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Abstract: There are six possible solutions for the surface normal vectors obtained from polarization
information during 3D reconstruction. To resolve the ambiguity of surface normal vectors, scholars
have introduced additional information, such as shading information. However, this makes the
3D reconstruction task too burdensome. Therefore, in order to make the 3D reconstruction more
generally applicable, this paper proposes a complete framework to reconstruct the surface of an
object using only polarized images. To solve the ambiguity problem of surface normal vectors, a
jump-compensated U-shaped generative adversarial network (RU-Gan) based on jump compensation
is designed for fusing six surface normal vectors. Among them, jump compensation is proposed in the
encoder and decoder parts, and the content loss function is reconstructed, among other approaches.
For the problem that the reflective region of the original image will cause the estimated normal
vector to deviate from the true normal vector, a specular reflection model is proposed to optimize
the dataset, thus reducing the reflective region. Experiments show that the estimated normal vector
obtained in this paper improves the accuracy by about 20◦ compared with the previous conventional
work, and improves the accuracy by about 1.5◦ compared with the recent neural network model,
which means the neural network model proposed in this paper is more suitable for the normal vector
estimation task. Furthermore, the object surface reconstruction framework proposed in this paper has
the characteristics of simple implementation conditions and high accuracy of reconstructed texture.

Keywords: three-dimensional reconstruction; polarization images; surface normal vector; specular
reflection model; reflective region localization

1. Introduction

As a key research object in the field of machine vision and imaging, 3D reconstruction
technology has a wide range of utility. Currently, 3D reconstruction techniques have
been applied to virtual battlefields, unmanned vehicles, deep space exploration, medical
imaging, scene reconstruction, and other fields [1]. Studies have shown that polarization
imaging technology can better highlight the surface texture information of objects than
intensity images [2], and thus a method to achieve 3D reconstruction using polarization
technology gradually comes within the vision of researchers.

From a practical point of view, studies on 3D reconstruction focus on how to recon-
struct 3D structures from 2D images, due to the broader applicability of this direction.
Under ideal conditions, too many objective conditions exist for the study, which makes
the task of achieving 3D reconstruction too onerous; for non-ideal scenes, some of the
conditions are not achievable, which means that 3D reconstruction cannot be realized.
Thus, a method to recover 3D structures from 2D images is the focus of this paper, i.e., the
estimation of height information in order to achieve reconstruction [3]. Since the relation-
ship between the object surface and the normal vector is unknown, the reconstruction of the
object surface from the intensity image is very unsatisfactory. As scholars continue to study
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the relationship between the direction of vibration and the direction of the propagation
of light waves, they found that the relationship between these two can be obtained by
the properties of light (polarization). Koshikawa et al. [4] were the first to extract polar-
ization information from reflected light and then reconstruct the smooth surface of the
object. Later, B. Wolff used polarized images combined with stereo vision techniques to
construct the surface normal vector information of an object [5]. In addition, Wolff also
used Fresnel’s formula to explain the polarization characteristics of reflected light, and
classified (including specular reflected light, diffuse reflected light, and diffracted light)
and described the reflected light of the object, and clarified the difference between different
types of reflected light [6]. The results of this study laid the theoretical foundation for the
subsequent analysis of the polarization state of reflected light from the target surface. Since
the conditions of the surface generating diffracted light reflection are very special, they
can be ignored in polarized 3D imaging studies, and the current research mainly focuses
on the use of specular reflected light and diffuse reflected light polarization properties to
achieve the reconstruction of the target 3D profile. However, the physical model provided
by Wolff for normal vector solving has four feasible solutions under the specular reflection
model and two feasible solutions under the diffuse reflection model, so researchers have
started to explore how to resolve the ambiguity, i.e., to obtain the true normal vector from
six feasible solutions.

Gary A. et al. [7] found that there is a polarization effect on partially diffuse reflected
light and that the mapping of the polarization of diffuse reflected light to the incident
angle is unique, so they proposed to use the polarization from diffuse reflected light to
calculate the uniquely determined incident angle. Smith et al. [8] used polarization and
shadow information constraints as linear equations when solving for height information.
Mahmoud et al. [9] used texture information from shadows. Miyazaki et al. [10] trans-
formed the RGB-measured color information into S-space and used the brightness, hue,
and saturation defined in S-space to construct direct correspondence with the target color,
diffuse reflection, and highlight reflection parameters [11] to separate the specular and
diffuse reflected light from the target surface, solving the problem of inaccurate DOP
(degree of polarization) solutions in the presence of both specular and diffuse reflections.
However, the above methods can only partially solve the normal vector ambiguity, and
the experimental results have the problems of large errors and poor robustness. For this
reason, Zhang et al. [12,13] proposed to further resolve the normal vector ambiguity by
combining parallax angle and point cloud data to estimate the normal vector, combined
with the Poisson distribution to achieve surface reconstruction; the accuracy of its normal
vector estimation is low, but the reconstruction results have some significance. With the
rapid development of deep learning, Ba et al. [14] first input polarization information as
a priori knowledge into the U-net network for normal vector estimation, and the results
showed that the normal vector accuracy obtained by Ba et al. was higher. Chen et al. [15]
proposed a pre-trained network, and further pointed out in the paper that the polarization
surface normal vector [5] combined with polarization map as input could obtain a higher
accuracy estimated normal vector.

In summary, the ambiguity generated by polarized images has not a good solution.
Although neural networks have a strong learning ability, this method is still not widely
used to solve the ambiguity of surface normal vectors. Only U-net networks [14,15] have
made some progress in resolving normal vector ambiguity, while Gan networks have been
little studied in this area. The essence of how convolutional neural networks [14,15] solve
normal vector ambiguity is image fusion, and studies have shown that generative adver-
sarial networks [16] have demonstrated good results in the processing of infrared images,
polarized images, and intensity images. The object under study in this paper needs to
distinguish the target from the background, i.e., it requires a certain semantic segmentation
capability. Therefore, we fuse the generative adversarial network architecture with the
U-net network architecture, supplemented by Resnet for the normal vector estimation task,
and further demonstrate that the generative adversarial network can be better applied to
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the normal vector estimation tasks. Based on this paper, a holistic framework for object
surface reconstruction from single visual images is proposed.

The work in this paper can be summarized as follows:

1. A set of frameworks is proposed to reconstruct the surface of an object from polarized
images only, as shown in Figure 1. First, six feasible solutions for zenith and azimuth
angles are obtained using the physical model, and six polarized surface normal vector
maps are reconstructed. Secondly, the RU-GAN model proposed in this paper is used
for the normal vector estimation task, and then the height map of the object surface is
obtained from the energy function. Finally, the object surface is constructed from the
height map.

2. The use of the spectral properties under the specular reflection model is proposed to
achieve reflective localization on the surface of an object. Further, data preprocessing
using bilinear interpolation optimizes the neural network model input and narrows
the range of reflective region in the image.

3. The uncertainty of the zenith angle and azimuth angle is solved using a neural net-
work. Six polarized surface normal vectors are introduced into the RU-Gan network to
realize the real normal vector estimation task. Since the six polarized surface normal
vectors are enriched with six feasible solutions for zenith angle and azimuth angle,
so the estimated normal vector obtained by using them as network inputs is more
accurate. The RU-Gan network proposed in this paper uses jump compensation in
the generator part, which greatly reduces the information loss during the learning
process. The content loss functions reconstructed in this paper include cosine loss
and mean squared loss, which enhance the ability of the network to learn texture
information and numerical fitting information, respectively.
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Figure 1. The proposed reconstruction framework. 
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Figure 1. The proposed reconstruction framework.

2. Fundamentals

Since the six polarized surface normal vector maps are richer in numerical fitting
information than the polarization and intensity maps [14,15], this section introduces the
origin and correction of the six polarized surface normal vectors, namely, the principle
of the polar coordinate of normal vectors is firstly stated. Therefore, it is shown that the
normal vector diagram is composed of the azimuthal angle ϕ and zenith angle θ. Secondly,
the physical model proposed by Wolff [5] was used to solve the azimuthal angle ϕ, zenith
angle θ, and the six polarization surface normal vectors were reconstructed with these two
angles. Finally, the six polarized surface normal vectors are corrected for the reflective
regions using the specular reflection model.

2.1. Polar Coordinate Representation of Surface Normal Vector

For any surface normal vector N, its pointing can be expressed in right-angle coor-
dinates (x, y, z). The angle between the projection of the normal vector N onto XOY and
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the positive direction of the X-axis is the azimuth angle ϕ. The angle between the normal
vector N and the Z-axis is the zenith angle θ, as shown in the following figure.

The three channels of the normal vector map store the X, Y, and Z axis coordinates
of the normal vector, so the essence of the normal vector map is the spatial vector of the
point. As can be seen in Figure 2, the relationship between the right angle coordinates of a
point in space and polar coordinates, so as long as the azimuth angle ϕ and zenith angle θ
are known, can further reconstruct the normal vector map, and the relationship equation
between the two is as follows. 

X = sin(ϕ) sin(θ)
Y = cos(ϕ) sin(θ)

Z = cos(θ)
(1)
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Figure 2. Polar coordinate representation of normal vector.

2.2. Light Reflection Model

As shown in Figure 3, incident light will be reflected and refracted in the interior or
surface of different materials, which in turn are classified as diffuse and specular reflections.
From this, Wolff assumes two cases based on the Fresnel equation and optical geometry
relations [5], the pure specular reflection model and pure diffuse reflection model, and
solved the azimuthal angle ϕ and zenith angle θ according to these two models.
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The relationship between the DOP Pspec and zenith angle θ, phase angle φ, and azimuth
angle ϕS under the pure specular reflection model, is as follows.{

Pspec =
2sin2θcosθ

√
n2 − sin2θ

n2 − sin2θ − n2sin2θ + 2sin4θ

ϕs = φ + π
2 or φ + 3π

2

(2)
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The relationship between the DOP Pd and the zenith angle θ, phase angle φ, and
azimuth angle ϕd under the diffuse reflection model, is as follows.Pd =

(n − 1
n )

2
sin2θ

2 + 2n2 − (n + 1
n )

2
sin2θ + 4cosθ

√
n2 − sin2θ

ϕd = φ or φ + π

(3)

In Equations (2) and (3), the zenith angle cannot be obtained by DOP inversion, so this
paper will solve it by the dichotomous method. In Equation (2), one polarization value
will produce two zenith angle solutions θ1/θ2; in Equation (3), one polarization value will
produce one zenith angle solution θ1, as shown in Figure 4.
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Where the solution equations [17] for the DOP P and phase angle ϕ are as follows.P =

√
S2

1 + S2
2

S0
=

√
(I0 − I90)

2 + (I45 − I135)
2

1
2 (I0 + I45 + I90 + I135)

ϕ = 1
2 arctan(S2, S1) =

1
2 tan−1 I45 − I135

I0 − I90

(4)

In Equation (4), I0, I45, I90, and I135 are polarization images in the directions of 0◦, 45◦,
90◦, and 135◦, respectively.

2.3. Reflective Area Correction

Since the real normal vector map does not contain reflective regions, and most of
the images obtained by the camera contain reflective regions, such regions not only cause
the estimated normal vectors to deviate from the true normal vectors, but also cause
the six polarized surface normal vectors obtained by Equations (2) and (3) to contain
reflective regions as well. Traditional reflective region localization requires manual setting
of thresholds and is less well achieved [18]. In this paper, we propose to use the spectral
properties of specular reflection model to obtain the reflective region map IL, as in the
following equation.

IL(x, y) = ∑x,y∈I Ig>b(x, y) (5)

where I is the normal vector map composed when θ is smaller than the Brewster angle and
ϕS = φ + π

2 in Equation (2). g and b represent the second and third channels of the image
I, respectively, and bilinear interpolation [19] of reflective points (x, y) for I is carried out
based on the reflective region map IL, as follows.

Ia f (x, y) =
1
n∑n=2

i∈x,y
Ii −Mini

Maxi −Mini
(I_Maxi − I_Mini) + I_Mini (6)

where, Ia f is the image after interpolation, i is the direction of interpolation, n is the
number of interpolation directions (here it is 2). I_Maxi and I_Mini are the maximum and
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minimum pixel values in the interpolation direction, Maxi and Mini are the maximum and
minimum coordinate values in the interpolation direction, and Ii is the coordinate of the
interpolation point.

A schematic of the partially polarized surface normal vector reflective region is shown
in Figure 5, while all six polarized surface normal vectors are actually subject to correction.
As in Figure 6, the six polarized surface normal vectors corrected by the reflective region
are input to the neural network model as IN1, and 0◦, 45◦, and 90◦ direction polarized
images as IN2.
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3. Proposed Method

Inspired by the literature [17], this paper proposes a jump-compensated U-shaped
generative adversarial network (RU-Gan) based on jump compensation to solve the normal
vector ambiguity problem, i.e., to perform the true normal vector estimation task, where
the generator is shown in Figure 6. To ensure that the network can have the correct learning
direction during adversarial learning, a content loss function will be introduced while
using the true normal vector to supervise the estimation of the normal vector. The process
of getting height maps from normal vectors mostly requires the assistance of point cloud
data, and to solve this problem, this paper constructs an energy function starting from the
association between normal vectors and gradients. In other words, the output estimated
normal vector is finally combined with the energy function to solve the height map and
then reconstruct the object surface.

3.1. Neural Network Model

In this paper, we propose to input the polarized surface normal vectors as a priori
knowledge into the Gan network, and thus resolve the normal vector ambiguity while
obtaining the estimated normal vectors. The reconstructed generator is divided into three
modules, namely, encoder module (orange), decoder module (dark green), and output
module (blue). The size of the convolution kernel of the output module is 3 × 3, and
the number of input and output channels are 32 and 3, respectively. The overall network
architecture of the generator is as follows.

The network structure of U-Net can be divided into two parts, downsampling and
upsampling; the downsampling part decomposes the image into feature maps with dif-
ferent levels of abstraction, while the upsampling part restores the feature maps back to
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the original image size. In the central part of the network, the U-Net also includes some
jump connections that combine the low-level and high-level features extracted during
downsampling and upsampling, so using the U-net network as a generator can yield a
better estimated normal vector map. As shown in Figure 6, the role of the generator is to
realize the mapping from multiple images to the real normal vector image, and the specific
details of the encoder module and decoder module are shown in Figures 7 and 8. The
three-channel image IN2 of the network input consists of grayscale polarized images in the
0, 45, and 90 directions, and IN1 is the six normal vector maps consisting of azimuth and
zenith angles solved by Equations (2) and (3) and corrected by reflective regions, and the
output of the network is the estimated normal vector N̂ as follows

N̂ = f (IN1, IN2) (7)

where f is the network model. The original U-net network loses some color and texture
information during encoding and decoding, so this paper adds the Resnet network to the
encoder (Figure 7) and decoder (Figure 8) parts to compensate for the problem. Inputting
polarization image IN2 and polarization surface normal vector image IN1 for the network
will enhance the ability of the model to learn semantic information and numerical fitting
information. The normalized X, Y, and Z channels should take values between −1 and 1,
so the LeakyReLU activation function can achieve the purpose of retaining the negative
information better.
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Figure 8. Decoder module.

As shown in Figures 7 and 8, the specific expansion on the left side is shown on the
right side of the middle sign of the figure. Since the polarization image is richer in texture
information than the intensity image [15], this paper proposes to reintroduce the semantic
information provided by polarized images in the process of decoding, to enhance the
surface features of the estimated normal vectors. The size of the convolutional kernels
used in both the encoder and decoder modules is 3 × 3, and both the native U-net jump
connection and the introduction of the polarized image are implemented in the Concat
position of the decoder. In the process of testing the network performance, this paper



Sensors 2023, 23, 3638 8 of 15

finds that the InstanceNorm normalization layer can better maintain the original texture
information of the object, which is consistent with the results reported in [15], and different
from [14]. D1 and U1 in the module are the number of input channels, and D2 and U2 are
the number of output channels. The sizes of D1:D2 in the encoder module are 21:32, 32:64,
64:128, 128:256, and 256:512, and the sizes of U1:U2 in the decoder module are 1280:512,
896:256, 448:128, 224:64, and 117:32, respectively.

The task of the discriminator is to distinguish the real reliability of the generated image
by the generator, so this paper will perform the feature number reduction operation on the
generated image and the real image. The model learns the texture best when the Stride is
2, but the color distortion problem occurs, while the model learns the color and texture
information most closely when the Stride is 4, and the accuracy of the estimated normal
vectors is the highest, so the Stride is set to 4 in the discriminator. The output is normalized
to between 0 and 1 using the sigmoid function, which represents the true probability of
each pixel point estimate, and the discriminator network architecture is shown in Figure 9.
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3.2. Loss Function and Training Parameters

The loss function is divided into two components, namely, generator loss LG and dis-
criminator loss LD. The generator loss function LG consists of two components, adversarial
loss Ladv and content loss Lc. In order to obtain the probability distribution of the true
normal vector map Ift, the adversarial loss of G is defined as

Ladv = E
(

lg
(

1− D
(

I f
)))

(8)

where E is the expectation; D
(

I f
)

is the value of the fused image I f generated by the

generator G obtained by the discriminator D; Ladv is the loss generated by the image I f

generated by G saved in Ift. Content loss Lc includes cosine loss Lcos and mean square error
loss Lmse. The cosine loss refers to the difference in pointing between the estimated normal
vector and the true normal vector, as follows.

Lcos = 1− A · B
‖A‖B‖ = 1− ∑n

i=1 Ai × Bi√
∑n

i=1(Ai)
2 ×

√
∑n

i=1(Bi)
2

(9)

where n is 3, the closer the Lcos value is to 0, the closer the angle between the vectors is to
0◦, i.e., the more similar the two vectors are. When the angle between the two vectors is
90◦, the Lcos value is 1. When the two vectors are in opposite directions, the Lcos value is 2.
The mean square error loss refers to the difference between the estimated normal vector
and the true normal vector values, which is based on the following principle.
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Lmse = E
[

1
mnk∑k

c=1 ∑m
i=1 ∑n

j=1

(
Ift
i,j,c − I f

i,j,c

)2
]

(10)

where k is the number of channels and k = 3. In summary, the generator loss function LG
expression is

LG = Ladv + λ(Lcos + Lmse) (11)

The discriminator D is used to discriminate between the generated image I f and the
real image Ift, the output of D is a value from 0 to 1, which represents the probability of the
input image, so the adversarial loss of D is

LD = E
[
−lg

(
1− D

(
I f
))]

+ E
[
−lg

(
D
(

Ift
))]

(12)

In this paper, the estimation normal vector algorithm is trained and tested using
PyTorch and NVIDI Tesla T4 16G, and Adam is chosen as the optimizer. During training,
the optimal learning rate is sought by setting the initial learning rate to 0.01 and decaying
by ten percent every 20 rounds, and the final learning rate is set to 0.001. The size of the
network input after resizing and concatenation is 512 × 512 × 21 and the dataset is used as
DEEPSFP dataset [14].

3.3. Object Surface Reconstruction

Since the direction of the normal vector of any surface is perpendicular to that surface,
the relationship between the normal vector and the gradient of the surface can be known.
That is, assuming that the two gradients on the surface of the object are U and V, then the
normal vector should be perpendicular to both gradients, i.e., the vectors are multiplied
to 0. The gradients in the U and V directions can be solved by the height map; inspired
by the literature [20], this paper solves the height map by constructing an energy function
between the surface normal vector and the surface gradient, as follows.

E = ∑u,v

(
t‖u,v · nu,v

)2
+
(

t⊥u,v · nu,v

)2
(13)

where the expressions for the gradients in the U-direction and V-direction are as follows.{
t‖uv = [1, 0, Z(u + 1, v)− Z(u, v)]
t⊥uv = [0, 1, Z(u, v + 1)− Z(u, v)]

(14)

where Z is the height map to be found. Ideally, the value of the energy function should be
zero, so minimizing it will give a more accurate height map. In this paper, the method of
gradient descent [21] is used to solve the height information map.

4. Experimental Results and Analysis
4.1. Experimental Results and Analysis
4.1.1. Experimental Validation of Resnet

Since the native U-Net network is too deep, it generates problems such as the loss of a
large amount of texture information in the encoder and decoder parts, gradient dissipation
and degradation, and excessive errors. Therefore, in the initial design of the generator,
this paper adds a jump connection between every two convolutional layers to strengthen
the connection between adjacent convolutional layers. In this section, three comparative
experiments are performed to demonstrate the advantages of Resnet: (a) removing Resnet
from the encoder part, i.e., increasing the information loss of the encoder; (b) removing
Resnet from the decoder part, i.e., reducing the learning capability of the decoder; and (c)
using the complete network architecture of RU-Gan in this paper to generate fused images.
All these comparison experiments are performed under the same setup and the fusion
results are shown in Figure 10.



Sensors 2023, 23, 3638 10 of 15

Sensors 2023, 23, x FOR PEER REVIEW 10 of 16 
 

 

4. Experimental Results and Analysis 

4.1. Experimental Results and Analysis 

4.1.1. Experimental Validation of Resnet 

Since the native U-Net network is too deep, it generates problems such as the loss of 

a large amount of texture information in the encoder and decoder parts, gradient dissipa-

tion and degradation, and excessive errors. Therefore, in the initial design of the genera-

tor, this paper adds a jump connection between every two convolutional layers to 

strengthen the connection between adjacent convolutional layers. In this section, three 

comparative experiments are performed to demonstrate the advantages of Resnet: (a) re-

moving Resnet from the encoder part, i.e., increasing the information loss of the encoder; 

(b) removing Resnet from the decoder part, i.e., reducing the learning capability of the 

decoder; and (c) using the complete network architecture of RU-Gan in this paper to gen-

erate fused images. All these comparison experiments are performed under the same 

setup and the fusion results are shown in Figure 10. 

    (a)De-Resnet                     (b)En-Resnet                     (c)Ours                           (d)True 
 

Figure 10. Resnet structure verification. The red boxes can be used to compare the differences in 

texture and color information brought by these three experiments. 

It can be seen through the red box that the first column leads to a decrease in the 

model’s ability to learn the texture because of the lack of Resnet in the encoder part; the 

second column shows that the model learns less information about the true normal vector 

color during the last upsampling, and this leads to an overall fading of the estimated nor-

mal vectors obtained. It can be seen that the use of Resnet structure in the downsampling 

process can increase the ability of the model to learn texture to some extent, and the addi-

tion of the Resnet structure in the upsampling process can correctly guide the model to 

learn the fitting information of the normal vectors. 

4.1.2. Experimental Verification of Content Loss 

The content loss of the generator is divided into two parts, i.e., cosine loss and mean 

squared loss. To verify the effectiveness of the proposed content loss, three comparison 

experiments are designed in this paper: (a) Removing the cosine loss function, which im-

plies a reduced ability to learn normal vector pointing when the network model is learned. 

(b) Removing the mean squared loss function, which will result in the lack of numerical 

fit information to guide the network learning. (c) Using the complete content loss guiding 

model learning in this paper. All these comparison experiments were performed under 

the same setup and the fusion results are shown in Figure 11. 

     (a)No-Cosine                      (b)No-Mse                        (c)Ours                           (d)True
 

Figure 10. Resnet structure verification. The red boxes can be used to compare the differences in
texture and color information brought by these three experiments.

It can be seen through the red box that the first column leads to a decrease in the
model’s ability to learn the texture because of the lack of Resnet in the encoder part; the
second column shows that the model learns less information about the true normal vector
color during the last upsampling, and this leads to an overall fading of the estimated normal
vectors obtained. It can be seen that the use of Resnet structure in the downsampling process
can increase the ability of the model to learn texture to some extent, and the addition of
the Resnet structure in the upsampling process can correctly guide the model to learn the
fitting information of the normal vectors.

4.1.2. Experimental Verification of Content Loss

The content loss of the generator is divided into two parts, i.e., cosine loss and mean
squared loss. To verify the effectiveness of the proposed content loss, three comparison
experiments are designed in this paper: (a) Removing the cosine loss function, which
implies a reduced ability to learn normal vector pointing when the network model is
learned. (b) Removing the mean squared loss function, which will result in the lack of
numerical fit information to guide the network learning. (c) Using the complete content loss
guiding model learning in this paper. All these comparison experiments were performed
under the same setup and the fusion results are shown in Figure 11.
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Figure 11. Validation of content loss. The red and yellow boxes can be used to compare the differences
in texture and color information brought by these three experiments.

As shown in Figure 11, the first column has better overall learning than the second
column. However, it can be seen through the red and yellow box that the second column
has better detail learning, specifically on individual pixel points, such as the ears and hind
legs area of the beast. This is because the first and second columns are missing the normal
vector pointing and numerical fitting guidance, respectively, which leads to the model
learning deviating from the correct direction. In summary, using cosine loss and mean
squared loss together as content loss can play a complementary and co-facilitating role.

4.2. Analysis of Results

MAE (mean absolute error) is a common evaluation index in normal vector estimation
task; the higher MAE means that the overall result is different from the true value. To better
demonstrate the advanced nature of the proposed network model, six representative target
objects will be taken for metric analysis, as shown in Table 1. For better data visualization,
the comparison graph of the algorithms for estimating normal vectors will be cropped
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around the edges. In this paper, the metrics are first compared with the estimated normal
vectors obtained from the traditional physical model, as shown in Figure 12, from left
to right: the real normal vectors, the algorithm proposed in this paper, the algorithm of
Zhang [12] or Yang et al. [13], the algorithm of Mahmoud et al. [9], and the algorithm of
Miyazaki et al. [10].

Table 1. Comparison index of normal vector fusion algorithm.

MAE Ours Ba [14] Zhang [12] Yang [13] Smith [8] Mahm [9] Miya [10]

Monster 20.05 21.55 30.21 28.21 45.25 70.16 51.45
Flamingo 18.75 20.19 25.86 24.92 34.54 41.25 42.42

Vase1 9.96 10.32 17.68 16.91 34.11 50.21 42.95
Vase2 11.80 12.30 16.68 16.82 40.21 44.70 50.00
Horse 21.83 22.27 33.48 31.72 42.76 47.79 47.95

Christmas 12.70 13.50 23.56 22.87 43.62 65.38 42.38
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In Figure 12, it can be seen that the algorithm proposed in this paper obtains a higher
accuracy of estimated normal vectors than the other three algorithms. In terms of color, the
estimated normal vector results in this paper are more closely matched to the true normal
vector. The estimated normal vectors obtained by algorithms [12,13] have unnatural red–
blue junction excess, which is due to Yang and Zhang et al. ignoring the actual meaning of
the normal vectors when performing data processing; while the estimated normal vectors
obtained by algorithms [9,10] are substantially distorted from the true normal vectors
because these two algorithms can only obtain rough azimuths. As shown in Table 1,
the estimated normal vectors obtained in this paper improve the accuracy by about 7◦

compared with Zhang and Yang et al., and about 25◦ and 30◦ compared with Mahmoud
and Miyazaki et al., respectively. It can be seen that the normal vector estimation task
using a convolutional neural network has certain advantages. At present, there are few
studies on inputting polarized surface normal vectors as a priori knowledge to neural
networks, so this paper only compares with previous U-net networks [14]. To further
demonstrate the advantages of neural networks, this section of this paper also introduces
algorithms from the literature [8,10], as shown in Figure 13, from left to right: the real
normal vector, the algorithm proposed in this paper, the algorithm of Ba et al. [14], the
algorithm of Smith et al. [8], and the algorithm of Mahmoud et al. [10].
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It can be seen that Mahmoud et al. have a larger error when estimating normal vectors
for objects with somewhat more complex textures, while Smith’s algorithm results in a
large area of color distortion. In terms of texture, the algorithm in this paper obtains
fuller estimated normal vectors than Ba et al., as seen, for example, in the neck part of the
beast. This is because Ba et al. lack the Resnet structure in the encoder part, as shown in
Figure 10; Monster under De_Resnet has a similar performance to that of the paper [14] in
the red box. The Gan network, on the other hand, can guide the general trend of the fused
image through the confrontation between the discriminator and the generator, which also
promotes the higher accuracy of the result graph in this paper compared to Ba et al. Since
MAE is a common metric used in normal vector estimation tasks, Table 1 mainly shows
the comparison data between different algorithms for different target pixel values between
0 and 255. As shown in Table 1, the estimated normal vector accuracy obtained in this
paper is improved by 1.5◦ compared to Ba et al. while there is a substantial improvement
in accuracy compared to the other four algorithms. From Table 1, it can be seen that the
model proposed in this paper has certain advantages over other algorithms in terms of
estimating either smooth object surface normal vectors or simple texture normal vectors.
Furthermore, this paper uses various algorithms for image fusion and normalizes the fused
images to the 0–1 range. The target object in the image is then segmented using a mask,
and the metrics MAE, MSE, SSIM, PSNR, CC, SCD, and AG are calculated between the
estimated and true normal vectors of the target surface (as in Table 2). Among them, PSNR
indicates the peak signal-to-noise ratio of an image and is usually used to measure the
quality of image compression. However, PSNR is not the best choice for all image quality
assessment problems because it only considers the differences between pixel values and not
the differences perceived by the human eye, and thus may not match human perception
in some cases. Therefore, in the evaluation of this paper, although the results of PSNR are
poor, the other metrics are better, indicating that the proposed normal vector estimation
algorithm works better.

Table 2. Comparison of multiple metrics between different algorithms.

Indicators Ours Ba [14] Zhang [12] Smith [8] Mahm [9] Miya [10]

MAE 0.0643 0.0685 0.1152 0.1641 0.1931 0.1917
MSE 0.0121 0.0139 0.0237 0.0474 0.0569 0.0620
SSIM 0.9350 0.8379 0.7940 0.7450 0.7157 0.6562
PSNR 69.0172 69.3922 64.4152 61.5412 60.6321 60.4009

CC 0.9294 0.9193 0.8318 0.6441 0.5220 0.5432
SCD 0.0196 0.0224 0.0638 0.0662 0.0930 0.0941
AG 0.0536 0.0544 0.0926 0.1326 0.1591 0.1589

In the reconstruction process, birds, monsters, and horses can represent more complex
textures, while vases and Santa Claus can represent objects with smooth surfaces, so the re-
sults are chosen to be compared with those reconstructed in the literature [12,13], as shown
in Figures 14 and 15, from left to right: the reconstruction algorithm of this paper, the algo-
rithms of Zhang [12], Yang et al. [13], Agrawal et al. [22], and Kovesi et al.’s [23] algorithm.
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Figure 14. Bird reconstruction results. (a) Ours; (b) Reference [12]; (c) Multiple perspectives; (d) Ref-
erence [22]; (e) Reference [23]. (f) FC Algorithm. With the red and green boxes, the contrast between
the reconstructed textures can be made.
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From the analysis of the reconstruction results, the estimated normal vector recon-
structed surface texture of the object obtained in this paper is more prominent. Compared
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with the literature [12,13], the reconstruction in the literature [12,13] is too smooth, which
leads to some gradient disappearance problems in the reconstruction results, such as the
partial disappearance of the bird’s feathers, while the reconstructed result of this paper has
a much clearer texture; the monster and horse reconstruction effect is similar to that of the
bird. In the literature [22,23], the reconstructed surface of the bird appears distorted and
the middle part of the surface of the vase is distorted, i.e., the reconstructed vase and bird
results in this paper have an all-around advantage. In terms of relative implementation
conditions, several other reconstruction algorithms require prior knowledge of depth map
or point cloud data, which undoubtedly increases the workload of surface reconstruction.
In contrast, the surface reconstruction framework proposed in this paper is easy to imple-
ment; only a set of single visual polarization images are required, and the reconstructed
results have clearer textures. In summary, the algorithm proposed in this paper has some
advanced significance.

5. Conclusions

The normal vector estimation task using the Gan network not only effectively avoids
the problem of normal vector ambiguity, but also can make the estimated normal vector
more full. Furthermore, the energy function constructed by the relationship between
normal vector and gradient and height, and thus the height map idea, can avoid the
problem of needing point cloud data in the reconstruction process, and the reconstructed
surface texture is more obvious. The framework of the whole object surface reconstruction,
which only requires a single set of single visual images, and the realization conditions are
particularly simple.

A good interpolation will directly affect the normal vector estimation results in the
reflective region correction process. Subsequently, the fusion interpolation algorithm is
considered, which in turn supplements the reflective region. Secondly, the height map
obtained by the preliminary constructed energy function has the problem of too much
height. In this regard, constraint on the height map by adjacent points will be considered,
so as to achieve higher reconstruction accuracy.
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