-
tochemical processing can greatly reduce thermal damage and improve processing quality,
so the heat-affected zone range decreases with the wavelength. Short-wavelength lasers
should therefore be chosen to increase energy efficiency and decrease material damage.

3.2. Laser Pulse Width

Since there is a time interval between each pair of pulses, the material can cool more
easily and sustain less thermal damage in processing than by using a continuous laser.
Because the laser power is certain and a pulsed laser is discontinuous in time, the shorter
the laser pulse width, the higher the energy density of a single pulse, which is favorable to
quick material removal and reduces HAZ production. Compared to millisecond pulses,
nanosecond pulses have a smaller HAZ and produce superior processing outcomes [57,58].

In contrast to traditional long-pulse laser processing, ultrashort-pulse laser processing
instantly ablates and strips off the processed material instead of heating, melting, and
vaporizing. This eliminates the cooling recasting process and enables ultra-fine processing.
There are several benefits of ultrafast laser “cold processing”, including low temperature
effects, exact edges at the tiniest scales, no material constraints, and no alterations to the
mechanical, chemical, physical, or structural characteristics of the surrounding medium.
Due to the obvious thermal effect of processing, traditional lasers like continuous lasers,
millisecond, and nanosecond form HAZ with a scale of 100 to 2000 µm, whereas ultrashort-
pulsed lasers like picosecond and femtosecond lasers can achieve high-quality cutting with
a HAZ width of only 5 to 100 µm [59–63].

The typical power of picosecond and femtosecond ultrafast lasers is now between
a few tens and hundreds of watts, which means that the application is still dominated
by laser microfabrication. This contrasts with continuous lasers, which have an average
power of 10 kW. The average power of industrialized ultrashort-pulse laser technology
has increased significantly in recent years from 10 watts to several kilowatts. Ultrafast
laser processing technology is anticipated to make significant advancements in processing
efficiency, thickness, and area, while also maintaining the advantages in processing accuracy
and quality currently enjoyed by this technology [64,65].

The effect of cold processing can be obtained when the laser pulse width achieves
picosecond. Continued pulse width reduction will not only result in a decrease in processing
efficiency but will also have a negligible impact on reducing the heat-affected zone. In
reality, the advantage of “reducing the time of laser-material interaction” of an ultrafast laser
can be offset by the heat accumulation effect caused by unsuitable parameters. Therefore,
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HAZ should be reduced by optimizing the laser processing parameters and processing
methods to improve processing quality in actual experiments [66,67]. Table 2 provides a
summary of the recent research on the effect of pulse width. As can be seen, the HAZ gets
smaller as the pulse width gets smaller.

Table 2. Effect of pulse width on heat-affected zone.

Reference Year Wavelength Pulse Length Machining Condition HAZ

[59] 2020 1064 nm
0.1~1 ms
4~200 ns

10 ps

Max power 300 W
Max power 20 W
Max power 70 W

600 µm
140 µm
90 µm

[60] 2022 1064 nm
0.1~1 ms
4~200 ns

15 ps

Max power 300 W
Max power 20 W
Max power 70 W

729.5 µm
44.7 µm
21 µm

[62] 2020 1030 nm 255 fs Average power 15 W
Repetition rate 1–1.1 MHZ 8.52 µm

[63] 2021 1028 nm 290 fs Max average power 10 W <10 µm

[64] 2015 – 8 ps Average power 1.1 KW
Repetition rate 300 KHZ <20 µm

[66] 2019 1064 nm 0.4 ps Repetition rate 5.0 MHz
Flux of pulse 8.0 J/cm2 20 µm

[67] 2013 1030 nm 1.5~7.5 ps Repetition rate 6.3 MHz
Flux of pulse 0.75 J/cm2 60 µm

Fujita et al. [68] investigated the variation of HAZ in CFRP and cutting efficiency under
various laser cuttings from 266 nm to 1064 nm and laser pulse widths from femtosecond to
nanosecond, as shown in Figure 10. This further confirmed that a shorter laser wavelength
and pulse width could achieve smaller HAZ, as well as higher cutting efficiency.
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Figure 10. Processing morphology with different wavelengths and pulse widths, (a) the pulse width
and wavelength of the laser beam of-(g) are respectively: (a) 180 fs, 800 nm; (b) 35 ps, 800 nm; (c) 200 ps,
800 nm; (d) 2 ns, 355 nm; (e) 10 ns, 355 nm; (f) 10 ns, 532 nm; (g) 20 ns, 1064 nm [68].

Therefore, using shorter wavelengths and ultrashort pulse processing can significantly
reduce the heat-affected zone to improve the quality of the processing. In conclusion,
nanosecond lasers, continuous lasers, and other traditional lasers form the HAZ scale in
the range of 70 µm to 1000 µm. However, picosecond lasers, femtosecond lasers, and other
ultrafast lasers can achieve HAZ widths of only 5 µm to 100 µm. However, the production
of thermal effects is also strongly influenced by the laser processing process parameters.
Experiments are carried out to adjust the process parameters during the interaction between
the laser and material to get a superior processing quality.
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3.3. Scanning and Focusing Parameters

The development of HAZ is also strongly influenced by the laser processing process
parameters. A small HAZ can be achieved by adjusting the laser settings. However, un-
suitable laser parameters could exponentially expand the HAZ. To improve the processing
quality of CFRP components, laser process parameter adjustment is crucial.

Oh et al. [69] proposed the factors affecting cutting quality through the experiment of
the 2 KW fiber laser cutting CFRP, and described the laser processing cutting quality, as
shown in Figure 11A. The experiment confirmed that the scanning speed is the dominant
factor affecting thermal damage, and increasing the cutting speed can reduce thermal
damage. Takahashi et al. [70] performed an experimental investigation on cutting CFRP
with an infrared nanosecond laser. The experiments were carried out utilizing a scanning
oscillator to adjust the processing position. It was claimed that raising a specific scanning
spacing may lessen the vapor shielding effect, which could result in a large increase in
processing speed and improve processing quality.

The diverse carbon fiber lay-ups used in CFRP, as well as the various scanning orienta-
tions used during laser processing, have a big impact on the laser processing. Fiber lay-up
and laser scanning directions are shown in Figure 11B. The area of HAZ is the largest when
the laser scanning direction is perpendicular to the surface fiber lay-up direction, and it
is least when the scanning direction is synchronized with the surface fiber lay-up direc-
tion [71–73]. When laser cutting double-layered CFRP sheets with different arrangements,
the cutting of double-layered CFRP consisting of 90◦ or 45◦ with 0◦ orientation can get a
better quality of cut [74,75]. The direction of the fibers has a significant impact on the way
carbon fiber composite laminates are damaged. Laser scanning path planning can keep the
angle at 45◦, which is helpful for ensuring processing quality and increasing efficiency.

The following laser processing CFRP parameters have the most impact on the heat-
affected zone: laser power, scanning speed, repetition frequency, defocusing, and others.

The laser power directly affects the amount of laser energy absorbed by the material
per unit of time. Excessive laser power will cause the processed material to burn excessively,
whereas too low laser power may lead to the nonpenetration of the material, requiring
repeated processing. This will affect processing efficiency and lead to excessive heat
accumulation, resulting in the expansion of the heat-affected zone [76–78].

In laser processing, the scanning speed determines the time for the laser to interact
with the material. When the scanning speed is too high, the laser beam acts on the material
for a short time, the heat conduction and heat diffusion are insufficient, and the processed
material cannot be cut through because of insufficient heat input [77]. The pulsed laser
behaves as a continuous pulse at a higher repetition frequency and slower scanning speed,
causing excessive ablation in material, resulting in an excessive region of a heat-affected
zone and reduced cutting quality [37]. The relationship between the scanning process
parameters is depicted in Figure 11C.

To obtain a better processing effect, the laser beam converging on the surface of the
workpiece surface is focused into a point, just landing on the surface of the material to be
processed, that is, zero defocus, to get a superior processing result. The power density is
at its highest at this moment [79]. For positive defocusing, the laser’s focal plane is above
the surface of the processed workpiece; conversely, for negative defocusing, the laser’s
focal plane is below the treated workpiece. Different focal length scenarios, as shown in
Figure 11D, will result in energy diffusion and a reduction in the processing quality for
both positive and negative out-of-focus [80].
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Figure 11. Schematic diagram of the effect of laser process parameters on the processing of CFRP
in laser processing: (A) effect of laser processing parameters on CFRP [69]; (B) schematic diagram
of the different scanning directions of the laser [73]; (C) graph of scanning speed versus repetition
frequency [37]; (D) different out-of-focus situations for laser processing.

Thermal damage is unavoidable when the laser interacts with CFRP. Selecting suitable
process parameters can realize the low-damage laser processing of CFRP to manage the
laser–material contact time and the energy irradiated into the material. However, each
parameter in the laser processing process is not simply combined. Due to differences in laser-
spot diameters, material thicknesses, material properties, and laser type, the relationship
between each parameter needs to be considered to obtain the best processing results.

3.4. Laser Scan Path

The thermal effect of the laser easily generates a HAZ in the material, but the material
removal is difficult to control in the depth direction. The processing depth–diameter ratio
is too large, or the scanning method is improperly selected, which can easily cause uneven
material removal and reduce processing accuracy. If only relying on laser vaporization
ablation, the material removal efficiency is also low. Therefore, several researchers have
optimized the laser processing process, which not only reduces the HAZ, but also improves
the processing depth and efficiency. Li et al. [81] proposed a coaxial ring hole-making
procedure. First, the outline is sliced, then gradually smaller and smaller circles are cut
inward. The laser beam motion trajectory consists of a series of concentric rings, and the
distance between concentric rings is generally set to a focused-spot diameter, which is
conducive to the complete removal of material from the target area. The circular path
after processing has enough cooling time, which reduces the generation of the HAZ. Li
et al. [82] investigated the scanning modes based on the multi-pass method, including
the concentric scanning mode and the spiral scanning mode, as depicted in Figure 12A. It
was found that the spiral scanning mode can significantly reduce thermal damage. The



Sensors 2023, 23, 3659 14 of 33

diameter of the HAZ fell from 127.3 µm to 84.76 µm. In the same year, they proposed
a staggered scanning processing mode, which facilitates better material removal during
drilling and the timely discharge of broken fibers and vapors, and reduces the degree of
thermal decomposition of the frontier matrix material and the thermal accumulation effect
of adjacent trajectories. As a result, the average width of HAZ was reduced overall by
25.85%, and the taper was also reduced by 51.45% in holes with the same parameters [83].
Tao et al. [84] proposed improvements based on the method of making holes in the coaxial
ring, Figure 12B is the coaxial ring hole making procedure, they suggested a dual-beam
laser hole-making procedure for thick CFRP plates. As illustrated in Figure 12C, two pulsed
laser beams positioned in opposite positions are used to simultaneously cut holes in CFRP.
The laser beam scanning path is carried out in a coaxial ring. In this process, the effective
removal depth of a single laser is greatly increased, which greatly improves the processing
efficiency. Meanwhile, this process suppresses the problems of low processing efficiency
and large HAZ damage caused by the blocking of the laser beam because of the increase in
depth. A novel stepped-parameter parallel-ring laser-drilling technique was developed
by Zhu et al. [85] in which the laser beam starts drilling from the outer to the inner ring.
This method increases the energy input of the inner ring, enabling the removal of material
more quickly, while the lower energy input of the outer ring provides a shielding trench
to reduce heat loss from the parent material. With the help of this procedure, quality and
productivity have increased by over 300%, energy consumption has decreased by 78.10%,
and CO2 emissions have decreased by more than 25%.

Fornaroli et al. [86] proposed a circular motion of the laser beam around the center
of the target hole while the beam axis rotates around its own center. The laser beam’s
circumferential path rotation is synced with the beam’s internal rotation and spirals into
the process. A through-hole is created by repeatedly abrading the target hole material with
laser pulses. It significantly improves the HZA and hole taper. In the study of Ouyang
et al. [87], the CFRP was processed by the picosecond laser in a “double rotation” cutting
technique, as shown in Figure 12D. Compared to mechanical processing, the mechanical
properties of the processed CFRP samples, such as tensile strength and fatigue parameters,
were enhanced. Additionally, the drilling precision, taper, and HAZ are all under good
control. Ye et al. [88] investigated the effect of different cutting techniques on the accuracy
of CFRP hole making. As shown in Figure 12E, laser rotary cutting produces holes of
the highest quality compared to parallel and cross-cutting techniques. Herzog et al. [89]
suggested a parallel channel to broaden the kerf, as shown in Figure 12F. CFRP can be
sliced up to 13 mm thick by focusing the laser into the edge of the notch. These scanning
methods were compared, as shown in Table 3.

Table 3. Processing process characteristics.

References Year Processes Processing
Efficiency HAZ Plate Thickness

[81] 2010 coaxial-trepan drilling technique middle 50 µm 7 mm
[83] 2021 staggered scanning processing mode middle 17.9 µm 10 mm
[84] 2021 dual-beam opposite dislocation middle 60 µm 10 mm
[85] 2022 stepped-parameter parallel-ring middle 161.7 µm 2 mm
[86] 2013 spiral rotary hole high – 5.5 mm
[87] 2021 “double rotation” cutting method high 60 µm 4 mm
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showing two distinct scanning pathways and the laser-drilling procedure [82]; (B) pulsed-laser coaxial-
trepan drilling technique illustrated schematically [84]; (C) schematic diagram of dual-beam opposite
dislocation (DBOD) laser-drilling process [84]; (D) the picosecond laser “double rotation” cutting
method [87]; (E) schematic diagram of scanning mode [88]; (F) the approaches used in the experiments
to define the maximum possible cutting depth [89].

3.5. Processing Environment and Auxiliary Agents

Due to the large difference between the properties of the matrix and the reinforcing
phase in CFRP, the auxiliary agents are added to CFRP to balance the difference between
these two parts, which reduces heat diffusion and secondary damage during laser pro-
cessing. According to the study of Staeh et al. [90], when laser processing of CFRP was
performed under various humidity processing settings, with the increase in material hu-
midity, the shear modulus of material decreased and the diameter of HZA rose as the
moisture content of the material increased. Jaeschke et al. [91] discovered that the HAZ
is more prone to absorb moisture from the surroundings when cutting CFRP with a CO2
laser, leading to secondary damage and weakening the mechanical properties of the mate-
rial. Therefore, to decrease moisture absorption and enhance the surface quality of CFRP,
polyamide powder was injected using a nozzle into the treated surface to fill in the gaps
created after the resin vaporized. The addition of a 1.5% mass fraction of multi-walled
carbon nanotubes as secondary reinforcement to the polymer matrix lowers the difference
in decomposition temperature between carbon fiber and epoxy resin, and the high thermal
conductivity of multi-walled carbon nanotubes raises the thermal diffusion coefficient
of the polymer matrix [92]. In comparison to the processing results of traditional CFRP,
the experiments demonstrate reductions in HAZ, taper angle, and surface roughness of
the hole of around 30%, 47%, and 43%, respectively. Canisius et al. [93] suggested that
applying a laser absorption additive (carbon black) to boost the absorption rate of the resin
can greatly lower the HAZ. Figure 13A illustrates that the HAZ can be reduced by 25% by
adding 4% carbon black to the material. Additionally, experimental results showed that
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adding carbon black particles to the resin matrix might enhance cutting and lessen the
production of processing flaws [94]. The dimethyl ketone-aided laser-cutting method was
employed by Chen et al. [95]. As illustrated in Figure 13B, the HAZ width was decreased to
38.70 µm with dimethyl-ketone-assisted processing as opposed to 274.37 µm with straight
laser processing, a reduction of 85.89%. This is because dimethyl ketone’s heat transfer
inhibition prevented practically all substrate material combustion.
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dimethylidene-ketone-assisted laser processing and conventional laser processing [95].

4. New Laser Processing Process Methods

Researchers have suggested measures to decrease the size of the processing heat-
affected zone, including cooling the processing area by convection from the surrounding
environment, lowering the temperature at which thermal damage occurs, and increasing
processing efficiency. For example, these measures include using airflow to remove some
of the heat and plasma gas to increase processing efficiency and depth of cut, as well as
using water’s scouring and cooling effects to lower thermal damage.

4.1. Gas-Compound-Assisted Laser Processing

Laser processing with gas assistance, different gas types, air pressure, optical gas
coaxial, or side axis assistance will bring different processing impacts.

Zhang et al. [96] conducted a comparison test of laser irradiation damage of carbon
fiber composite materials on the subsonic flow and no-flow environment. According to
the test results, the processing area had a certain cooling effect when the tangential air
flow was assisted. As the pressure increased, the gas flow increased, which can remove
more heat for cooling and reduce the heat-affected zone. Riveiro et al. [97] studied the
assisted-laser cutting experiment of Ar gas at different air pressures with a 3.5 KW CO2
laser. Experiments showed that gas sprayed through coaxial subsonic nozzles and paraxial
supersonic nozzles can blow away heat better, thus reducing the heat-affected zone. The
morphology was shown in Figure 14A. Yuki et al. [98] used nitrogen, argon, and oxygen
as auxiliary gases to study laser processing under the same average power and scanning
speed, and the results are shown in Figure 14B. Because the specific heat capacity of nitrogen
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is twice as large as that of argon, it can absorb more heat and suppress the heat-affected
zone. Therefore, nitrogen and argon as auxiliary gases can eliminate the expansion of the
carbon fiber end face. With the help of oxygen, the maximum depth of incision may be
accomplished, solving the issue of challenging material removal in the deeper layers of the
material because of lower laser energy.

Negarestani et al. [99] used a nanosecond Nd:YAG laser to process CFRP; pure ni-
trogen, pure oxygen, and a nitrogen–oxygen mixture were respectively used as auxiliary
gases for processing. The cutting morphology under the three gas-assisted modes is shown
in Figure 14C. Under the aid of the nitrogen and oxygen mixture, the pull-out of bottom
fibers was increased by 47% and 59%, respectively. In the meantime, inert N2 may rapidly
chill the processing region, minimizing thermal damage, while active O2 can improve
the material removal rate and accelerate the disintegration of composites by exothermic
reaction. For the laser cutting of carbon-fiber-reinforced plastics, Qin et al. [100] used three
gas-assisted techniques: coaxial nitrogen, coaxial oxygen, and coaxial oxygen near-axial
nitrogen composite gas to assist. The nitrogen–oxygen mixture had the greatest etching
depth, up to 1000 µm, and the nitrogen cooling effect was better. The dual gas flow further
improved the blowing impact on the melt, which gave the gas mixture the benefit of cooling
and enhancing etching. Figure 14 displays the three distinct gases’ processing effects (D).
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Figure 14. Effect of different auxiliary gases on laser processing of CFRP: (A) two different kinds of
nozzle processing [97]; (B) cross-section view of different gas processing CFRP sample processes [98];
(C) the effect of gas processing with different contents [99]; (D) different gas processing [100].

In conclusion, the experiment revealed that oxygen enhances the decomposition
process of composites through exothermic reaction, improves the material removal rate,
and solves the issue of the challenging material removal caused by the reduction in laser
energy in deep layers of materials. Inert gas has a certain inhibitory effect on the heat-
affected zone of carbon fiber composites. Therefore, a nitrogen–oxygen composite can be
used to provide the best processing result.

4.2. Liquid Composite Auxiliary Processing

In 1842, Colladon demonstrated the possibility that water jets could guide light by
discovering that light could travel along the curve of a water jet. Then in 1854, Tyndall dis-
covered the phenomenon of total reflection of light in flowing liquid through experiments
and confirmed that water jets could be used as optical fibers to transmit light. In 1987, Doi
attempted to fuse lasers with water to form “laser knives” that could apply laser radiation
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to a processed surface. In 1990, Wrobel et al. [101] successfully connected a jet to a solid
fiber to direct a laser to the workpiece surface. Since then, the research on water as a liquid
assisting in laser processing has been started. The processing methods of a liquid-assisted
laser can be divided into underwater-assisted processing, water-jet-assisted processing,
water-guided processing, etc. The cooling effect of flowing water is more obvious than that
of gas, and water can scour the residue to obtain a clean processing surface. However, due
to the better heat-absorbing effect of water, the laser energy loss is also relatively large.

Hua et al. [102] used a 500 W millisecond pulse Nd:YAG laser to process carbon
fiber composite materials. It was found that the thermal damage of laser cutting was
greatly reduced, and the heat-affected zone and fiber pulsing were reduced when cutting
underwater. Tangwarodomnukun et al. [103] compared and analyzed the width of the
heat-affected zone in laser processing of CFRP in air, still water, and running water. It was
found that the heat-affected zone produced by processing in both still water and running
water can be significantly reduced.

Wang et al. [104] processed CFRP using a water-guided laser. The research results
showed that the cutting surface of CFRP processed by a water-guided laser was clean and
flat. In addition, there were almost no fused impurities attached to the cutting surface
and groove, as shown in Figure 15A. Additionally, the surface heat-affected zone, material
delamination phenomenon, and fiber expansion were all improved. The cooling effect of
the paraxial water jet was exploited by Zhang et al. [105] to restrict the diffusion of excess
heat produced during laser processing. As can be seen from the morphology of Figure 15,
the smaller the heat-affected zone was, the more water was flowing through the system (B).
Water-jet assist can not only achieve timely heat dissipation but also improve the cutting
surface processing quality of carbon fiber and reduce carbonization.

Sun et al. [106] cut carbon fiber composite materials with a water-guided laser. During
water-guided laser processing, the heat-affected zone can be greatly reduced and the
processing quality can be improved. Figure 16A shows the principle of water-guided
processing. In the same year, they compared conventional laser and water-guided laser
processing of carbon fiber composites. As shown in Figure 15C, the average size of the
heat-affected zone in the traditional laser machining was 37 µm, while there was almost no
obvious damage to the substrate of the cutting surface in the water-guided laser cutting,
but the cutting speed was slower, only one half of that in traditional laser machining [107].

For water-guided lasers, Wang et al. [108] showed that the water’s absorption coef-
ficient of light drops as the wavelength decays. The nozzle construction is emphasized
as having a significant impact on the jet flow parameters, including jet pressure, flow
rate, and velocity and determines whether a stable “reduced flow” water jet can develop.
Additionally, the examination of the coupling revealed that there are three different types
of coupling: end-face coupling, far-field coupling, and near-field coupling, as depicted in
Figure 16B. According to Liu et al.’s [109] summary of a water-jet-guided laser ablation
cycle depicted in Figure 16C, cutting precision increases with decreasing water-jet diameter,
while water-jet stabilization becomes more challenging. When drilling a deep hole, water
becomes trapped inside the hole; this water turbulence and the leftover material inside the
hole can influence laser propagation. The processing speed of deep holes was impacted
by the high power density of the laser beam energy in the water at the same time. Three
alternative cooling techniques—water, gas, and a water–gas composite—were compared
by Zhang et al. [110] in their comparative research of carbon fiber composites processed
with laser assistance. A water and gas compound assisted laser processing, blowing away
the water in the laser irradiation area, greatly reducing the interference of the water on the
laser transmission, making the laser more concentrated in its irradiation of the material,
while the impact of the gas on the water will make the water into smaller droplets or
even cause atomization, which will make the water easier to absorb heat-phase change
and vaporization, combined with nitrogen cooling, it further reduces the residual heat
generated during the processing process. Figure 15D is a schematic representation of
several processing scenarios. To help the laser in treating CFRP’s low-temperature damage,



Sensors 2023, 23, 3659 19 of 33

in the same year, the team used a spray impingement on the tube wall to create a thin
flowing water film. A mixture of nitrogen and oxygen was employed to help the siphon
nozzle create a spray mist based on the oxidation process of oxygen to enhance the etching
efficiency of CFRP, as illustrated in Figure 16D. Additionally, it was discovered that a high
processing quality could be produced at a 30% oxygen concentration and a relative balance
of heat and cold [111].
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Figure 15. Schematic diagram of the morphology of CFRP processed by liquid-assisted laser: (A) com-
parison of the visual effects of dry laser cutting versus water-jet-assisted laser cutting [104]; (B) water-
jet-assisted laser light topography [105]; (C) dry laser processing and water-guided processing [107];
(D) morphology of three auxiliary processing modes [110].

In conclusion, water-jet-assisted machining can cool the edge of the cut formed by a
laser pulse on the material surface and the surrounding area. Therefore, HAZ and thermal
residual stress were reduced to prevent thermal damage inside the material. High-precision
and high-quality ablative and cutting edges can be achieved using water-guided laser
machining. Compared with dry laser cutting, the kinetic energy of any auxiliary gas flow
used in liquid laser cutting was much higher. The water jet can discharge the molten
material more effectively, and the ablative products combine with water, which can greatly
reduce the release of harmful substances into the atmosphere. However, this kind of laser
energy loss was relatively large and processing efficiency was low.
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are several ways to combine water jets and light [108]; (C) a typical water-jet-guided laser ablation
cycle [109]; (D) flowchart of the thin-water-film-assisted laser processing method [111].

4.3. Laser Composite Processing Method

The physical process of laser interaction with materials was very complex, and the
processing method of a single traditional laser beam solved the problems of low cutting
thickness and low processing efficiency with difficulty. The CFRP matrix easily absorbed
water and dehydrate; wading processing is generally prohibited in the field of formal
aviation product processing. To improve the quality and efficiency of laser processing in
traditional dry laser processing, a new processing method has been proposed.

Furst et al. [112,113] used a laser with a power of 1 kw composed of a carbon dioxide
laser with a wavelength of 10.6 µm and a fiber laser with a wavelength of 10.6 µm to cut
carbon fiber composites, in which CO2 accounted for 25% of the total power and the fiber
laser accounted for 75%. The experimental principle is shown in Figure 17A. In this way,
cutting quality and cutting depth were improved.

Jia et al. [114] aimed at the problems existing in the processing of CFRP materials,
proposed the combined laser and mechanical processing method. First, a high-power laser
was used for rough machining to remove a large amount of material allowance. Then,
mechanical processing was used to remove this part of material to improve the processing
quality and dimensional accuracy of the final component. On this basis, Chen et al. [115]
proposed a collaborative fiber-laser–numerical-control milling processing of a 10.0 mm
thick CFRP plate, which integrated the advantages of high efficiency, high material removal
rate, good surface quality, and high cutting speed in the high-power laser cutting process
and improved the processing quality and speed. Xie et al. [116] used a two-step laser surface
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treatment to improve the performance of single-loop bonded joints in CFRP-laminates,
as shown in Figure 17D. In the first step, the resin is completely removed from the outer
surface of the laminate by an optimal laser-etching process; this provides a neat carbon fiber
fabric. In the second step, the resulting exposed carbon fiber fabric is further irradiated to
produce a series of small grooves on its surface.

Hu et al. [117] proposed an electromagnetic compound field-assisted laser removal
technique for the groove forming of materials. Compared to traditional laser material
removal methods such as laser punching and laser cutting, this method was able to perform
the processing of blind grooves efficiently and continuously, and the experimental setup is
shown in Figure 17C. The principle was as follows: under the control of the manipulator,
the high-energy laser beam was irradiated on the surface of the workpiece material, and
the irradiation area became a molten state. The external steady-state magnetic field and
electric field will generate a Lorentz force in a directional direction. When the Lorentz force
was greater than the sum of the gravity and surface tension of the material in the molten
area, the molten material in the molten area will be discharged through the upper part of
the groove. Thereby achieving the effect of electromagnetic composite field assisted laser
material removal and groove forming.

Wang et al. [118] processed CFRP by combining both laser and ultrasonic vibration,
as shown in Figure 17B. Initially, the laser ablates to remove the resin, exposing the fibers
and creating ordered grooves on their surfaces. Subsequently, the CFRP laminate was
subjected to ultrasonic vibration during the bonding process to facilitate penetration of the
adhesive into the micro-scale groove structure. In this way, the shear strength of CFRP was
increased by 340%. Zhou et al. [119] proposed a method for ultrasonic-vibration-assisted
laser processing in ethanol solutions to reduce the adverse effects of cavitation bubbles
on the processing. HAZ and etch depth were reduced by 57% and 25%, respectively.
Ultrasonic vibration explodes the cavitation bubble and reduces the interference of the
cavitation bubble with the laser, the effect of mechanical erosion was enhanced, and the
etch depth is increased by 119%. Ultrasonic vibration enhances the cooling effect in the
ablation region, and HAZ was reduced by 57%.
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groove processing device [117]; (D) ultrasonic and laser process schematic [116].



Sensors 2023, 23, 3659 22 of 33

4.4. Laser Surface Cleaning Technology

CFRP has many advantages, but it also has disadvantages such as low compressive
strength and low temperature resistance. In most applications, CFRP needs to be combined
with metal to build the complete structure. Traditional mechanical connections (e.g.,
riveting and bolting) between CFRP and metal joints reduce the static strength of the joint,
and laser connection technology has become a very fast developing connection technology
in recent years, ideal for CFRP-to-metal connections because of its low heat input, high
precision, and high efficiency. In laser connection technology, the laser acts in two different
ways. First, due to the difference in properties of epoxy resin and carbon fiber, to ensure
or enhance the interface connection strength and durability through the laser cleaning
method, physical cleaning of resin, increasing effective joint area, and chemical activation
are achieved. The main connection mechanism is mechanical interlock connection [120,121].

Oliveira et al. [122,123] experimentally studied the effect of femtosecond laser pro-
cessing on the micro/nano structure of a CFRP surface. The selective removal of epoxy
resins is presented and leaves exposed carbon fibers with the desired pattern. In addi-
tion, a submicron-laser-induced periodic surface structure is generated on the carbon fiber
surface, which helps to improve the adhesion of the fiber to the substrate in the adhesion
bonds between the CFRP parts. Jiao et al. [124,125] established the mathematical model
of a CFRTP–stainless-steel laser connection, and carried out the research in the aspects of
experiment and application exploration. The wettability and mechanical compatibility of
the welding interface were improved by forming a micro-texture on the surface of the light
alloy. Liu et al. [126] can efficiently and accurately treat the microstructure of the material
surface and improve the bonding strength of al-CFRP by using a laser. Figure 18A shows
the micro-nano morphology of CFRP treated by laser. The maximum shear strength of
these laser-treated joints is almost four times that of the non-microscopic lapped joints.
Figure 19A shows the principle of laser micronano treatment of CFRP (Leone et al. [127]).
A pulsed Yb:YAG fiber laser was used to pretreat the CFRP surfaces. It was found that
after laser treatment, the contact angle of the surface was significantly reduced, the surface
free energy was increased, the surface activity was improved, and the strength of the
treated adhesive joint was doubled. Li et al. [128] treated CFRP surfaces using picosecond
lasers and excimer ultraviolet lasers. The bonding strength between CFRP and aluminum
alloy is improved by increasing the surface roughness and introducing functional groups.
The shear strength of materials treated by picosecond infrared laser increased by 346.4%,
while that by ultraviolet laser increased by 293.8%. Therefore, picosecond laser has higher
processing efficiency and is more suitable for adhesive surface treatment. In addition, the
finite element analysis shows that the mechanical interlocking caused by surface roughness
increases the bonding strength by only 4%, so chemical bonding plays a leading role in the
bonding process.

Second, laser energy is directly used for the connection between composite materials
and other materials, and laser cleaning is used to perform surface treatment on the joint of
the fiber composite materials before bonding or welding to improve the joint strength [129].
The properties of metal and resin materials differ greatly; direct processing of metal and
CFRP does not form an obvious intermediate transition layer. However, stable chemical
bonds and compounds are formed under the action of heat; usually, the reactions of metal
elements M and CFRP O and C elements to form chemical bonds, MGCO3, MgO1+x, and
other compounds, were produced. Figure 19B shows the connection mechanism between
laser and metal [130]. Chemical bonds such as Al–O–C and Ti–O–C are formed at the
bonding interface between titanium alloy and CFRP, and complex compounds such as
TiO2, TiO, and TiC are eventually produced. Figure 18B shows the surface morphology
and cutting morphology of a laser-treated CFRP/AA2060 joint [131]. The formation of
these compounds plays a very important role in improving the mechanical properties of
joints [130–132].
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Figure 18. Cross-sectional and surface pictures produced by laser processing: (A) (a–f) six different
scan arrays; (g,h) cross-sectional images of Al-PCCFRP adhesion lap-joint samples with interfacial
microstructures: the square wave structure and array 3 [126]; (B) typical surface and cross-sectional
morphology of CFRP/AA2060 joints: (a,b) rectangular and (c,d) circular spots [131].
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Figure 19. Two different principles of laser cleaning of CFRP: (A) A7075 sheet laser surface treatment;
(a) schematic diagram of laser surface treatment of A7075 plate; (b) schematic diagram of two
different microscopic structures; (c) force analysis diagram [126]; (B) schematic diagrams illustrating
the mechanisms involved in the LAMP joining between the CFRP and AZ31 Mg alloy; (a) CFRP and
as-received AZ31 Mg alloy; (b) CFRP and thermally oxidized AZ31 Mg alloy [130].
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Overall, the use of lasers for CFRP material surface treatments such as cleaning,
weaving, and other surface treatments, as well as for laser welding and gluing, has emerged
as a new area of research. Some nations have achieved significant strides in this area. In
terms of laser cleaning, a few countries such as the United States and Germany have
realized the laser cleaning application of fiber composite products. Laser paint removal
has been used on composite surfaces such as the flat tail of an F16 fighter jet and the
propeller blades of US Navy helicopters H-53 and H-56. In terms of process application,
Germany adopts the laser connection processing method to process BMW 7 Series models,
demonstrating the feasibility of laser connections in new lightweight products.

5. Numerical Simulation of CFRP Processing

Due to the limitation of experimental conditions and observation means, it is long and
costly to use experimental design to obtain the optimal process parameters for a specific
material before processing, and it is limited to studying the complex process of CFRP laser
processing only through experiments, so the numerical simulation study of laser processing
is an effective means to analyze the material removal mechanism and optimize the process
parameters.

Simulation programs like ANSYS, COMSOL, and ABAOUS are frequently used to
model the material in 1D, 2D, 3D, and axisymmetric models in the numerical simulation
study of laser processing CFRP. Based on the laser and material parameters, as well as the
simulation modeling procedure as needed, the following mechanisms are typical: (1) a
thermal model, a dual-temperature model for ultrashort pulses and Fourier conduction
model for long- and short-pulse lasers; (2) an optical model that establishes a material’s
absorption model based on the reflection, transmission, and absorption characteristics of
the material; and (3) a thermoelasticity-based thermal stress model.

The first one involves simulating CFRP’s ablation phenomenon, as well as predicting
its morphology, processing quality, and degree of ablation while adjusting the laser’s param-
eters. The assessments of thermal stress distribution, HAZ, and temperature-field change
during CFRP laser activity are the second. The two primary categories of material mod-
els used in the simulation process are homogeneous material models and heterogeneous
material models. The homogeneous material model is to homogenize the carbon fiber and
resin matrix in the composite material. The mixing rule [133] and the Eshelby method [134]
are two of the more popular ways. To make the calculations easier, both methods make
the assumptions that the carbon fibers are evenly distributed and the material is devoid of
cavities. A single or several representative volume elements of the heterogeneous material
model simulate the carbon fiber/resin microstructure that exists within the material. The
Stefan problem, also known as surface ablation with resin matrix pyrolysis, results in
two shifting boundaries in the numerical simulation. The raw and dead cell approach,
moving mesh method, etc., can be utilized in commercial finite element software to solve
the moving boundary problem.

Based on the anisotropic properties of carbon fiber composites, Di et al. [135] con-
structed a three-dimensional temperature field distribution for laser processing by COM-
SOL. The impacts of various process parameters on the temperature variation of CFRP and
the mechanism of thermal damage production were investigated by Zhou et al. [136]. A
physical model for laser processing of CFRP was built based on the experimental results.
A “vertical heat flow” model was created by Weber et al. [137] to explain the sublimation
process and to calculate the least amount of damage that can be done to the matrix material.
A two-dimensional heat flow analysis model was created by Kononenko et al. [138] to
anticipate the necessary number of scans to significantly degrade the resin matrix.

Using Open FOAM as a finite volume method (FVM) library, Ohkubo et al.’s [139] 3D
numerical simulation of laser processing of carbon fiber composites was completed. The
simulation outcomes demonstrate that the processing settings can be changed to maximize
the carbon fiber removal from epoxy resin. To create a three-dimensional finite element
model for laser isotropic cutting of monofilament organized CFRP, Yu et al. [140] disclosed
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the mechanism of laser energy absorption and transmission by the material during the
laser cutting of carbon fiber composites.

To create a numerical model of the three-dimensional removal and transient tempera-
ture field evolution of the CFRP-simulated material to predict the size of the hole taper, Liu
et al. [141] used the finite element method (FEM). They then performed an experimental
demonstration, and the results from the simulation and experiment are in good agreement,
as shown in Figure 20.
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Figure 20. Phenomenon and simulation experiment diagram of processing time of 6, 8, and 10 s in
CFRP laser drilling: (A) experiment; (B) simulation [141].

For the first time, Negarestani et al. [142] created a three-dimensional model for the
heterogeneous material model that simulates the transient temperature field and subse-
quent material removal on a non-uniform fiber matrix grid using the finite element (FE)
method’s “meta-death” technique. The dimensions of the HAZ during laser processing are
likewise predicted by the model.

With a water-jet-guided laser processing technique, Zhang et al. [143] modeled the
three-dimensional transient temperature field and material removal of a nonhomogeneous
fiber matrix. This was the first time the impact of the laser-pulse duty cycle on the dis-
tribution of the material temperature field was examined. A hybrid simulation strategy
employing a homogeneous material model for the entire system and a heterogeneous
material model for the crucial areas was developed by Li et al. [144].

The current research on the mechanism of CFRP laser processing is not perfect, and
there are still errors in predicting the changes of the temperature field by simulation of
laser processing, so some scholars have used a special process to measure the changes in
temperature, as well as stress, etc., during processing.

To determine the internal temperature distribution of the material during the laser
processing of CFRP, Bluemel et al. [145] proposed two methods: first, adding a temperature-
measuring paint containing a heat-resistant nickel–chromium alloy to the resin matrix and
determining the temperature distribution during processing by observing the distribution
of the internal color of the material after processing; second, inserting thermocouples
between the layers of the composite material. The second technique involves sandwiching
thermocouples between composite layups. By embedding temperature sensors at various
distances from the incision and using a heat flow model, P. Mucha et al. [146] calculated
the heat transfer loss laser power up to 30%.

A dynamically movable pyrometer measurement point was established by Dittmar
et al. [147] that can recognize the signal pattern produced by the carbon-fiber-reinforced
surface, i.e., the dynamic pyrometer point enables precise temperature measurements at
key locations in complex weld geometries such as bending welds. Rose et al. [148] em-
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phasized the need for monitoring the laser processing process, and process thermography
experiments showed that by adopting the detection of the temperature difference between
the isotherm of the glass transition and the subsequent exposure cycles, the processing
quality could be improved. A video extensometer system and thermocouples were used
by Mrzljak et al. [149] to measure strain and temperature to examine the sensitivity of the
test procedure and measurement equipment for this use case, as well as the impact on
mechanical parameters.

In conclusion, a complete numerical simulation model can help to optimize the laser
processing parameters, such as laser energy and scanning speed, to ensure processing
accuracy and boost processing efficiency. It can also serve as a suitable reference for the
exploration of the processing mechanism. Online measuring and monitoring can be used
to better understand the processing environment and raise processing standards.

6. Outlook

This article offers a thorough analysis of CFRP laser processing technology, some
conclusions, and trends of CFRP laser processing technology are drawn. With its benefits of
being quick, non-contact, highly precise, flexible, and efficient, laser processing is currently
widely used in the field of CFRP processing. Using laser technology to cut, drill, mill, clean,
and weld CFRP is an important means of improving manufacturing efficiency. To further
reduce the HAZ and the width of the cut during processing and complete the low-damage,
high-precision, high-quality, and industrialized processing of CFRP, the following areas of
research can be focused on.

(1) The development of CFRP laser processing technology with great accuracy and
efficiency. Short-wavelength lasers with ultrashort pulses enable ultra-precise, high-
quality processing of microstructures. With the birth of kilowatt-class high-power
picosecond lasers and the further refinement of ultrafast laser mechanisms, in addition
to maintaining the existing advantages in processing accuracy and quality, ultrafast
laser processing technology, processing efficiency, and the machinable scale (e.g.,
processing of thicker composite panels) are also expected to be significantly improved.
However, when a higher energy flux is used, it still results in a larger HAZ. Therefore,
the appropriate laser parameters (repetition frequency, scan path, etc.) also need to be
selected, facilitating the cooling of the material during processing, thus improving the
quality of processing.

(2) Development of technology for real-time monitoring of parameters that can be
changed at any time according to processing results. During laser processing, laser
processing parameters and material parameters have a great impact on the quality
of processing. During the processing, affected by the material of CFRP (e.g., lay-up
angle, material thickness, etc.) and different laser performance (e.g., laser spot di-
ameter, beam quality, repetition frequency, etc.), a change in each parameter results.
Both will cause great fluctuations in processing results. Therefore, in response to
this situation, a laser processing database can be created, improving and combining
artificial intelligence technology.

(3) Development of larger-area and higher-quality laser processing technology. Laser
processing usually processes CFRP in the form of a Gaussian pulse with extremely
high energy density because of the uneven distribution of Gaussian laser energy and
the high laser energy density in some areas. It is prone to severe thermal damage
to materials, so the laser in the actual production of processing accuracy cannot be
further improved. Compared to Gaussian beams, the flat-top beam form has the
advantages of a low pulse overlap rate and uniform light field, so it is more favorable
for lasers in CFRP for applications such as micro and nano processing. Therefore,
birefringent element shaping, liquid crystal spatial light modulation shaping, and
laser intracavity shaping can be explored to shape Gaussian pulses into flat-topped
lasers, achieving larger-area and higher-precision machining.
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(4) Improving laser processing automation by fusing robotics with laser processing
technology. With the development of spacecraft toward large size and super-size,
comes the development of lightweight automobiles, aircraft, etc. CFRP is being used
more and more in various fields. The increased demand for human resources also
leads to an increase in human error; this will lead to a further reduction in the
quality of the CFRP secondary process. Therefore, a combination of robotics and
laser processing technology can be used, reducing the influence of human operation
and improving the processing speed and accuracy of laser processing. At present,
traditional laser-welding robots, cutting robots, and other products have appeared on
the market; with further research on laser processing, more and more laser processing
robots will appear in the processing line.

(5) Development of water-guided processing technology with high cleanliness, high
processing quality, and high-cost performance. Due to the high absorption of laser
energy by water and the rapid decay of energy, further research is needed to study
the decay law of laser in water, simultaneously finding a suitable method of coupling
lasers and water jets, reducing the attenuation energy in water and, thus, increasing
the efficiency of water-guided laser transmission and further increasing the processing
speed. Water-guided laser processing in CFRP can achieve better quality processing
because the matrix easily absorbs water and deliquescence. With the further optimiza-
tion of the hygrothermal properties of the material, the hydro-conductive processing
technology still has a good future.

(6) Development of more efficient and thicker processing technology. Concerning laser
composite processing CFRP, multi-energy field composite laser material removal tech-
nology is gradually emerging. The commonly used energy fields are electromagnetic
fields, thermal fields, vibration fields, etc., but the use in industrial applications is
costly and requires further research. With the development of 3D printing technology,
laser 3D printing of CFRP parts is a new, fast, and cost-effective method of processing
that is beginning to emerge, but it still needs further examination.
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