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Abstract: Home appliances are considered to account for a large portion of smart homes’ energy
consumption. This is due to the abundant use of IoT devices. Various home appliances, such as
heaters, dishwashers, and vacuum cleaners, are used every day. It is thought that proper control of
these home appliances can reduce significant amounts of energy use. For this purpose, optimization
techniques focusing mainly on energy reduction are used. Current optimization techniques somewhat
reduce energy use but overlook user convenience, which was the main goal of introducing home
appliances. Therefore, there is a need for an optimization method that effectively addresses the
trade-off between energy saving and user convenience. Current optimization techniques should
include weather metrics other than temperature and humidity to effectively optimize the energy cost
of controlling the desired indoor setting of a smart home for the user. This research work involves an
optimization technique that addresses the trade-off between energy saving and user convenience,
including the use of air pressure, dew point, and wind speed. To test the optimization, a hybrid
approach utilizing GWO and PSO was modeled. This work involved enabling proactive energy
optimization using appliance energy prediction. An LSTM model was designed to test the appliances’
energy predictions. Through predictions and optimized control, smart home appliances could be
proactively and effectively controlled. First, we evaluated the RMSE score of the predictive model
and found that the proposed model results in low RMSE values. Second, we conducted several
simulations and found the proposed optimization results to provide energy cost savings used in
appliance control to regulate the desired indoor setting of the smart home. Energy cost reduction
goals using the optimization strategies were evaluated for seasonal and monthly patterns of data for
result verification. Hence, the proposed work is considered a better candidate solution for proactively
optimizing the energy of smart homes.

Keywords: smart home; appliance energy; energy prediction; energy optimization

1. Introduction

Home appliances are considered to account for a large portion of smart home energy
usage because appliances have increased in number in recent years. This is due to the
introduction of many new home appliances that help consumers enjoy a comfortable
lifestyle [1]. In fact, this comfort comes with the costs associated with home appliances
used to support modern and ever-evolving technologies. Some of these IoT devices [2] are
dishwashers, refrigerators, microwaves, and smart cars [3].

Due to the increase in appliances, energy efficiency has become a major challenge
for many organizations. With an ever-growing population, increasing demand for energy,
and the need to reduce energy consumption in smart homes, it is increasingly important to
find ways to make energy consumption more efficient and sustainable. However, this can
be challenging due to the complexity of the processes and systems involved. Using data to
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predict energy efficiency can be an effective solution to this problem. Data can be used to
address many different types of inefficiencies.

The IoT [4] in the energy field is rapidly expanding as it becomes more affordable
and efficient. Recently, some startups have focused on developing small home-appliance
monitors to assist users at home. These devices can monitor weather conditions, appliance
conditions, and other environmental information and send the data to a monitoring server.
This technology enables energy systems to monitor smart homes without having to make
house calls. In the future, IoT devices will enable users to deliver the remote control of
energy settings around the world. This will allow us to create an eco-friendly environment.

CPS systems [5] are based on prediction, analysis, optimization, control, and schedul-
ing, and are considered to be the solution to this domain [6]. An exemplary CPS architecture
shown in Figure 1 is needed because of the diversity and variation involved in area and
user-dependent energy data. In such systems, many smart home appliances could be moni-
tored remotely using technologies such as wearables and smart-home devices. In addition,
if intelligence is embedded into these movable devices/appliances [7,8], it is possible to
enhance the performances of energy systems in many ways, e.g., energy optimization based
on real-time monitoring. This could also help cut costs in smart homes by reducing the
requirement for the user to stay at home for controlling the home appliances.

Figure 1. Complex Problem-Solving (CPS) environment: analysis, prediction, optimization, schedul-
ing, and control.

The CPS problems are divided into layers, such that there is a clear relationship be-
tween each entity of a layer. This enables an open design where dependency is removed by
following and employing a service-oriented architecture. The main components involved in
an energy-optimization system that are meant to solve complex problems are the predictor,
optimizer, scheduler, and controller, which can be visualized in Figure 1.

Monitoring [9] of smart home and healthcare appliances could be done through the
use of technologies such as wearables and smart devices [10], as depicted in Figure 1.
It enables the energy systems to get more insights into the data patterns, which could
help in planning the future efficiently. This could also help cut costs in smart homes by
reducing the requirement for the user to stay at home by controlling the home appliances,
thereby reducing the other complications associated with the optimization of smart home
energy control systems. It could also help maintain a healthy environment with fewer
errors and streamline administrative tasks. In this work, we have used the appliance energy
data [11,12] and the information related to energy-system considerations [13,14].

Optimization is an important part of saving resources [15]. Regarding energy, a variety
of optimization methods can be performed by tweaking a few settings in the home, office,
or hospital [16]. Some of these settings are manually adjusted, such as controlling tempera-
ture and humidity by carefully switching appliances on and off at the correct times of the
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day. For this purpose, optimization techniques are used in machine learning techniques to
train the model.

Current optimization techniques somewhat reduce energy usage but overlook user
convenience, which is the main goal of introducing home appliances. Therefore, there
is a need for an optimization method that effectively addresses the trade-off between
energy saving and user convenience. In current optimization techniques, the inclusion
of weather metrics other than temperature and humidity is also needed to effectively
optimize the energy cost of controlling user-desired room settings. This research involves
work for an optimization technique that addresses the trade-off between energy saving
and user convenience and includes air pressure, dew point, and wind speed. To test the
optimization, a hybrid approach utilizing GWO [17] and PSO [18] was modeled for this
purpose. In addition, this work involves using appliance energy prediction [19] to enable
proactive energy optimization. The LSTM model was designed for energy prediction. Both
prediction and optimized control allow the proactive and effective control of smart home
appliances, and can be evaluated through the results provided.

The optimization layer shown in Figure 1 refers to finding an optimal solution to the
problem under consideration. This can be related to minimizing or maximizing the target
variable. For this, an objective function was designed, implemented, and evaluated, which
helps in making the decision of selecting the best candidate algorithm for optimization. It
allows the system to make decisions about system scheduling and control so that the prob-
lem is solved accordingly. This layer, i.e., optimization, uses many algorithmic techniques,
such as PSO, GWO, GA, Bayesian optimization.

Prediction is a way of knowing the future. From Figure 1, provision of better control
over energy systems can be realized in the domain of CPS. Making better use of data in
this way can also help to improve the reliability and availability of the system, which can
be an important benefit in environments where resources may be limited. Being able to
predict [20] and prevent many problems ahead of time can make it easier to implement
changes and improvements as necessary, saving time and increasing productivity overall.

Many companies are already using predictive data analytics to improve their energy ef-
ficiency and reduce costs. IBM is an example of a company that is applying this approach in
many areas, including energy management systems, supply-chain optimization, and urban
infrastructure management. IBM has worked with a wide range of clients, including large
government agencies and private companies, such as Walmart and FedEx. The company
has also developed a number of its products that use predictive data analytics to improve
energy efficiency and reduce costs.

The prediction layer is responsible for providing relevant predictions about the en-
vironmental metrics involved in system. For this, machine learning techniques are used,
e.g., LSTM [21–23]. For data patterns that change over time, RNN techniques are used.
Similarly, many techniques can be applied according to data attributes.

Scheduling [24] the appliances is very important, as it may affect the energy con-
sumption and device performance. Thus, it must be carefully planned. The information
being used in decisions for control devices has turned out to be very handy, as it provides
knowledge and the state of the environment. This includes both operational data and
information about existing systems, and data about current patterns of energy use and
information about future requirements. When used effectively, data can be used to predict
and prevent many of these problems. This can help to improve efficiency and reduce oper-
ating costs. It can also help reduce the environmental impact of operations by improving
the sustainability of the system and reducing the use of energy resources in an optimized
way. For example, data collected during the testing of new equipment can be used to create
a system model that can be used to accurately predict the performance of new equipment
when it is installed into an existing system.

Scheduling and controlling [25,26] are the next steps after finding the best solution to
the identified complex problem and can be visualized in Figure 1. These techniques give us
the opportunity to apply the optimal appliance configurations and their settings to save
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the energy in smart homes. These steps allow the system to implement optimal solutions
and control the environment, such that the systems; behavior can be analyzed before and
after. To schedule tasks and control behavior, an IoT “app store” is used, in which tasks are
mapped, assigned execution times, and deployed accordingly.

In addition, machine learning in smart applications [27] can be used to process and
analyze vast amounts of data and improve energy utilization by taking control of the
appliances and optimizing smart homes’ energy use. The advancement in technology has
also made it possible to deploy AI-powered robots [28] in the operating room to perform
control tasks while allowing the user to operate remotely using a control appliance attached
to the robot. These movable devices can also assist with monitoring vital signs while
functioning so that the time to change control parameters of the smart home can respond
proactively to ensure the comfort of the user and optimization of energy at the same time.

This paper aims to provide a solution to the problem of maximizing the energy
efficiency of a particular home through advanced machine learning algorithms. To attain
this goal, we first discuss the various models that are used to build energy-optimization
models for homes and the challenges that arise when implementing these models in the real
world. We also introduce techniques that can be used to optimize energy usage based on
machine learning. Thereafter, we compare the performances of these techniques and finally
present our results. Following this, cost analyses are performed for identifying the monetary
costs associated with achieving optimal energy efficiency from a particular home. Finally,
we discuss these findings in the context of energy saving by providing energy management
recommendations that will minimize energy costs and also improve the efficiency of these
homes. This paper has a list of contributions to this domain of research.

• Weather data analytics: We found the importance of each feature and estimated its
impact on the target variable, i.e., appliance energy.

• Energy-optimization model: We modeled the energy-optimization model not only
based on temperature and humidity but several other weather factors too, i.e., air
pressure, dew point, and wind speed. We integrated their weight factors, which were
calculated based on the importance of each feature.

• Energy-forecasting model: It was modeled to include the weight factors of each feature
in LSTM. It was evaluated over different months, seasons, etc.

In Section 2, insights about existing literature are provided. Current mechanisms’
shortages are highlighted, which the proposal tends to solve by a proactive approach.
In Section 3, details of the proposed system are provided, in which the prediction model and
optimization algorithm are formulated. In Section 4, details about the proposed system’s
implementation, experimentation, and evaluation are provided. The dataset, i.e., AEP, is
also explained. Finally, the conclusive remarks are made and highlighted in Section 6.

2. Literature Review

Home appliances are thought to account for a large portion of the energy consump-
tion of smart homes. This is due to the abundant use of IoT devices [29]. Various home
appliances, such as heaters, dishwashers, and vacuum cleaners, are used every day. It is
believed that a significant amount of energy use can be reduced through proper control
of such home appliances. For this purpose, optimization [30] techniques focusing mainly
on energy reduction are used. In addition, predictive techniques [21–23] are also used for
the proactive control in smart homes. This section highlights the shortcomings of existing
studies and then briefs the reader on the challenges.

For the optimization of energy, several works [30–33] have been proposed. In these
works, different energy saving mechanisms and techniques have been described, proposed,
and evaluated through the provision of justifiable results.

One author proposed a PSO-based optimization technique [31] such that it considers
temperature and humidity metrics. This work also evaluates the proposed technique and
tends to save a justifiable amount of energy. However, it does not consider other weather
metrics such as air pressure, dew point, and wind speed. Considering these metrics is
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important because the cost of energy varies by season and refers to dependency on multiple
factors, which could have an huge impact on the scope of optimization technique. Based
on this understanding, we enhanced the optimization technique by utilizing a hybrid
optimization technique, i.e., PSO-GWO.

Various optimization models [30,31] have been proposed, and the best model was
proposed to improve the optimization performance. This includes the comfort factors in
the optimization procedure. This involves the addition of user-desired temperature and
humidity. By following this approach, the trade-off between user comfort and energy-cost
saving could be made. However, this method also lacks the evaluation of optimization
model without considering other weather metrics.

The authors from the articles [30,31] proposed a system consisting of an optimal
technique to save energy of appliances in the smart-home environment. They utilized the
PSO-based optimization technique to save in the energy use of appliances. This includes the
use of two parameters for the overall house. However, there could be an enhancement in
terms of bringing proactiveness to this process. This will not only enable before-hand opti-
mal control of smart-home energy, but also enhance the monitoring systems of smart homes’
alarm notifications. The algorithms can be utilized by advanced energy systems [34,35] to
manage the energy efficiently. Based on these studies, it has been found that the predictions
enable proactiveness in controlling the room’s conditions according to the user-desired
settings. The proposed solution enables this by providing energy optimization for the
energy forecasts instead, which not only enables proactiveness, but allows the system to be
prepared for alerting the consumer.

The authors of the article [32] proposed a system comprising PSO-based ensembled
models for the energy forecast. This includes the feature-selection approach for enhancing
the forecast accuracy. However, the analysis could be improved by extending it to different
seasons, months, areas, weekends, weekdays, and times of the day. To this end, our pro-
posal tends to include this evaluation in the energy forecasts by considering the weight
factor of each feature, rather than just selecting the features. This evaluation was required
to enhance the prediction model’s diversity. We performed a thorough examination of
the data comprising 29 features, of which a few were selected based on the co-variance
with appliance energy consumption. By doing so, we utilized these weight factors in the
optimization model as well. The predictions considering the weight factors allowed us to
improve the RMSE score.

Energy optimization can be achieved in many ways [36]. However, this paper focuses
on analyzing the data and finding the importance of each feature for the optimization
of energy use using machine learning techniques, and on minimizing the cost of energy
consumption required for controlling the appliances. To achieve this, it is necessary to
utilize certain machine learning techniques, such as PSO and GWO, that can be used
for building the model to achieve optimal efficiency by altering the energy demand in a
particular home. The model trained with these techniques was then validated using the
data [11,12] in different cases to achieve the optimal level of energy conservation in a home.
In addition, energy forecasting is also discussed to give an idea of the better control it
provides, to save the energy in advance.

For the prediction of appliance energy, existing forecasting models [21–23] take into
account the latest techniques. In these works, time-series forecasting methodologies, mech-
anisms, and techniques are described, proposed, and evaluated through the provision of
justifiable results.

In [21], an LSTM ensemble network was trained to learn the adaptive weighting mech-
anism. Some techniques [22] utilize deep learning to improve the performance, whereas
some of them [23] make short-term forecasts. However, the seasonal factor is missing
in these works, which could be accounted for in the training process after the thorough
analysis of seasonal data. Based on this analysis, they could be assigned weights varying
over the season, month, weekdays, weekdays, etc. We tend to improve the accuracy of
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forecasting model [37] in the proposed system by evaluating the RMSE score of our model
applied over the given datasets described in Section 4.2.

Overall, the proposed system tends to enhance the optimization for better control of
energy use in smart homes. Firstly, for better control, a prediction model was designed. This
was designed in such a way that it performs better in various weather conditions due to the
consideration of weight factors of the selected features. This includes the addition of other
weather metric weight factors for air pressure, dew point, and wind speed. Secondly, it
enables proactiveness in the optimization problem of energy systems in smart homes. In ad-
dition, it includes evaluation factors that make the prediction/forecast model diverse in
nature and applicable to many regions—the secondary objective of this work. Conclusively,
according to the comparison of our results with the current literature [30,31,33], the other
above-mentioned weather factors play important roles in saving energy better, as they
also impact energy consumption due to the fact that each season’s energy consumption is
different, thereby highlighting the requirement of such an optimization technique to cater to
them. The proposed system’s results regarding prediction and optimization together prove
the it outperforms the existing energy-optimization systems and enables better control over
smart-home energy use.

3. Proposed System

This section is categorized into three sections, i.e., preprocessing, prediction, and op-
timization. Details on preprocessing the data and extraction of feature weight factors is
described are Section 3.1. Description of appliance energy forecasting can be found in
Section 3.2. The technique for controlling the appliances to save on energy in an optimal
way is explained in Section 3.3.

3.1. Preprocessing

In this section, we describe the steps we followed to find the importance of features and
to calculate the weights representing the impacts of features. This was required to enhance
the performances of prediction and optimization models. In prediction, the weights were
passed as an input during the training process, whereas the weights were applied while
calculating the energy cost to control the appliances in the optimization simulations.

The preprocessing shown in Section 4.2 included the removal of nulls, zeros, and un-
necessary features, and evaluating the importance of each feature against the target variable,
i.e., appliance energy. These actions are required for enhancing the performance of the the
proposed time-series forecasting model.

Table 1 describes the variables used for scaling the dataset.

Table 1. Data and variables used in scaling.

Symbol Description

X′ Scaled dataset, after applying the MinMax transformation
X Actual data, i.e., represented in the form of a vector
x it is an element from the vector X representing a feature
x′ scaled value of element x taken from the vector X representing a feature
xmin it is the smallest element of vector X
xmax it is the largest element of vector X
max minimum value set for scaling the data, i.e., −1
max maximum value set for scaling the data, i.e., 1

Firstly, the unnecessary features must be removed—those which do not have any
impact or may have redundant data. For this purpose, we utilized the covariance matrix
values. Based on this analysis, some of the temperature and humidity features were re-
moved from the dataset. The column lights were also removed due to abundance of zeros.
All the filters were applied after thorough analysis, from the findings of correlation, zeros,
nulls, etc.
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Secondly, scaling dataset features is a required step [38] before training the model.
This is because the existing models perform well over a smaller range of numbers. From the
perspective of optimizers, the learning rate can easily be detected and enables a friendly
environment for experimentation. Standard and min-max scalers are widely used for this
purpose. Equation (1) depicts scaling of the dataset, a pre-processing step required before
training. X′ refers to the scaled dataset. It is retrieved after applying MinMax− Scalar to
scale down data within a discrete set, i.e., between −1 and 1. The scalar value x refers to a
value from a feature vector X; xmin and xmax refer to minimum and maximum scalar values
from feature vector X, respectively. With the use of Equation (1), the dataset’s features are
scaled as follows:

x′ =
(x− xmin)(max−min)

xmax − xmin
+ min x ∈ X (1)

Thirdly, weight factors of each feature are calculated. This is accomplished by applying
the scaled data to multiple models for the selection of the best model configurations and
training settings.

To get the best hyper-parameter [11] configurations for a model, we applied multiple
models, e.g., MLP regressor, GBC, XTR, RF, SVR, Ridge, lasso, k-NN regressor, and XGB
regressor. Among all these models, the extra tree regressor outputs the best results with the
least RMSE score and maximum R2 score shown in Figure 2. Based on these results, we
applied Boruta algorithm and GSCV to get the weight coefficients which refer to the im-
portance of each feature represented by a scalar value. Weight coefficients can be retrieved
by using the command grid_search.best_estimator_. f eature_importances_. The importance
values are then scaled within the range of 0 and 1, which are then used in the prediction
and optimization problems.

Figure 2. Root Mean Square Error (RMSE) and R2 scores of multiple models.
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The Boruta algorithm was used to identify the feature importance, i.e., weight coeffi-
cients. Based on all features’ importance values, the weight factor of each was calculated
and assigned to each feature so that they could be applied in prediction and optimization
mechanisms for better performance.

3.2. Prediction

Table 2 describes the variables used in the prediction problem.

Table 2. Data and variables used in prediction.

Symbol Description

t represents the time-step of LSTM model training
σ sigmoid activation function, output between 0 and 1
φ tangent hyperbolic function, output between −1 and 1
× symbol representing cross product operation
+ symbol representing sum operation
xt input at time-step t from a vector X
ht−1 previous hidden state of an LSTM unit
it input gate of an LSTM unit
Wxi weight of xt used in the input gate it
Whi weight of ht−1 used in the input gate it
bi bias for the input gate it used in an LSTM unit
ft forget gate of an LSTM unit
Wx f weight of xt used in the forget gate ft
Wh f weight of ht−1 used in the forget gate ft
b f bias for the forget gate ft used in an LSTM unit
ot output gate of an LSTM unit
Wxo weight of xt used in the output gate ot
Who weight of ht−1 used in the output gate ot
bo bias for the output gate ot used in an LSTM unit
Wxc weight of xt used in the modified input c̃t
Whc weight of ht−1 used in the modified input c̃t
bc bias used for modifying the input c̃t
c̃t modified input of current LSTM unit
ct−1 memory cell of the previous LSTM unit
ct memory cell of an LSTM unit
ht hidden state of current LSTM unit

The proposed appliance-energy-prediction model is shown Figure 3. It shows an LSTM
based model which comprises input, hidden, and output layers, along with its LSTM units.
It can be visualized that the temperature, humidity, air pressure, dew point, wind speed,
etc., are passed in, along with their calculated weights. The addition of weight factors refers
to the importance of that feature. This weight factor shows the impact of that feature over
the target variable, i.e., appliance energy.

For the prediction, we utilize an LSTM layer, and then a fully connected dense layer.
Applying features and their calculated weight factors enhances the performance of predic-
tion over the temporal variation. The configuration of proposed LSTM model also involves
setting the numbers of layers, neurons, epochs (50), and learning-rate (0.01) for better
training. The data features used as an input for prediction of appliance energy are tempera-
ture, humidity, air pressure, dew point, and wind speed, along with their weight factors.
Formulation of the proposed time-series prediction model based on LSTM is explained in
the following section.
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Figure 3. Proposed appliance energy prediction system.

Problem Formulation

Formulation of prediction problem is required so that it is applied over the daily and
hourly data for evaluation, such that the performance remains stable. The main procedures
involved in LSTM prediction module are input gate it, forget gate ft, and output gate ot.

The LSTM model input gate is formulated in Equation (2), i.e., it. This gate decides
what relevant data need to be added from the LSTM unit.

it = σ(Wxixt + Whiht−1 + bi) (2)

The LSTM model forget gate is formulated in Equation (3), i.e., ft. This gate decides
which data need to be retained and which can be forgotten.

ft = σ(Wx f xt + Wh f ht−1 + b f ) (3)

The LSTM model output gate is formulated in Equation (4), i.e., ot. This gate finalizes
the next hidden state.

ot = σ(Wxoxt + Whoht−1 + bo) (4)

The LSTM model regulator is formulated in Equation (5), i.e., c̃t. It is used to regulate
the vector values between −1 and 1.

c̃t = φ(Wxcxt + Whcht−1 + bc) (5)

LSTM model memory cell is formulated in Equation (6), i.e., ct, which is retained and
transferred to the next LSTM unit.

ct = ( ft × ct−1) + (it × c̃t) (6)

The LSTM model unit’s hidden state is formulated in Equation (7), i.e., ht. It decides
to whether hidden state will be used in next LSTM unit or not. It is denoted as follows.

ht = ot × φ(ct) (7)

Collectively, all Equations (2)–(7) mentioned above provide a network of LSTM units
and their inter-connectivity. The configuration of LSTM also involves setting the number
of layers, neurons, epochs, and learning rate for better training. The proposed time-series
prediction model, i.e., LSTM, is modeled below.
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3.3. Optimization

Table 3 describes the variables used in the optimization problem.

Table 3. Data and variables used in optimization.

Symbol Description

Ecost total cost in controlling the energy
m a metric denoting either temperature, humidity, air-

-pressure, or wind speed.
Emetricm cost in controlling the energy associated with metric m
wmetricm weight associated with metric m
t̂ time variable in GWO optimizer
α alpha, best-fit solution for the optimizer at time-step t̂
β beta, second best solution for the optimizer at time-step t̂
γ gamma, third best solution for the optimizer at time-step t̂
−→
X mean value of top 3 fits (α, β, and γ) Equation (8)

In this section, the optimization model is described, which includes the explanation of
its internals and the formulation. In Figure 4, it can be seen that the proposed optimization
makes the use of PSO-GWO hybrid approach and involves the other weather metrics,
which are temperature, humidity, air pressure, dew point, and wind speed. In contrast,
the previous approach only makes the use of temperature and humidity. Along with this,
the proposed approach also makes the use of weight factors calculated through feature
importance, as described in Section 3.1.

Figure 4. Proposed energy-optimization system.

An optimization model is defined for the optimal control of the energy use of smart
homes. The dataset [11,39] contains 29 features, from which only the most important
features were selected, and the following formulation is be applied.

Problem Formulation

The optimization is formulated as per Equation (8). All dataset features are applied to
the optimization formula to optimally reduce appliance energy consumption by considering
the weights associated with each feature based on their coefficients.

−→
X (t + 1) =

−→α +
−→
β +−→γ
3

(8)
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Equation (9) refers to the basic energy-optimization method that does not include/
consider environmental parameters other than the temperature and humidity. Ecost refers
to the associated cost in controlling the energy, whereas Etemp and Ehumid refer to the energy
costs of controlling temperature and humidity, respectively. The former is as follows:

Ecost = Etemp + Ehumid (9)

Equation (10) refers to the proposed energy-optimization method that considers
weather conditions along with the temperature and humidity factors. The proposal intro-
duces the use of weight factors for each optimization parameter, which is based on the data
analysis performed with the features. Wtemp, Whumid, Wairpressure, Wdewpoint, and Wwindspeed
refer to the weights associated with temperature, humidity, air pressure, dew point,
and wind speed, respectively. The goal of this formula is to provide a minimal cost for con-
trolling the appliance energy. Based on this cost, we assume that these metrics reduce the
energy of an appliance. The optimization formula in Equation (10) is represented as follows:

Ecost = wtemp ∗ Etemp + whumid ∗ Ehumid

+ (wairpressure + wdewpoint + wwindspeed)
(10)

In Algorithm 1, the current state of the environment is fetched. The number of particles
in a swarm is the number of iterations, and the optimal solution is found accordingly. This
approach considers the minimization function explained in Equation (10). The user-desired
settings are also considered in optimization, which are temperature and humidity ranges.
Based on this information, the updated cost calculated and finds the minimum value,
as the goal of this work is to minimize the cost spent on controlling cost. The total Ecost is
compared with previous work, and the proposed Algorithm 1 shows better performance in
terms of optimizing the energy cost of the provided environment.

Algorithm 1 Energy-optimization algorithm.

Statecurrent ← getCurrentState()
for i in Statecurrent do

Cbest ← PSO(
Statecurrenttemperature , Statecurrenthumidity , Statecurrentairpressure ,
Statecurrentdew−point , Statecurrentwind−speed , Statenumswarm−particles ,
Usersettings, MimizationFunction from Equation (10)
)
for j in numswarm−particles do

Apply Cost Function
if Cj.curr ≤ Cbest then

Select and update Cbest for particle j
Update Vbest Velocity
Update Pbest Position

end if
Update Solutions Cost Table

end for
Select Best Solution from Cost Table
Update Etotal−cost

end for

Overall, the proactiveness and optimization shown in Section 3.2 enable the proactive
control, optimization, and scheduling of energy-optimization systems for smart homes.
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4. Experiment Results

In this section, the process of setting up the testing environment is explained. The de-
tails about dataset and its preprocessing are explained. At the end, the evaluations are made
in terms of RMSE for the predictions and actual energy costs when controlling appliances
for energy optimization.

4.1. Test Environment

The environment used for experimentation is shown in Table 4. All experiments were
performed on an Ubuntu operating system. Python was used for designing the appliance
energy forecast model and the simulation of optimization. Other packages and libraries
were used, including Conda, Keras, TensorFlow, Sci-Kit learn, Fuzzy-Module, Matplotlib,
Numpy, and Pandas.

Table 4. System environment and software packages.

Software Version Software Version

Ubuntu 22 Python >3.7.x
Conda 22.9.0 Keras TensorFlow2
TensorFlow 2 Sci-Kit learn 1.2.0
Fuzzy-Module 1.2.2 Matplotlib 3.5
Numpy 1.17 Pandas 1.5.x

4.2. Dataset

The dataset [11] shown in Table 5 was used in the study [39], and it contains 19,735 records
and 29 columns. The data are categorized as indoor and outdoor data. Of these categories,
some of which are temperature and humidity, represented by T and H, for rooms inside
a home and nearby a station. The dataset also contains some information about the light,
visibility, air pressure, wind speed, dew point, etc., from the nearest weather station at
Chievres Airport, Belgium. The dataset’s accuracy [40] shows that the data are valid and
ready to use for analysis and contain useful insights regarding monthly, weekly, daily,
and hourly energy usage patterns.

Table 5. Appliance energy dataset reprinted/adapted with permission from Ref. [11]. 2023,
Kaggle-GoKagglers.

Appliance
T1 H1 Ti Hi . . .

Air Wind Dew
VisibilityEnergy -Pressure -Speed -Point

60 19.9 47.6 19.2 44.8 . . . 733.5 7.0 63.0 5.3
60 19.9 46.7 19.2 44.7 . . . 733.6 6.7 59.2 5.2
50 19.9 46.3 19.2 44.6 . . . 733.7 6.3 55.3 5.1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
50 19.9 46.1 19.2 44.6 . . . 733.8 6.0 51.5 5.0
60 19.9 46.3 19.2 44.5 . . . 733.9 5.7 47.7 4.9
60 19.9 46.4 19.2 44.6 . . . 734.1 5.4 42.8 4.8

The second dataset [12] shown in Table 6 also contains data that include four seasons,
i.e., 12 months data. It contains the temperature and humidity values over 10 min intervals,
which are associated with the energy consumption of the house. Evaluation of optimiza-
tion was performed using this dataset, and it resulted in better performance in terms of
energy saving. The experiments performed over this data were based on seasonal, monthly,
and daily energy usage patterns.
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Table 6. Appliance energy dataset (South Korea) [12].

Dataset Features

time timestamp of the record.
temp temperature of the room at a given time.
sky visibility of the sky at time.
ws wind speed of the region at time.
wd dew point in the air at time.
wdEn wind direction at time.
reh humidity of the room at time.
appl appliance energy consumed at time.

The preceding dataset was used for experimentation for the following reasons:

• The dataset has been used in previous studies in our laboratory. It was used to provide
optimal control parameters with the use of PSO based on temperature and humidity,
and user-desired environmental conditions in the house.

• The dataset contains four seasons’ data representing different weather conditions. It
also contains information other than temperature and humidity, such as air pressure,
dew point, and wind speed. This type of data provides the ability to realize the
performance better.

4.3. Evaluation

This section provides insights about the evaluation of the appliance-energy-prediction
model and energy-optimization technique.

4.3.1. Preprocessing

This section describes the process of preprocessing the dataset. This is required to
enhance the performances of both prediction and optimization models.

The correlation formula is shown in Equation (11), which results in the correlation
analysis shown in Figure 5. In this equation, Xi represents a feature to be compared with Yi
from the dataset, whereas the µ and ν represent their respective means.

Cov(X, Y) =
∑ (Xi − µ)(Yj − ν)

n
(11)

Based on the analysis of correlation graph shown in Figure 5, we concluded that
some of the features needed to be dropped. Thus, several room temperature and humidity
features were dropped: outdoor temperature and light, and both random-variable features
due to their low impact on the appliance energy and due to the abundance of zeros values
for them. The columns that were dropped overall were lights, RH4, RH5, T6, T9, Visibility,
Tdewpoint, rv1, and rv2. The column lights was dropped due to the high number of zeros
in it which could impact a model’s performance. T6 was removed as it was redundant and
almost contained the same values as Tout. The other columns having lower scores than 0.02
were removed in this work.

Figure 5. Feature covariance(s).

For experimentation, we utilized two popular scaling techniques, i.e., minmax scaler
and standard scaler. From the results shown in Table 7, we found out that minmax-scaler
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helps results are better than the ones using the standard scaler. The minimum and maximum
values set for scaling were −1 and 1, respectively.

Table 7. RMSE comparison.

Dataset Month Day Scaling Model Split RMSE

10 10 3.07
[11] February 15 MinMax (−1, 1) LSTM 10 5.9

5 10 6.33

10 10 3.63
[11] March 27 MinMax (−1, 1) LSTM 10 3.64

13 10 3.78

2 10 1.48
[11] April 1 MinMax (−1, 1) LSTM 10 3.09

7 10 3.66

28 10 5.96
[12] February 16 10 6.57

27 10 7.28

4 10 5.15
[12] March 29 MinMax (−1, 1) LSTM 10 5.85

31 10 6.84

Utilizing the filtered feature set, the importance of each feature was calculated, which
provided more insights on the need for associating their weights to be used in training
process, initially. The feature importance values are shown in Figure 6. These are also
termed as coefficients in this manuscript, which are considered to be the weights associated
with each feature used in the proposed system. The term coefficients is often replaced with
the level of importance in this manuscript to show the weight w of each feature separately,
and to also show its level of impact on the appliance energy.

Figure 6. Filtered features’ levels of importance.

Overall, based on preprocessing results, the training of the prediction model and
simulation of optimization model can be evaluated. Due to the addition of weight factors,
the effects on the models’ performances are evaluated in the following sections.
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4.3.2. Prediction

In this section, the appliance energy forecast model is evaluated by its RMSE score
over the time. The performance of this model was tested using the dataset shown in Table 5.

The RMSEs when using the other approaches [41] are compared to our RMSE results.
The RMSE values shown in Table 7 are for three different months, i.e., February, March,
and April. It can be seen that the evaluations vary for each day of the month, referring to
the fact that each day of the month has different requirements. This highlights the need
for a model that can deal with the patterns of data from different months, days, weekdays,
and weekends.

The results for the energy forecast model evaluation are visualized in Figure 7, which
reflect the performances of the predictions. The orange and blue colors refer to the forecast
and actual appliance energy. Figure 7a–f reflect the prediction comparisons and RMSE
scores for the months of February, March, and April.

Figure 7. Appliance energy forecasts and RMSE score of the model.

In the evaluations shown in Table 7, it can be seen that the RMSE is low, as shown in
the predictions in Figure 7. We found that 10 splits gives the best performance if MinMax
scaling is used with minimum and maximum values of 1 and−1, respectively. Performance
was analyzed and evaluated for all months, and the results for the months of February,
March, and April are shown in Table 7.
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4.3.3. Optimization

In this section, the energy optimization model is evaluated by its energy cost when
controlling the appliances in consideration of user-desired room settings. Simulations of
the proposed hybrid optimization approach, i.e., PSO-GWO, and PSO-based optimization
reliant on temperature and humidity metrics [30], showed that the proposed approach
saves more energy cost when controlling the appliances in a smart home.

For evaluation, we used two optimization techniques specified in Table 8. The PSO-
based method, our previous work, makes use of temperature and humidity metrics as
per Equation (9). The proposed optimization model, the PSO-GWO approach, makes use
of additional metrics of the model as well, i.e., temperature, humidity, air pressure, dew
point, and wind speed; and the formulation can be seen in Equation (10). In addition,
weight-factors based on analysis are applied in the proposed optimization model.

Table 8. Different model configurations used for comparison.

Optimization Metrics Use of ParticlesModel Weight-Factors?

PSO [31] temperature and humidity No 15

PSO-GWO temperature, humidity, air-pressure, Yes 15(proposed) dew-point, and wind-speed

The energy savings using the previous approach [31] that uses PSO as the model and
two factors, temperature and humidity, are compared with the proposed optimization
technique’s results (it makes the use of other weather factors in its cost function). The model
configurations are shown in Table 8.

The criteria for the user-desired temperature and humidity were set to 25 and between
53 and 56, which are shown in the form of Table 9. It can be seen that if the the temperature
is cool or hot, we have defined the criteria for keeping the user-desired temperature by
taking appropriate actions. The same hold for the humidity level.

Table 9. Criteria for controlling the temperature and humidity.

Metric Criteria Status Action

temperature
16∼25 Cool Heat the place
25 Normal None
25∼30 Hot Cool the place

humidity
40∼53 Less Humid Increase the Humidity level
53∼56 Normal None
56∼65 Too Humid Lower the Humidity level

The metrics, temperature and humidity, are the user-desired metrics used in this
work. Other metrics, i.e., air pressure, dew point, and wind speed, have shown effects in
Table 10 due to their inclusion in the cost function of the optimization procedure formulated
in Equation (10). The costs associated with controlling the appliances according to the
user-desired settings are compared between the proposed PSO-GWO- and PSO-based
optimizations [31]. They differ in their cost functions, depicted in Equations (9) and (10),
respectively. Due to the fluctuation of energy consumption in seasons, the performance of
the optimization model might be affected. Therefore, season-wise performance comparison
was tabulated to prove the credibility of the proposed optimization technique, due to the
use of weather factors and their weights other than temperature and humidity.
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Table 10. Season-wise energy-cost comparison.

Season Months Simulations
Appliance Control

Energy Cost Saved Energy
Previous Proposed Cost in kW

Spring-2014 May 1744 1927.03 522.7 1404.33
Summer-2014 Jun–Aug 32, 208 5621.96 1547.59 4074.37
Autumn-2014 Sept–Nov 32, 184 5927.82 1547.62 4380.20
Winter-2014–15 Dec–Feb 32, 160 6023.88 1538.46 4485.42
Spring-2015 Mar–Apr 21, 464 3778.16 1027.53 2750.63

All seasons Energy Cost Saved (season-wise): 17,094.95

It is also a known fact energy consumption fluctuates among the months, which might
affect the performance of the optimization model. Even in different months, the optimiza-
tion performs well, hence proving the credibility of the weight of each factor. Due to its
better performance, the smart home management systems are allowed to configure the
optimal control for as long as it is desired.

The total number of saved kW units accumulated for all seasons was 17,094.95, in com-
parison to the PSO-based approach without the outdoor weather metrics. Table 10 shows
that the proposed optimization technique works quite well in the different seasons as well.

In Table 11, a month-wise comparison is provided for the evaluation of the proposed
optimization technique, i.e., the PSO-GWO approach. It can be seen in comparison of
energy cost in controlling the appliances, between the proposed optimization technique
and previous approach [31], that the proposed optimization technique provides better
results. It is also a known fact the energy consumption fluctuates by month, which might
affect the performance of the optimization model. Even in different months, the optimiza-
tion performs well, proving the credibility of the weight of each factor. Due to its better
performance, the smart home management systems are allowed to configure the optimal
control for as long as it is desired.

Table 11. Month-wise energy-cost comparison for dataset [39].

Year Month Simulations
Appliance Control

Energy Cost Saved Energy
Previous Proposed Cost in kW

2014 May 744 1926.81 522.7 1404.14
2014 June 720 1863.27 506.04 1357.23
2014 July 744 1857.15 519.77 1337.38
2014 August 744 1898.68 521.85 1376.83
2014 September 720 1916.56 508.49 1408.07
2014 October 744 2007.36 526.55 1480.81
2014 November 720 2002.67 512.57 1490.10
2014 December 744 2096.59 531.0 1565.59
2015 January 744 2097.26 531.04 1566.22
2015 February 672 1830.15 476.41 1353.74
2015 March 744 1949.24 523.65 1425.59
2015 April 720 1829.43 503.9 1325.53

Annual Energy Cost Saved (month-wise): 17,091.20

The proposed optimization model was applied to the second dataset [12]. The relevant
results are shown in Table 12, which reflect the optimization in the form of minimizing the
cost associated with controlling the appliances according to the user-desired environmental
settings of the room.
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Table 12. Month-wise energy cost-comparison for dataset [12]/Table 6.

Year Month Simulations
Appliance Control

Energy Cost Saved Energy
Previous Proposed Cost in kW

2023 February −− 71.58 19.04 52.54
2023 March −− 318.96 85.83 233.13

Annual Energy Cost Saved (month-wise): 285.67

The total number of saved kW units accumulated for the period of 12 months was
17,091.20, in comparison to the PSO-based approach without the outdoor weather metrics.
Table 11 shows that the proposed optimization technique performs better for all months
as well.

In Table 13, a comparison of the energy cost by increasing the number of months
is provided. It can be seen that the energy cost of the proposed optimization technique,
i.e., PSO-GWO, is very low as compared to that of the previous approach [31]. It can also
be seen that an increase in the number of months does not affect the performance, which
allows the stakeholder to configure the optimal control for as long as desired.

Table 13. Energy-cost comparison when increasing the number of months.

Start End Months Simulations
Appliance Control

Energy Cost
Previous Proposed

2014 May 2014 May. 1 744 1926.83 522.69
2014 May 2014 Jun. 2 1464 3790.77 1028.71
2014 May 2014 Jul. 3 2208 5647.17 1548.45
2014 May 2014 Aug. 4 2952 7549.21 2070.26
2014 May 2014 Sep. 5 3672 9464.63 2578.8
2014 May 2014 Oct. 6 4416 11,474.7 3105.31
2014 May 2014 Nov. 7 5136 13,476.65 3617.95
2014 May 2014 Dec. 8 5880 15,574.62 4148.77
2014 May 2015 Jan. 9 6624 17,669.89 4679.95
2014 May 2015 Feb. 10 7296 19,503.27 5156.34
2014 May 2015 Mar. 11 8040 21,449.89 5679.94
2014 May 2015 Apr. 12 8760 23,456.78 6183.92

Same results for the dataset [12] can be visualized in Table 14. It is evident that the
energy cost optimization is better when the proposed methodology is used as it results in
more energy controlling cost savings.

Table 14. Energy-cost comparison when increasing the number of months for dataset [12].

Start End Months Simulations
Appliance Control

Energy Cost
Previous Proposed

2023 Feb 2023 Feb. 1 27 71.58 19.04
2023 Feb 2023 Jun. 2 122 318.96 85.83

The experiments have shown that the data requirements change by season, month,
day, weekday or weekend status, and time of day. This highlights the need for a model
that can first identify the factors, and then apply the time-series forecasting of the model.
This can be validated by the use of different datasets representing variances over different
regions. In this work, we utilized two different datasets, i.e., Chievres Airport, Belgium [11],
and Cheonan, South Korea [12]. This definitely enhanced the performance of prediction
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and optimization in terms of the RMSEs of accuracy and energy-cost saving when con-
trolling the appliances. In addition to this, the GWO- and PSO-based optimizations were
formulated together, which can be utilized and applied to the appliance energy forecasts.
The experimental results reflect the fact that each weather factor has an important role to
play in the prediction and optimization of energy because of the geographical, seasonal,
and day-type (weekend, weekday) variations, among others. Based on the results, it is
concluded that the inclusion of air pressure, dew point, and wind speed enhance the
performance and result in reducing the energy costs involved in controlling the smart
home appliances.

5. Discussion

In this section, the findings of the current work are discussed. Current energy systems
have the limitation of performing with different levels of efficacy depending on the season
or month. This is due to the fact that they do not account for the level of impact features
related to the time of year have on the energy. Analysis and supporting results from
Section 4 showed that our energy-optimization scheme works rather well in all of the
seasons and months.

The energy-saving results shown in Tables 10, 11 and 13 also support the idea of
considering weight coefficients in existing optimization techniques to enhance their perfor-
mances in certain seasons and months as well. The values that we used in this work for the
dataset are shown in Table 15.

Table 15. Coefficients and weight values.

Coefficients Values Coefficients Values

RH1 0.0515 T1 0.0430
RH2 0.0484 T2 0.0478
RH3 0.0500 T3 0.0501
RH4 0.0469 T4 0.0454
RH5 0.0463 T5 0.0420
RH6 0.0470
RH7 0.0482 T7 0.0450
RH8 0.0520 T8 0.0467
RH9 0.0465
RHout 0.0512 Tout 0.0478
Tdewpoint 0.0455 Wind-speed 0.0440
Air-pressure 0.4900

The primary findings of this work are that the inclusion of properly analyzed weight
coefficients could enhance optimization techniques and result in energy savings. They also
play an important role in the prediction of appliance energy use.

The secondary focus of this work was to consider the level of impact of a specific
feature on the energy consumption. For this purpose, the weight coefficients are included
in both the energy prediction and optimization models.

From physical point of view, energy savings could be explained as such: if the appli-
ances’ optimal control parameters are not frequently updated, then their energy efficiency
is significantly reduced. This wasted energy could be saved for that specific dataset/area
where the appliances were unnecessarily turned on.

It can also be deduced from the seasonal and month-wise comparison results that
the weight factors play an important role in the optimization problem. In this work, we
primarily focused on finding the best weight factors for the region used in this study. It
can be confidently said that if the same technique used to estimate the weight factors is
applied carefully for another dataset representing different regions with their own weather
conditions, the optimization model will perform the same. This is due to the use of weight
factors which reflect different regional weather conditions.
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6. Conclusions

From the previous results, we can conclude that the proposed system can enable
proactiveness and efficiency in current energy-optimization systems. It can be stated that
this enhancement is provided by the inclusion of weight coefficients that refer to the
levels of impact of weather metrics on the appliance energy. This not only enhances the
performance of the optimization technique but also that of the prediction technique. with
the use of properly estimated weight factors, this optimization approach could be applied
to multi-regional datasets. The second interesting point of this work is that it considered
the level of impact of each feature, which again refers to the fact that this optimization has
a broader scope in terms of its application by using a variety of features.

Further enhancements to the optimization module by optimizing, scheduling, and con-
trolling appliance energy based on season, month, day, week, weekend, and time using
GWO-PSO-based optimization showed that the proposed system can provide optimal
control parameters through the use of weather metrics other than just temperature and
humidity. This addition broadens the scope of both prediction and optimization models
and enhances them to perform better in various seasons, months, day-types.
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GWO Grey Wolf Optimizer
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PSO Particle Swarm Optimizer
RF Random Forest
RNN Recurrent Neural Network
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XGB Extreme Gradient Boosting
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