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Abstract: Indoor navigation robots, which have been developed using a robot operating system,
typically use a direct current motor as a motion actuator. Their control algorithm is generally complex
and requires the cooperation of sensors such as wheel encoders to correct errors. For this study,
an autonomous navigation robot platform named Owlbot was designed, which is equipped with a
stepping motor as a mobile actuator. In addition, a stepping motor control algorithm was developed
using polynomial equations, which can effectively convert speed instructions to generate control
signals for accurately operating the motor. Using 2D LiDAR and an inertial measurement unit as
the primary sensors, simultaneous localization, mapping, and autonomous navigation are realised
based on the particle filtering mapping algorithm. The experimental results show that Owlbot can
effectively map the unknown environment and realise autonomous navigation through the proposed
control algorithm, with a maximum movement error being smaller than 0.015 m.

Keywords: robot operating system; indoor navigation robot; stepping motor; simultaneous localisation
and mapping; autonomous navigation

1. Introduction

As an essential part of Industry 4.0 [1], mobile robots [2] have undergone rapid ad-
vancements to exhibit high speed, high precision, openness, and intelligence. Various types
of mobile robots have been developed for applications such as path-following autonomous
underwater vehicles [3], manipulators based on supertwisting zeroing neural networks [4],
and quadrotor helicopters [5]. Notably, most mobile robots have been developed based
on the robot operating system (ROS), which is an open-source and flexible framework for
writing robotics software [6]. In particular, the ROS is a modular software platform for
developing complex robotic applications [7], which can be used to establish models of
complex robots and simulate and control robots [8]. Robots can be integrated with simula-
tion and visualisation tools [9,10], libraries for robot vision, simultaneous localization and
mapping (SLAM) [11], and navigation [12].

According to the control system components, a mobile robot platform must be de-
signed considering the controller, sensor, and actuator with driver. As core hardware
control systems, single-board computers (SBCs) [13] such as Raspberry Pi [14] and Jetson
Nano [15] exhibit various capabilities such as joint control, human–computer interaction,
and algorithm processing. When combined with PC control, the robot can realise remote
monitoring, graphic display, path planning, and other functions. In general, sensors can be
divided into two categories depending on the measurement target: sensors that measure
robot states, such as the robot position or velocity, and sensors that measure the envi-
ronmental state. Robotic state-measuring sensors include the Global Positioning System
(GPS) [16], inertial measurement units (IMUs) [17], and encoders [18]. IMUs and environ-
mental sensors [19], such as millimetre-wave radars [20] and cameras, can be integrated to
allow the robot collect real-time information regarding moving objects or obstacles in the
environment to prevent collisions.

Sensors 2023, 23, 3648. https://doi.org/10.3390/s23073648 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073648
https://doi.org/10.3390/s23073648
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5965-2105
https://orcid.org/0000-0001-7629-7865
https://doi.org/10.3390/s23073648
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073648?type=check_update&version=4


Sensors 2023, 23, 3648 2 of 19

When designing a robot platform, indoor mobile robots typically use a DC motor as
the actuator and a pulse-width modulation (PWM) driver board as the driver [21]. For the
engine to respond, the motor must provide the necessary angular speed and torque in the
range of the motor parameters. The motor rotation and direction for an ROS-based mobile
robot must be controlled. To this end, power-switching transistors are often used to build
H-bridge circuits. In this context, traditional algorithms such as the proportional integral
derivative algorithm has been widely used to control the DC motor with the feedback
loop mechanism [22]. Traditional DC motor control algorithms control the motor speed
with a continuous voltage and implement the next step based on feedback from the motor.
Consequently, ROS-based robots with DC motors exhibit low operational accuracy. To
continuously correct the position, the control algorithms must operate in tandem with an
IMU, encoder, or other sensors, resulting in the high complexity of DC motor control. To
avoid this problem, a stepping motor has been used as the robot actuator [23]. A stepping
motor converts electrical pulse signals into corresponding angular or linear displacements.
For each input pulse, the rotor turns by a specific angle. Therefore, the resultant angular
or linear displacement is proportional to the number of input pulses. In addition, the
rotational speed is proportional to the pulse frequency. Because the stepping motor can
maintain operation within a given step, it can ensure high precision. In this manner, the
stepping motor can enable simple, reliable, and real-time control to ensure the accurate
movement and positioning of the mobile robot.

Considering these aspects, this paper proposes an autonomous navigation robot plat-
form named Owlbot, which uses a stepping motor as a mobile actuator. Additionally, a
stepping motor control algorithm was developed that can effectively convert the speed
instructions to generate control signals for ensuring accurate motor operation. The perfor-
mance of the proposed methods is evaluated through experiments in which SLAM and
autonomous navigation are realised based on the particle filtering mapping algorithm using
two-dimensional (2D) LiDAR and an IMU as the primary sensors. The contributions of this
research can be summarised as follows. First, we designed a novel robot platform named
Owlbot with the open-source software platform of ROS. Owlbot consists of hardware com-
ponents such as a variety of environmental sensors, high-performance SBCs, and stepping
motors. Second, a novel stepping motor control algorithm is proposed, which allows the
robot to move with high precision. Furthermore, SLAM and autonomous navigation were
realised by the fusion of data of various sensors.

This paper is organised as follows: Section 2 summarises previous works. Section 3 de-
scribes the physical structure design and software of Owlbot and its hardware components.
Section 4 introduces the proposed stepping motor control algorithm. Section 5 discusses the
SLAM and navigation performance evaluation of the Owlbot robotic platform. Section 6
presents the concluding remarks.

2. Previous Work

Table 1 introduces the software and hardware components (e.g., controller, actuator,
and sensors) of well-known mobile robot platforms and the proposed Owlbot robot. The
last column specifies the main functions of the robot platforms.

MBot [24] is an entry-level educational robot developed by Makeblock. MBot has
a modular design to ensure that it can be connected to various ordinary sensors and
programmed through the Arduino IDE. Tiny:bit [25] was designed based on the Micro:bit
development board, using a graphical module and Python for programming. This robot is
lightweight, easy to assemble, and can move easily in tight spaces. Unlike MBot, Tiny:bit is
equipped with a sound sensor and an infrared proximity sensor. The G1 tank [26] robot
uses the Raspberry Pi board as the core controller and the expansion board as the driver.
This robot can realise various recognition functions, such as object recognition, using its
onboard camera. Notably, MBot and Tiny:bit use self-designed integrated motherboards as
the controllers and plastic DC gearbox motors [33] as the actuators. Owing to the limited
performance of such hardware, only simple mobile functions can be realised, such as line
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inspection and detection. Although the G1 robot is equipped with Raspberry Pi and DC
motors, it does not support the ROS system, and thus, its application scenarios are limited.

Table 1. Software, hardware, and main functions of different robot platforms.

Robot
Hardware Software

Main Functions
Controller/Driver Actuators Sensors ROS Programming Tool

Mbot [24] ATmega328 Plastic DC UDS, LF, BT No Arduino IDE OA, LP

Tiny:bit [25] Micro:bit board Plastic DC UDS, LF, SS, IR No Graphical module/
Python OA, LP

G1 tank [26] Raspberry Pi/
Expansion board DC UDS, TR, LS,

Camera No C/Python OA, LP, OR

Jetbot Mini [27] Jetson Nano/
Expansion board Plastic DC Camera Yes Python OA, LP, OR

Jetbot [28] Jetson Nano/
Expansion board Plastic DC Camera Yes Python OA, FD, OR

Transbot [29] Jetson Nano/
Expansion board DC with OE Depth Camera,

LiDAR Yes Python SLAM,
Navigation

Turtlebot 3 [30] Raspberry Pi/
Open CR

DYNAMIXELAX DC
with OE

Camera, LiDAR,
IMU Yes Python SLAM,

Navigation

Leo Rover [31] Raspberry Pi/
LeoCore

4× DC gear motor
with OE

Camera, LiDAR,
IMU Yes Python SLAM,

Navigation

Summit-XL [32] Intel processor/PC 4× DC gear motor
with OE

Camera, LiDAR,
IMU Yes Python SLAM,

Navigation

Owlbot Jetson Nano/
Raspberry Pi

Stepping motor
with controller LiDAR, IMU Yes Python SLAM,

Navigation

Actuators: direct current gear motors (DC); optical encoder (OE). Sensors: ultrasonic distance sensor (UDS);
line-following sensor (LF); Bluetooth (BT); sound sensor (SS); infrared proximity sensor (IR); tracking sensor (TR);
light sensor (LS); inertial measurement unit (IMU). Functions: obstacle avoidance (OA); line patrol (LP); object
recognition (OR); face detection (FD); simultaneous localization and mapping (SLAM).

In comparison, mobile robots using Raspberry Pi or Jetson Nano as controllers can
realise more complex tasks with the help of ROS and additional sensors. Jetbot Mini [27] is
an ROS artificial intelligence robot equipped with a Jetson Nano unit and camera. Similarly,
the Jetbot project [28] is an open-source intelligent car project based on NVIDIA Jetson
Nano. These robots can realise obstacle avoidance, line patrolling, and object recognition.
Transbot [29], which uses a depth camera sensor and radar, has functionalities such as
remote control capabilities, map navigation, automatic driving, and manipulator operation.
Turtlebot 3 [30] is a low-cost, small robotic mobility platform based on the ROS. Leo
Rover [31] is a giant robotic platform that adopts four independent DC gear motors with
suspension as the actuators and can be used in outdoor environments. The Summit-XL
platform from Robotnik [32] is a versatile and robust robot frame designed for high load
capacities. This robot is equipped with an IMU, cameras, laser scanners, and a radio system
for remote operation.

Notably, the actuator systems of the abovementioned robots are DC motors and
encoders. The encoder acts as a position sensor for the DC motor, and the wheel odometer
data are calculated from the previous position. Therefore, if a pose estimation error exists
in each step, the error will accumulate as the robot moves. To reduce such errors, the
robotic platforms typically fuse IMU and encoder data. Traditional DC motor control
algorithms control motor speed through continuous voltage and implement the next step
based on feedback from the motor. In contrast, the stepping motor control algorithm
proposed in this study controls motor speed by the number of pulses and time delays,
thereby ensuring the timely control of the robot’s motion, which is crucial for smart
factory applications. Furthermore, the stepping motor can be scheduled for runs according
to the pulse information, rendering it valuable for special applications such as depth-
gauging robots. The stepping motor can respond immediately to the speed command
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from the ROS navigation node with the help of the control algorithm. Compared with
IMU and encoder-based solutions, Owlbot can achieve better performance for SLAM and
autonomous navigation in indoor environments.

3. Proposed Robot Architecture
3.1. Hardware

The Owlbot platform is an inexpensive, two-wheel differential drive robot. The
platform is sufficiently expandable and highly stable and can carry different sensors such
as LiDARs and IMUs. The Owlbot robot is open and self-designed; thus, it can be adapted
to different applications through modifications and improvements. Figure 1 shows the
robot setup. The Owlbot robot can move with high precision owing to the use of two
high-precision stepping motors and wheels. The robot has a Raspberry Pi unit to subscribe
to the ROS speed command and connect with the motor controller to enable precise
control of the stepping motor. Moreover, the Jetson Nano functions as the robot’s brain
and performs information processing, such as the fusion of sensor information, path
planning, and communication with the remote control terminal. As essential components
of Owlbot, a radar and an IMU facilitate a series of tasks such as map construction and
navigation. Furthermore, the robot platform uses a self-designed power management
motherboard that can simultaneously provide adequate power for all electronic devices of
the robot. The bottom part of Owlbot is a polylactide base fabricated through 3D printing
to support various physical and electronic devices. The base is equipped with six groups of
18650 lithium battery bases. As shown in Figure 2, Owlbot moves using two high-precision
stepping motors installed with a motor control board. The stepping motor controllers are
microprocessor-embedded, voltage-controlled, and miniature stepping motor controllers.
Specifically, SBC-10 is a sub-miniature controller with a standard DIP18 land pattern
(0.6′ width), and it supports a voltage of 8–28 DC.
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Figure 2. Motor connections of Owlbot. (a) Installation diagram; (b) Connection between the step-
ping motor, SBC-10 controller, and Raspberry Pi 4B. 

In the top part, Owlbot has three layers. The first layer incorporates a power man-
agement board that can simultaneously output different voltages to satisfy the power re-
quirements of various electronic devices. As shown in Figure 3, the power management 
board can simultaneously output 5 V and 12 V to supply power to the SBC and stepping 
motor, respectively. The Raspberry Pi unit is connected to the stepping motor driver 
board, which uses PWM software to generate a PWM signal to drive the stepping motor. 
The second layer houses the Jetson Nano board, which enables information processing, 
such as secure shell (SSH) communication with the Raspberry Pi and motion planning. A 
laser scanner (RPLIDAR A1; Slamtec) for distance measurement is installed in the topmost 
layer. This laser scanner operates on the principle of laser triangulation and adopts high-
speed vision acquisition and processing hardware. The system measures the distance data 
more than 8000 times per second. The robot is equipped with an IMU at the front end, the 
data of which can be integrated with the laser data during navigation to achieve precise 
positioning. Table 2 presents the main hardware composition of the robot platform. 

Figure 1. Owlbot robot and its components. (a) Bottom view; (b) Side view.

In the top part, Owlbot has three layers. The first layer incorporates a power man-
agement board that can simultaneously output different voltages to satisfy the power
requirements of various electronic devices. As shown in Figure 3, the power management
board can simultaneously output 5 V and 12 V to supply power to the SBC and stepping
motor, respectively. The Raspberry Pi unit is connected to the stepping motor driver board,
which uses PWM software to generate a PWM signal to drive the stepping motor. The
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second layer houses the Jetson Nano board, which enables information processing, such
as secure shell (SSH) communication with the Raspberry Pi and motion planning. A laser
scanner (RPLIDAR A1; Slamtec) for distance measurement is installed in the topmost layer.
This laser scanner operates on the principle of laser triangulation and adopts high-speed
vision acquisition and processing hardware. The system measures the distance data more
than 8000 times per second. The robot is equipped with an IMU at the front end, the
data of which can be integrated with the laser data during navigation to achieve precise
positioning. Table 2 presents the main hardware composition of the robot platform.
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Table 2. Owlbot components.

Items Detail Number

LiDAR RPLIDAR A1 1

Single-board computer Jetson Nano 1
Raspberry Pi 4 1

Power management board 5 V and 12 V Output 1

Stepping motors A and B SBC-103H548-0440 2

Motor controller SBC-10 2

USB Wi-Fi adapter 802.11n 2

IMU GY9250 1

Polylactide (PLA) base 3D printed 4

Wheel Aluminium 2

Battery Li-Po 18650 8

3.2. Software

The Owlbot software system is based on the distributed framework of the ROS. Owlbot
uses the ROS infrastructure for communication and control, as shown in Figure 4. Owlbot
contains a physical layer, a driver layer, and an application layer. The physical layer
contains hardware such as the battery, 2D LiDAR, IMU, and stepping motor. LiDAR can
acquire abundant information, including 2D data, compared with that obtained using a
traditional laser or camera. Owlbot uses LiDAR and IMU to determine the position and
angle. The driver layer is divided into the programmable logic and processor system. In
addition to the programmable hardware, the I/O expansion and motor controller are the
main programmable logic characteristics of this layer. The other drivers serve as interfaces
to the processor system and device drivers for the operating system. The ROS core library
is ported to the embedded Linux operating system (Ubuntu) based on Jetson Nano and
Raspberry Pi to exploit the ROS communication mechanism. The system development
is based on the ROS interfaces of the robotics middleware with Python. Owing to the
excellent design of ROS, the parameters can be conveniently reconfigured online without
recompiling the source codes.
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The ROS master is used to manage all robot nodes, which can be visualised through
a visual component named Robot Visualizer (Rviz). The ROS master runs on the PC.
Communication between the ROS master and microcontroller board is accomplished
through 802.11n networking. When the Wi-Fi boots up, it creates a hotspot. The SSH can
be integrated with Raspberry Pi, and the robot can be directly controlled from a laptop.
The master realises a standard function such as SLAM or navigation. The commonly used
SLAM algorithms for ROSs are Hector slam [34], gmapping [35], and Karto slam [36].

The ROS system consists of multiple independent nodes, each of which communicates
with other nodes through publish/subscribe messaging. Figures 5 and 6 illustrate the
realisation of SLAM and navigation, respectively, with the corresponding ROS topics
and nodes. Ellipses represent nodes, squares represent the topics, and arrows represent
the message flow. Nodes, as executable entities, can communicate with one another. A
complete robot control system consists of many nodes responsible for different functions.
For example, the node/RplidarNode in Figure 5 is responsible for controlling the LiDAR
publishing topics/scan/rf2o_laser_odometry, and/slam_gamapping. The topic is a name
used to identify messages to which nodes can publish messages. Different nodes can
subscribe to different topics to receive messages. Node: /move_base obtains 2D LiDAR
information by subscribing to the topic/scan.
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The Owlbot robot uses the gmapping method for SLAM. This particle filter-based
algorithm represents the posterior probability of a path through many weighted particles,
each of which is assigned an essential factor. Owlbot has a high-precision stepping motor.
To ensure highly accurate operation, the robot additionally employs a LiDAR odometer
to fuse measurements. Most of the existing robots typically have DC motors and wheel
encoders to output the odometer information/odom. In contrast, Owlbot uses a stepping
motor without an encoder. Although the stepping motor runs accurately, we added a 2D
LiDAR odometer node (rf2o_laser_odometry) to address inaccurate output odometer data
such as wheel suspension and skid. The rf2o_laser_odometry (RF2O) [37] module performs
the matching of two adjacent frames of LiDAR data to obtain the mileage displacement.
In general, RF2O is a fast and precise method for estimating the planar motion of LiDARs
from successive range scans. For each scan point, a distance flow constraint equation is
formulated based on the sensor velocity, and a robust function of the resulting geometric
constraints is minimised to obtain a motion estimate. Furthermore, the pose is estimated
through the fusion of the LiDAR odometer information and IMU information by the
extended Kalman filter (EKF). Specifically, the EKF is used to estimate the 3D pose of a
robot, based on (partial) pose measurements from different sources [38]. The key concept
is to ensure loosely coupled integration with different sensors, with the sensor signals
received as ROS messages. The/ekf_localization node uses the relative pose differences of
each sensor to update the EKF for pose interpretation.

In the navigation process, the main node is move_base, which pertains to the par-
ticipation of the navigation control framework for robot path planning. This move_base
node subscribes to topics such as/scan,/map, and/odom, and then publishes the speed
command (/cmd_vel). The stepping motor control algorithm described in Section 4 is
used to drive the motor to run according to the speed command. The control algorithm
node is/stepper_motor_node. The stepping motor control algorithm subscribes to the com-
mand/cmd_vel from/move_base, converts it into the pulse number and delay required by
the motor, and finally drives the motor.

4. Proposed Stepping Motor Control Algorithm

Owlbot uses a double-stepping motor as a moving driver. The basic parameters of
the motor are listed in Table 3. The motor is an open-loop control element stepping motor
that converts electrical pulse signals into angular or linear displacements. With each input
pulse, the motor rotates by a certain angle, also known as the step angle. The number of
step angles that the motor rotates by is proportional to the number of input pulses, and the
speed is proportional to the pulse frequency.

Table 3. Basic parameters of the stepping motor.

Parameter Value

Working voltage 9–16 V
Rated voltage 12 V

Step angle 1.8◦/step
Holding torque 0.265 Nm

Current 1.2 A (A/Phase)
Inductance 4.3 mH

Weight 280 g
Controller SBC-10

The wheel size considerably affects a robot’s speed. For example, a robot with large
wheels will move a longer distance once its motor rotates. Furthermore, after the motor re-
ceives the ROS topic/cmd_vel, it must be appropriately converted to the pulse number and
frequency. To consider these aspects, we propose a stepping motor control algorithm based
on a polynomial regression equation. Table 4 lists the variables involved in the algorithm
and their descriptions. The left and right motors (LM, RM) have wheels (LW, RW) with the
same radius (Wr). The stepping motors use a 1/4 microstep (LMmic, RMmic). Specifically,
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if 800 PWM pulses are provided, the stepping motor will perform one revolution with a
rotation angle of 360◦.

Table 4. Parameter variables of the stepping motor control algorithm.

Variables Parameter Description

LM, RM left and right motors
LW, RW left and right wheel
Vx , Vθ linear and angular velocities of the topic/cmd_vel.
LWv, RWv velocity of the left and right wheels
LWdir , RWdir direction of the left and right wheels
Wspa spacing between the two wheels
Wr wheel radius
LMangle, RMangle step angle of the left and right motors
LMmic, RMmic microstepping of the left and right motors
LMrps, RMrps left and right motor rotation speed (revolutions per second)
LMn, RMn number of pulses for the left and right motors
LMd, RMd delay of left and right motors
Wv linear velocity of the wheel in the offline phase
Wv−max ,Wv−min maximum and minimum values of Wv

Notably, under actual ROS control, the speed command/cmd_vel is issued frequently,
which may result in stalling of the stepping motor. A rotating magnetic field is present
inside the stepping motor. When the rotating magnetic field is sequentially switched, the
rotor rotates. However, when the magnetic field rotates excessively fast or the moment of
inertia of the load on the rotor is extremely large, the rotor may not be able to maintain
its rhythm, resulting in loss of step. Therefore, the release frequency of cmd_vel must
be carefully considered. If the speed release frequency is too small, the movement speed
requirements of the robot platform may not be satisfied. In contrast, if the frequency is too
high, the motor will be blocked. Therefore, we set the publish and subscription frequencies
of cmd_vel as 1 Hz. Considering the movement of the robot in the indoor environment,
we set the linear velocity range of Owlbot as −0.09 m/s to 0.09 m/s and the acceleration
range as −0.03 m/s2 to 0.03 m/s2.

Figure 7 shows the process flow of the proposed control algorithm, and its pseudocode
is presented as Algorithm 1. The algorithm involves the following steps:

• Step 1: Initialization and variable declaration: We use Raspberry Pi 4B as the control
board of the stepping motor. After connecting the Raspberry Pi and the stepping
motor, the WiringPI interface is initialised. Initial values are assigned to the relevant
parameters of the left and right motors and wheels.

• Step 2: Subscribe to ROS topics:/cmd_vel. Obtain the linear velocity (Vx) and angular
velocity (Vθ) that the robot needs to achieve.

• Step 3: Calculate the motor velocity and direction. Convert the speed command
(/cmd_vel) into the left wheel velocity (LWv) and right wheel velocity (RWv). Use the
judgement condition to define whether the motor rotates clockwise or counterclock-
wise. A value of 1 represents clockwise rotation.

• Step 4: Calculate the rotation speed (LMrps, RMrps) of the left and right motors.
Because the frequency of the speed instruction is 1 Hz, in this study, we consider the
instantaneous rotation speed of the wheel at a point in revolutions per second. Using
the formula for rotation speed shown in Figure 7, we can easily convert the speed of
the wheel into the rotation speed of the motor.

• Step 5: Calculate the number of pulses for the left and right motors. Based on the
calculation in the previous step, we have the required LMrps and RMrps for the left
and right motors. Therefore, we calculate the number of pulses (LMn, RMn) required
to achieve the specified values (LMrps, RMrps).

• Step 6: Determine whether the robot is moving for the first time. For the first move, the
robot must calculate and output the coefficients of polynomial equations. If the robot
has already started moving, the polynomial equation does not need to be recalculated.
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• Step 7: Solve the polynomial regression equation to obtain the fitting curve of the
wheel speed (Wv) and PWM time delay (Md), that is, a polynomial equation.

o Step 7.1: Calculate the rotation speed (Mrps) and number of pulses (Mn). Unlike
steps 4 and 5, only the speed of one wheel and number of pulses required must
be considered in this step. Notably, in the online phase, only the directions of
rotation of the left and right wheels are different.

o Step 7.2: Consider different t values to calculate Md. According to the actual
motor test, the clock frequency of the Raspberry Pi indirectly affects the pulse
frequency. In other words, the generation time of each pulse is not fixed. We
calculate the delay under different t within a range of 10–100 ms in intervals
of 10 ms to improve the robustness of the dataset, t is randomly generated ten
times within the range, and Md is calculated.

o Step 7.3: Output polynomial coefficients (α, β, γ, δ). Determine the data lists
of A and B for the wheel speed (Wv) and time delay (Md), respectively, and
perform polynomial equation fitting. In this process, Wv and Md are the input
and output values, respectively. Obtain the polynomial coefficients.

• Step 8: Calculate the time delay according to the polynomial regression formula.
• Step 9: Drive the stepping motor. According to the calculated parameter values, the

Raspberry Pi board will use PWM software to simultaneously drive the left and right
stepping motors to ensure that Owlbot reaches the specified speed.
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Figure 7. Process flow of the proposed stepping motor control algorithm based on the polynomial
regression equation.
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Algorithm 1: Proposed stepping motor control algorithm

Iutput: Vx , Vθ

Output: LWv , RWv , LMrps , RMrps , LMn , RMn , LMd , RMd
1. Initialize the WiringPi interface for the LM and RM
2. Declare the variables of LW and RW: LWv ← 0 , RWv ← 0 , LWdir ← 0 , RWdir ← 0 .
3. Declare the variables of LM and RM: LMangle ← 1.8

◦
, RMangle ← 1.8

◦
, LMmic ← 4 , . . .

RMmic ← 4 , LMrps ← 0 , RMrps ← 0 , LMd ← 0 , RMd ← 0 , LMn ← 0 , RMn ← 0
4. Measure Wspa and Wr
5. Set Wv−max , Wv−min , Mangle ← 1.8

◦
, Mmic ← 4

6. Subscribe to the ROS topic/cmd_vel and obtain Vx and Vθ

7. i← 0
8. for all/cmd_vel(Vx, Vθ) do
9. if Vθ = 0 then
10. LWv ← Vx
11. RWv ← Vx
12. else
13. LWv ← Vx −Vθ ∗Wspa/2
14. RWv ← Vx + Vθ ∗Wspa/2
15. end if
16. if LWv > 0 and RWv > 0 then
17. LWdir ← 1, RWdir ← 1
18. if LWv > 0 and RWv < 0 then
19. LWdir ← 1, RWdir ← 0
20. if LWv < 0 and RWv > 0 then
21. LWdir ← 0, RWdir ← 1
22. else
23. LWdir ← 0, RWdir ← 0
24. end if
25. LMrps ← LWv/2π ∗Wr
26. RMrps ← RWv/2π ∗Wr

27. LMn ← LMrps ∗
(

360
◦
/LMangle ∗ LMmic

)
28. RMn ← RMrps ∗

(
360

◦
/RMangle ∗ RMmic

)
29. if i = 0 then
30. Generate array S [Wv−min, Wv−min + 1, . . . Wv−max ]
31. for each Wv ∈ S do
32. Mrps ←Wv/2π ∗Wr

33. Mn ← Mrps ∗
(

360
◦
/Mangle ∗Mmic

)
34. In the range from 10 ms to 100 ms, randomly generate value t 10 times
35. Md ←

(
103 − t

)
/Mn

36. Insert Wv into list A, and insert Md into list B
37. end for
38. Create a polynomial regression equation from list A and B
39. Output polynomial coefficients: α, β, γ, δ
40. else
41. LMd ← α ∗ LWv

3 + β ∗ LWv
2 − γ ∗ LWv + δ

42. RMd ← α ∗ RWv
3 + β ∗ RWv

2 − γ ∗ RWv + δ
43. Drive the stepping motor
44. i← i + 1
45. end if
46. end for

5. Experiments

Most ROS-based mobile robots can realise essential functions such as remote control
movement, radar mapping, autonomous navigation, and obstacle avoidance. We assessed
the crucial functionalities of Owlbot in an indoor environment. The test location was the
seventh floor of the new engineering building at Dongguk University, Seoul, South Korea
(Figure 8). An Alienware notebook based on the ROS melodic system was used as the robot
remote control platform for the experimental configuration. The ROS master runs on a
remote-controlled PC, and the remote-controlled notebook is responsible for the processing
of the ROS’s main functions and information. In addition, the Owlbot and Laptop are
connected to the same 2.5 GHz local area network and implement SSH communication.
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A real-world mobile test was performed to evaluate the validity and accuracy of Owl-
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its stepping motors. Therefore, we designed two ROS nodes: stepping_motor_node and 
teleop_twist_keyboard. The stepping_motor_node program is equipped with a real-time 
feedback function that can display the left and right stepping motor characteristics in real 
time. The running parameters include the running steps, runtime (t), number of pulses 
(LM𝑎𝑎, RM𝑎𝑎), and delay (LM𝑑𝑑, RM𝑑𝑑). The teleop_twist_keyboard program can set different 
speed commands (cmd_vel), runtimes, and publishing frequencies. In the experiment, the 
publishing frequency of cmd_vel was 1 Hz. First, a uniform motion test was performed. 
As shown in Figure 9a, the black line was the starting point of Owlbot motion. By trans-
mitting three sets of linear speed commands and a target runtime to Owlbot, the final 
moving distance of Owlbot was evaluated. Table 5 presents the twenty sets of target linear 
velocities with different runtime values. 
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Figure 9. Testing scenarios. (a) Teleoperation movement test; (b) Odometer test for square line patrol. 
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5.1. Teleoperation Movement and Odometry Evaluation

A real-world mobile test was performed to evaluate the validity and accuracy of
Owlbot’s remote control capabilities. Owlbot’s movement depends on the precise control
of its stepping motors. Therefore, we designed two ROS nodes: stepping_motor_node and
teleop_twist_keyboard. The stepping_motor_node program is equipped with a real-time
feedback function that can display the left and right stepping motor characteristics in real
time. The running parameters include the running steps, runtime (t), number of pulses
(LMn, RMn), and delay (LMd, RMd). The teleop_twist_keyboard program can set different
speed commands (cmd_vel), runtimes, and publishing frequencies. In the experiment, the
publishing frequency of cmd_vel was 1 Hz. First, a uniform motion test was performed. As
shown in Figure 9a, the black line was the starting point of Owlbot motion. By transmitting
three sets of linear speed commands and a target runtime to Owlbot, the final moving
distance of Owlbot was evaluated. Table 5 presents the twenty sets of target linear velocities
with different runtime values.
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Table 5. Movement distances and distance errors for different speed commands.

Command
Linear

Velocity (m/s) Runtime (s)
Actual

Movement
Distance (m)

Distance
Error (m)

Left Motor Right Motor

LMn LMd(µs) RMn RMd(µs)

1 0.09 1 0.088 0.002 429 2250 429 2250
2 0.026 1 0.026 0 127 7800 127 7800
3 0.068 1 0.07 0.002 343 2800 343 2800
4 0.042 1 0.04 0.002 195 5000 195 5000
5 0.072 1 0.07 0.002 343 2800 343 2800
6 0.084 2 0.164 0.004 800 2400 800 2400
7 0.048 2 0.088 0.008 430 4500 430 4500
8 0.066 2 0.136 0.004 662 2900 662 2900
9 0.062 2 0.12 0.004 604 3200 604 3200

10 0.045 2 0.096 0.006 468 4100 468 4100
11 0.026 3 0.09 0.012 438 7874 438 7874
12 0.049 3 0.162 0.015 789 3700 789 3700
13 0.048 3 0.162 0.018 789 3700 789 3700
14 0.025 3 0.084 0.009 411 7200 411 7200
15 0.049 3 0.15 0.003 732 4000 732 4000
16 –0.046 1 –0.045 0.001 220 4400 220 4400
17 –0.066 1 –0.068 0.002 331 2900 331 2900
18 –0.078 1 –0.075 0.003 365 2600 365 2600
19 –0.072 1 –0.07 0.002 349 2800 349 2800
20 –0.064 1 –0.066 0.002 322 3000 322 3000

In the odometry test, we sent a motion command to the robot to traverse a square path
sized 1 m × 1 m. This motion command ensures that the robot turns 90◦ to the left after
travelling 1 m at a speed of 0.05 m/s and repeats this operation four times to return to the
starting point. Figure 9b shows the actual test scene. The square marked by the black line
on the floor has a side length of 1 m. The topic/odom that Owlbot relies on for mobile
positioning was obtained by the fusion of the nodes/odom and/Imu/data, as shown in
Figure 6. The angular velocity Z-axis information changes when the robot moves through
the four vertices in the square route. We separately recorded the data transmitted by the
IMU and LiDAR and the fused odometer information.

As shown in Figure 10a, when the robot moves in a straight line, the angular
velocity data obtained by the IMU are stable. However, when the robot turns, an error of
0.05 rad/s is observed between the measured and actual data. In contrast, the LiDAR
provides stable and accurate angular velocity data when the robot turns, as shown in
Figure 10b. Nevertheless, when the robot travels in a straight line, the angular velocity
obtained by the radar fluctuates slightly owing to the small number of moving reference
objects acquired by the LiDAR. In other words, the change in the angle of the LiDAR
reflection is gradual. Figure 10c shows the results obtained by the fusion of IMU and
LiDAR odometry information. For comparison, Figure 10d presents the combined results
of (a), (b), and (c). The result of (c) is well matched with the speed command curve. By
comparing the initial pose, LiDAR and IMU provide relative pose differences to update
the EKF for pose interpretation. Specifically, the EKF estimates the pose at each moment
by analysing the sensor observation data and initial pose of the initial moment. In this
context, the EKF provides a more robust estimate of the robot pose than that obtained
using solely LiDAR or IMU.
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Figure 10. Comparison of angular velocity values of Owlbot in a walking square test. Angular Z-axis
velocity data measured by the (a) IMU; (b) LiDAR; (c) IMU and LiDAR fusion. (d) Comparison.

5.2. Mapping

As mentioned, gmapping is a SLAM algorithm based on 2D LiDAR that uses the
particle filter algorithm to construct 2D grid maps. This algorithm can build an indoor
environment map in real time, with reasonable computations in small scenes, high map
accuracy, and low requirements for the LiDAR scanning frequency. The gmapping algo-
rithm must subscribe to/tf,/odom, and/scan to publish/map. Owlbot uses the odometry
information fused with IMU and LiDAR data. Therefore, SLAM mapping can be realised
using the gmapping algorithm. As shown in Figure 11, point 1 (the door of room 7115) is the
starting point, and Owlbot motion through all points in the corridors is remotely controlled.
LiDAR odometry data are obtained based on a cloud of points from the surrounding walls
and obstacles. The platform calculates the latest changes in the translation and orientation
based on the best transformation to align with the previous map. After calculating the
new position and pose, the occupancy grid is updated. Figure 12 shows the SLAM maps
created by gmapping. The detected obstacles and empty spaces are marked in black and
grey, respectively. The map was generated by teleoperating the robot at a linear velocity
lower than 0.05 m/s and an angular velocity lower than 0.5 rad/s. The constructed map
was satisfactory.
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5.3. Navigation

After mapping the unknown environment, Owlbot can perform precise autonomous
navigation within the map range. To evaluate the navigation performance and obstacle
avoidance effect of the Owlbot robot, we designed the mobile test in a corridor. As
shown in Figure 13, two obstacles and three digital target points were placed on the floor.
Using Rviz software, we successively issued four navigation commands: Case 1: move
from the starting point to the target point 1; Case 2: move from target point 1 to target
point 2; Case 3: move from target point 2 to target point 3; Case 4: return from target
point 3 to the vicinity of the starting point. Owlbot uses the 2D navigation stack that
inputs information from the LiDAR odometry, IMU data, and a goal pose and outputs
safe speed commands that are sent to the stepping motor [39]. The navigation module of
Owlbot is divided into global and local planners. The global planner finds the optimal
path with prior knowledge of the environment and static obstacles by using the A-star
algorithm [40]. The local planner recalculates the path to avoid dynamic obstacles by
trajectory rollout and dynamic window approaches [41]. The actual navigation results
are shown in Figure 14, including the global costmap, local costmap, LiDAR scan data,
estimated position of the AMCL algorithm [42], and actual trajectory of the robot. In
the global costmap, a light blue gradient area was generated at the edge of the obstacle,
which represents the hidden cost of the robot’s possible collision with the obstacle. After
the global planner obtains the navigation target point, it plans the path with the least
cost in the global costmap. Owlbot advances according to the planning path. However,
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if an obstacle appears, the robot plans a new route through the local planner to avoid
the obstacle. The local planner uses the current obstacle data obtained by LiDAR to
generate a local cost map. As shown in Figure 14a, a darker colour indicates a smaller
distance to the obstacle because of the higher risk. Green arrows represent the robot’s
estimated position (particle cloud) derived by the AMCL. As the robot moves during
the navigation process, the green arrows around it gradually converge around the robot
and integrate with the real position of the robot. The solid red line represents the actual
movement trajectory in the Owlbot’s navigation.
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Figure 15 shows the variations in the linear and angular velocities of the four cases. In
Case 1, the robot slowly shifted to the left after receiving the movement command. The
robot accelerated to reach target point 1 with a high linear velocity. In Case 2, the robot
moved backward, i.e., the linear velocity was negative. Subsequently, the robot turned
right and accelerated to the endpoint. The linear velocity (Figure 15c) decreased and then
increased. Consequently, Owlbot can achieve a negative linear speed by default in the
navigation configuration, corresponding to reverse driving. Owlbot can freely switch its
speed and acceleration by optimising the stepping motor control algorithm. For example,
in Case 3, an obstacle existed between target points 2 and 3. When Owlbot accelerated
and approached the obstacle, it decelerated and passed through this area at a lower speed.
Overall, Owlbot can achieve smooth speed addition and subtraction, and the movement
paths are short, demonstrating its high navigation accuracy.
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Figure 15. Linear and angular velocity change curves of Owlbot in four navigation tests: (a,b) Case 1;
(c,d) Case 2; (e,f) Case 3; (g,h) Case 4.
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6. Conclusions

Most of the existing robot platforms have been developed based on ROS technologies.
Several entry-level robot platforms are equipped with basic integrated circuit boards that
can be connected to a variety of sensors. However, low-performance DC motors are typi-
cally installed as mobile actuators. The absence of encoders or other environmental sensors
limits ROS-based secondary development. Robots equipped with high-performance SBC
and DC motors (with encoders) can perform more advanced functions such as localisation,
mapping, and navigation path planning. In this study, we designed a novel Owlbot robotic
platform, which has the following advantages. First, the robot is designed to have different
types of PLA chassis to carry different hardware devices or sensors, such as Jetson Nano
and LiDAR. The designed power management unit can effectively supply power to the
hardware devices to ensure the regular operation of the robot. Second, unlike the traditional
robot platform that uses DC motors as actuators, Owlbot uses high-precision stepping
motors as actuators and can achieve precise movement under the control of the proposed
stepping motor control algorithm. Furthermore, the use of accurate odometry data con-
tributes to the accuracy of SLAM and navigation. Owlbot combines 2D LiDAR and IMU
information to output accurate odometer information. Overall, the Owlbot platform, which
has been developed and designed based on ROS, can help researchers realise secondary
algorithm development. Future work can be aimed at extending the platform to exhibit 3D
SLAM functions with additional cameras.
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40. Duchoň, F.; Babinec, A.; Kajan, M.; Beňo, P.; Florek, M.; Fico, T.; Jurišica, L. Path Planning with Modified a Star Algorithm for a

Mobile Robot. Procedia Eng. 2014, 96, 59–69. [CrossRef]
41. Base_local_planner—ROS Wiki. Available online: http://wiki.ros.org/base_local_planner (accessed on 12 March 2023).
42. Amcl—ROS Wiki. Available online: http://wiki.ros.org/amcl (accessed on 12 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11235-015-0034-5
http://wiki.ros.org/rviz
http://doi.org/10.1109/34.982903
http://doi.org/10.1109/ACCESS.2020.2985254
http://doi.org/10.1007/s00190-015-0802-8
http://doi.org/10.12720/ijsps.1.2.256-262
http://doi.org/10.1109/TEMC.2006.890223
http://doi.org/10.1109/TIE.2015.2504347
http://doi.org/10.1109/41.847902
https://www.makeblock.com/cn/mbot
http://www.yahboom.net/study/Tiny:bit
http://www.yahboom.net/study/G1-T-PI
http://www.yahboom.net/study/JETBOT-mini
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetbot-ai-robot-kit/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetbot-ai-robot-kit/
http://www.yahboom.net/study/Transbot-jetson_nano
https://www.turtlebot.com/
https://www.leorover.tech/
https://robotnik.eu/products/mobile-robots/summit-xl-en-2/
https://robotnik.eu/products/mobile-robots/summit-xl-en-2/
http://wiki.ros.org/hector_slam
http://wiki.ros.org/gmapping
http://wiki.ros.org/slam_karto
http://wiki.ros.org/rf2o
http://wiki.ros.org/robot_pose_ekf
http://wiki.ros.org/navigation
http://doi.org/10.1016/j.proeng.2014.12.098
http://wiki.ros.org/base_local_planner
http://wiki.ros.org/amcl

	Introduction 
	Previous Work 
	Proposed Robot Architecture 
	Hardware 
	Software 

	Proposed Stepping Motor Control Algorithm 
	Experiments 
	Teleoperation Movement and Odometry Evaluation 
	Mapping 
	Navigation 

	Conclusions 
	References

