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Abstract: In this paper, a novel modified auto disturbance rejection control (ADRC) design of a
permanent magnet synchronous motor based on the improved memetic algorithm (IMA) is proposed.
Firstly, there is an obvious system ripple caused by the defect that the optimal control function used in
traditional ADRC cannot be differentiable and smooth at the segment point; aiming at weakening the
system ripple effectively, the proposed method constructs a novel differentiable and smooth optimal
control function to modify the ADRC design. Furthermore, aiming at improving the integration
parameters optimization effect effectively, a novel improved memetic algorithm is proposed for
obtaining the optimal parameters of ADRC. Specifically, an IMA with high-quality balance based on
an adaptive nonlinear decreasing strategy for the convergence factor, Gaussian mutation mechanism,
improved learning mechanism with the high-quality balance between competitive and opposition-
based learning (OBL) and an elite set maintenance mechanism based on fusion distance is proposed so
that these strategies can improve the optimization precision by a large margin. Finally, the experiment
results of the PMSM speed control practical cases show that the ADRC based on IMA has an apparent
better optimization effect than that of fuzzy PI, traditional ADRC based on the genetic algorithm and
an improved ADRC based on improved moth–flame optimization.

Keywords: permanent magnet synchronous motor; auto disturbance rejection control; improved
memetic algorithm; optimal control function; Gaussian mutation; fusion distance

1. Introduction

The permanent magnet synchronous motor is widely employed in industry fields of
new energy electric vehicles, CNC machine tools, subway vehicles, etc., due to having
such advantages as high power density, easy maintenance, simple structure, and conve-
nient speed adjustment [1]. PI and ADRC are two popular control algorithms for PMSM.
PI control has the advantages of simple structure and easy implementation, and ADRC
has the advantages of high precision and strong stability [2,3]. However, the tracking
control accuracy is relatively low by using PI and traditional ADRC in PMSM speed
control. The purpose of this paper is to enhance the control performance for active dis-
turbance resisting controller (ADRC) for PMSM so as to obtain a more ideal PMSM speed
control quality.

For improving the performances of active disturbance rejection controller (ADRC)
for PMSM, scholars have proposed some improvement strategies. An ADRC strategy
of the signal injection-based interior PMSM drive was raised in [4]. A class of linear–
nonlinear switching ADRCs to design speed controllers and current controllers for PMSM
in servo systems was investigated in [5]. An ADRC solution of the angular velocity
trajectory tracking task for basic disturbance, uncertainty and PMSM is presented in [6].
An enhanced active disturbance rejection control (ADRC) combined with quasi-resonant
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controllers (QRCs) for the PMSM speed loop was proposed in [7]. A discrete-time repetitive
control-based active disturbance rejection control (ADRC) for the current loop of PMSM
drives was proposed in [8]. An active disturbance rejection controller (ADRC) based
on deep reinforcement learning (DRL) algorithm was proposed to be used in the flux
weakening control (FWC) system of motors for more electric aircraft in [9]. A class of
linear–nonlinear switching active disturbance rejection control (ADRC) to design speed
controllers and current controllers for permanent magnet synchronous machine (PMSM) in
servo systems was investigated in [10]. The active disturbance rejection control (ADRC)
and feedback compensation control method that can solve the speed fluctuation problem
of permanent magnet synchronous motors was proposed in [11]. A novel mirror milling
trajectory planning method based on fuzzy-ADRC controlled force pre-supporting was
proposed in [12]. A novel Nonlinear Consequent Part Recurrent Type-2 Fuzzy System
(NCPRT2FS) was presented for the modeling of renewable energy systems in [13]. A novel
mirror milling trajectory planning method based on fuzzy-ADRC controlled force pre-
supporting was proposed in [12]. A novel Nonlinear Consequent Part Recurrent Type-2
Fuzzy System (NCPRT2FS) is presented for the modeling of renewable energy systems
in [13]. For systems with uncertainties, time-varying delays, unknown disturbances, as well
as strong nonlinearity, a robust fuzzy predictive control (RFPC) based on the Takagi–Sugeno
(T-S) fuzzy model was proposed in [14]. A robust adaptive model predictive control (RMPC)
with an underlying discrete-time adaptive controller was proposed in [15]. Obviously,
the existing studies can improve the control effect of ADRC for PMSM.

In addition, the key parameters of ADRC are extremely important for the effect of
PMSM velocity tracking control. However, there are many complex uncertain factors
and relationships between them, so it is easy to fall into a local convergence if only using
some traditional optimization algorithms, such as the moth–flame optimization algorithm,
genetic algorithm, memetic algorithm, whale optimization algorithm, etc. To solve the
aforementioned issue in automatic traditional optimization algorithms, many works in
the literature discussed the traditional optimization algorithms. An efficient moth–flame
optimization algorithm was proposed to solve the distributed generations and shunt
capacitor banks optimization problems in [16]. A hybrid learning algorithm that combines
the genetic algorithm (GA) with gradient descent (GD) was proposed in [17]. A novel
memetic algorithm using modified particle swarm optimization (PSO) for PMSM design
was proposed in [18]. An effective memetic algorithm for curvature-constrained path
planning of messenger UAV in air–ground coordination was proposed in [19]. A memetic
evolutionary multi-objective optimization method for the power unit commitment problem
was proposed in [20]. A whale optimization algorithm to tackle the three-dimensional path
planning of autonomous underwater vehicles was proposed in [21]. An improved whale
optimization algorithm based on the Tchebycheff decomposition method, convergence
factor nonlinear decline strategy, and genetic evolution measurement for model predictive
controller was proposed in [22]. However, there are few related works published on the
active disturbance rejection controller based on the effective memetic algorithm for PMSM.

As for the problem that the existing active disturbance rejection controllers of PMSM
controllers do not have sufficient competence, this paper proposes a novel modified ADRC
of PMSM based on improved memetic algorithm (IMA). The following summarizes the
main contributions of this paper:

(I) An improved memetic algorithm (IMA) based on an adaptive nonlinear decreasing
convergence factor strategy for the whale optimization algorithm, a Gaussian mutation
for simulated annealing, a learning mechanism using mixtures of competitive mechanism
and OBL mechanism and an elite set maintenance mechanism based on fusion distance
are proposed.

(II) A novel differentiable and smooth nonlinear function is constructed for modifying
ADRC for overcoming the non-differentiable and unsmoothed situation at the piecewise
point of nonlinear functions in the conventional ADRC; the above IMA is proposed for
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improving the effectiveness for the optimization integration of ADRC key parameters so as
to improve the performance for modified ADRC of PMSM based on IMA effectively.

For the proposed novel modified ADRC of PMSM based on the improved memetic
algorithm (IMA), the following summarizes the major novelties of this paper:

(I) An improved memetic algorithm (IMA) with the high-quality global optimization
performance is proposed. In this proposed algorithm, an improved whale optimization
algorithm (IWOA) by adopting an adaptive nonlinear decreasing strategy for convergence
factor is designed for global search, an improved simulated annealing (ISA) by introducing
the Gaussian mutation mechanism is designed for local development, and an improved
learning mechanism between the elite set and common individual population based on
competitive and opposition-based learning and an elite set maintenance mechanism based
on fusion distance and congestion degree distance are incorporated for improving global
optimization performance effectively.

(II) Based on the traditional optimal control function, inverse hyperbolic sine function
and sine function are introduced, and a novel optimal control function is constructed by
the fitting method for modifying ADRC.

This research is structured as follows: Section 2 presents an introduction to the ADRC
for PMSM. Section 3 illustrates several intelligent optimization algorithms, including the
memetic algorithm, whale optimization algorithm and simulated annealing. Section 4
introduces the modified ADRC redesigned and IMA proposed in this paper. Section 5
presents the experimental outcomes and performs the corresponding analysis. Section 6
sums up this paper.

2. Active Disturbance Rejection Controller for Permanent Magnet Synchronous Motor
2.1. Permanent Magnet Synchronous Motor Model

The surface mounted structure is widely used in PMSM because the approximate
sine wave distribution for air gap flux density waveform about the motor can be obtained,
and the inductance components of the direct axis (d axis) and the quadrature axis (q axis)
of the motor can be equal, thus ensuring that the motor has a good operation performance.
The specific voltage equation of surface mounted structure PMSM in two-phase rotating
coordinate system is as follows:{

usd = Rsisd +
dψsd

dt −ωrψsq

usq = Rsisq +
dψsq

dt + ωrψsd
(1)

where usd, usq, isd, isq, ψsd, ψsq refer to the direct and quadrature axial components in motor
stator voltages, stator currents, stator flux under two-phase rotation coordinate system dq,
and ωr is the rotation angle of the rotor flux.

The specific calculation formula of stator flux is as follows:{
ψsd = Ldisd + ψf
ψsq = Lqisq

(2)

where Ld and Lq are the inductance, and ψ f is the flux linkage of the permanent magnet.
The motor torque equation is as follows:

Te =
3
2

p
(
ψsdisq − ψsqisd

)
=

3
2

p
[
ψ f isq +

(
Ld − Lq

)
isqisd

]
(3)

where Te represents the electromagnetic torque.
The mechanical motion equation is as follows:

Te − TL = J
dωm

dt
(4)
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where TL represents the load torque, J represents the moment of inertia, and ωm represents
the motor velocity.

2.2. Design of the Active Disturbance Rejection Controller

The active disturbance rejection controller (ADRC) mainly consists of the tracking
differentiator (TD), extended state observer (ESO) and nonlinear state error feedback
(NLSEF).

The specific calculation formula of TD is as follows:

TD
{

v1(k + 1) = v1(k) + hv2(k)
v2(k + 1) = v2(k) + h f st(v1(k)− v0, v2(k), r, h0

(5)

where h f st represents the TD function set; v1 represents the tracking value of expected
speed; v2 represents the differential of v1; k represents the number of current periods; h
represents the step length; h0 represents the filter coefficient; r represents the speed factor,
the value affects the speed of TD process; and v0 represents the initial state of v1 [23].

ESO is the core of the ADRC, and the specific calculation formula of ESO is as follows:

ESO


e1 = z1(k)− y
z1(k + 1) = z1(k) + h(z2(k)− β01e1)
z2(k + 1) = z2(k) + h(z3(k)− β02 f al(e1, α1, δ1) + b0u)
z3(k + 1) = z3(k)− hβ03 f al(e2, α2, δ2)

(6)

where f al represents the optimal control function; β01, β02, β03, α1, α2, b0, δ1 , δ2 are
parameters that need to be adjusted in ESO; y represents the output; z1, z2 and z3 represent
the state variable; e1 and e2 represent the error between the TD result and state variable [24].

The specific calculation formula of the traditional optimal control function f al(e, α, δ)
is as follows:

f al(e, α, δ) =

{
|e|αsign(e) |e| > δ
e/

δ(1−α) |e| ≤ δ
(7)

The differential form of the derivative function for optimal control function f al(e, α, δ)
is as follows:

f al′(e, α, δ) =

{ 1
δ1−α , 0 < e ≤ δ

αeα−1 , δ < e
(8)

At the segment point δ, the value of the function f al′(e, α, δ) is

f al′(δ−, α, δ) =
1

δ1−α
(9)

f al′(δ+, α, δ) = αδα−1 (10)

When the function f al(e, α, δ) is differentiable in the segment, restraint condition
f al′(δ−, α, δ) = f al′(δ+, α, δ) should be met. In this case, parameter α = 1, and function
f al(e, α, δ) = 1, lead to destroying the nonlinear characteristics of the optimal control
function. Thus, redesigning the optimal control function is clearly necessary.

The specific calculation formula of NLSEF is as follows:

NLSEF


e1(k) = v1(k)− z1(k)
e2(k) = v2(k)− z2(k)
u0 = β21 f al[e21(t), α21, δ21]

+ β22 f al[e22(t), α22, δ22]
u = u0 − z3

b0

(11)



Sensors 2023, 23, 3621 5 of 20

where e21 is the error between the follow value of the TD to the reference signal and the
estimated value of the system output signal by the ESO; e22 is the differential of e21; u
represents the output of NLSEF; u0 represents the control rate; and b0 is the compensation
coefficient to eliminate the interference signal [25].

The control structure diagram about the above active disturbance rejection controller
is shown in Figure 1.

TD NLSEF

v1

v2

e1

e2

u0
PMSM

u

1/b0 b0

ESO

z1
z2

z3

w

v y

Figure 1. Control structure diagram about the active disturbance rejection controller.

The above narrative shows that the adjusted parameters (β01, β02, β03, β1, and β2) are sig-
nificant for ADRC. In order to obtain the appropriate adjusted parameters efficiently, the ADRC
parameters adjusting method using the intelligent optimization algorithm is proposed.

2.3. Design of PMSM Speed Control System Based on ADRC

The PMSM speed control system based on ADRC is composed of an ADRC, an inverter
circuit and a PMSM. The ADRC controls the speed and torque of the PMSM. The specific
meaning of the input and output signals of each module in the PMSM speed control system
needs to be determined according to the controlled object. The transformation equation
about the PMSM of Equations (2)–(4) is as follows:

d2ωm

dt2 =
1
J

[
− dT

dt − B dωm
dt

+
3pnψ f

2Ls
(−Rsiq − pnψ f ωm + uq)

]
(12)

The greatest advantage of ADRC is its capability in estimating disturbances inside and
outside of the system, and making a precise compensation. For obtaining the information
of control quantity and disturbance quantity, the further transformation equation about
PMSM is as follows:

d2ωm
dt2 =

3pnψ f
2JLs

uq + α(t)

α(t) = 1
J

[
− dT

dt − B dωm
dt

− 3pnψ f
2Ls

(Rsiq + pnψ f ωm)

]
+ f (t)

(13)

where f (t) represents the unobservable disturbance of the system.
According to the PMSM mathematical model, ADRC designed principle and vector control

frame, a PMSM speed control system based on an improved ADRC is acquired. The control
block diagram of PMSM speed control system based on ADRC is shown in Figure 2.
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Figure 2. Control block diagram of PMSM speed control system based on ADRC.

According to Figure 3, the ADRC variable related to the control system quantity is
realized, and the PMSM speed control system will have better performance in robustness.
The specific forms of variables in TD, ESO and NLSEF expressions are gained.

As for TD, the real meaning of the reference signal v in controller refers to the expected
velocity ω∗m. The real meaning of output signal x1 within control system symbolizes the
tracking signal ωre f related to expected velocity based on TD. As for ESO, the realistic
importance for the output signal y in the control system means real speed ωm; the practical
significance of the output signal z2 in the control system is the actual speed tracking signal;
and the practical significance of the output signal z3 in the control system is the estimation
of the disturbance signal. As for NLSEF, realistic significance in input signal within control
system can be evidenced by the error of ωre f , ω̂re f , ω̇re f and ˆ̇ωre f .

Generally, β11 = 3ω0, β12 = 3ω2
0, β13 = 3ω3

0, β12 = 3ω2
c , β22 = 2ζωc for the second-

order ADRC of PMSM, and ω0, ωc refer to observer and controller bandwidth, sepa-
rately [26]. In practice, 6 key parameters (r, h, ∆11, ∆12, ∆21, ∆22 and b0) are usually set by
an empiric value, and six other key parameters (α11, α12, α21, α22, ω0 and ωc) are necessary
for intelligent optimization integration.

2.4. Evaluation Model of PMSM Speed Control

The integral of time multiplied by the absolute value of error (ITAE) is one of the
significant evaluation indexes for ADRC control performance. The specific calculation
formula of ITAE is as follows:

ITAE =
∫

t|e(t)|dt. (14)

During the PMSM speed tracking control process, the time about the long-term control
range with the acceptable maximum absolute value of speed and torque error (|SESmax|
and |SETmax|) is called stable time St, and the above referred error should be less than
maximum acceptable stable control speed and torque error (Amax(SES) and Amax(SET));
the time between the beginning time point of power-up and the corresponding begin time
point of the stable control range is called the adjusting time At (adjusting time At must not
exceed maximum acceptable adjusting time Amax(At)); the maximum absolute value of the
speed and torque error (|ESmax| and |ETmax|) should be less than the acceptable maximum
absolute value of the speed and torque error (Amax(ES) and Amax(ET)). In addition,
the speed and torque ITAE (ITAES and ITAET) for the whole PMSM speed tracking control
process should be less than the maximum acceptable speed and torque ITAE (Amax(ITAES)
and Amax(ITAET)). The specific evaluation model of PMSM speed control is as follows:
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min(ITAES, ITAET , |SES max|, |SET max|, |ES max|, |ET max|)
|SES max| < Amax(SES), |SET max| < Amax(SET)

s.t. |ES max| < Amax(ES), |ET max| < Amax(ET)
ITAES < Amax(ITAES)
ITAET < Amax(ITAET)
At < Amax(At)

(15)

where ITAES, ITAET , |SES max|, |SET max|, |ES max|, |ET max| are six performance evaluation
indexes for optimization.

Based on these above performance evaluation indexes and boundary constraints,
the diagram about the above parameters adjusting method using intelligent optimization
algorithm (IOA) is shown in Figure 3.

v t u t

e t

Figure 3. Diagram about the ADRC parameters adjusting method using intelligent optimization algorithm.

3. Intelligent Optimization Algorithms
3.1. Memetic Algorithm

As early as 1976, meme was proposed by R. Dawkins. In the theory of meme, meme
is the basic unit of culture, and it is spread through imitation and learning, which is
passed on from generation to generation. The memetic algorithm was proposed by Pablo
Moscato in 1989 on the basis of the theory of meme [27]. In fact, the memetic algorithm
proposes a framework, which can be equal to a collaboration model between the global
population evolution and local individual learning. The model of the memetic algorithm is
similar to the genetic algorithm; however, under the premise of an appropriate framework
design, its global optimization performance far exceeds that of the genetic algorithm, and
for several specific optimization problems, the optimization precision could be improved
to a considerable extent, even by several orders of magnitudes [28]. For the motivation of
improving the integration parameters optimization effect effectively, the memetic algorithm
is used in this paper, and its improvement strategies study is also heeded.

3.2. Whale Optimization Algorithm

WOA simulating humpback whale foraging refers to a novel heuristic optimization
algorithm [29]. It is composed of three parts: surrounding prey, bubble hunting, and
searching for prey. In ocean activities, hump-back whales have a special hunting strategy
such that they make distinctive bubbles along the circular path or the path with the shape
of nine to keep them close to their prey.

The mathematical model of surrounding prey and bubble hunting is as follows:

X(t + 1) =
{

X∗(t)− A · D p ≤ ps
X∗(t) + Dp · ebl · cos(2πl) p > ps

(16)

where p represents the probability for behavior selection of humpback whales, p ∈ [0, 1]; ps
represents the probability for surrounding prey, ps ∈ [0, 1] and 1− ps is the probability for
bubble hunting; Dp = |CX∗(t)− X(t)| represents the absolute value of difference between
CX∗(t) and x(t); X∗(t) represents the best position vector at present; x(t) represents the
whale position; b is the constant relating to the logarithmic spiral morphology, the value is 1;
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l is the random number in (−1, 1); A and C are the coefficient; A = 2a× r1 − a, C = 2× r2,
a = 2− 2× t/Tmax, r1 and r2 are random numbers in (−1, 1); t represents the number of
current iteration times; and Tmax represents the maximum number of iteration times.

The mathematical model of searching for prey is as follows:{
D = |CXrand − X(t)|
X(t + 1) = Xrand − A · D (17)

where D = |CXrand − X(t)| represents the absolute value of difference between CXrand and
x(t); Xrand represents the randomly selected position vector of the whale, |Xrand − X(t)| ≤ ∆;
and ∆ represents the neighbor-hood areas of X(t) [30].

3.3. Simulated Annealing

Aiming at solving the practical combinatorial optimization problem effectively, Kirk-
Patrick et al. adopted simulated annealing firstly. According to the cooling process of
metal, simulated annealing is used to generate a large number of superior solutions with
the continuous decrease in temperature, and parts of them are accepted [31]. The specific
evolution circumstances should be subordinated to the Metrolips standard. In addition,
the current temperature of the metal is decreased gradually during the whole iteration; if it
is below the threshold temperature, the calculation of simulated annealing will be over. So,
the regulation design significance of Metrolips and temperature reduction are necessary to
be honored.

The regulation design of Metrolips adopted in this paper is as follows:{
MP = exp

(
f it(X(u))− f it(Xe(t,q))

Tc(k)

)
MP > 1− rand(0, MT)

(18)

where f it(Xe(t, q)) represents the fitness function value of aboriginal solution Xe(t, q)
before the search process of simulated annealing, and it is the q-th elite individual, f it(X(t))
represents the fitness function value of generated solution X(u) in the neighborhood of
aboriginal solution X(t), exp(X) represents an exponential function based on natural
constant e ≈ 2.718, Tc represents the current temperature of the k-th period, MP represents
the annealing probability, MT represents the appropriate threshold value for Metrolips
standard, and rand(0, MT) represents a random number in (0, MT).

The regulation design of temperature reduction in this paper is as follows:

Tc(k + 1) = Tc(k)× αT ×min(1, MP); (19)

where αT represents the cooling coefficient.
At the initialization time, initial temperature T0 should be assigned, and the current

temperature Tc(0) is equal to T0; the above temperature reduction and Metrolips regulations
should be obeyed. If the current temperature Tc is below the threshold temperature Tend,
the iteration will be over.

4. ADRC Based on Improved Memetic Algorithm
4.1. Design of a Novel Differentiable and Smooth Nonlinear Optimal Control Function

The optimal control function for ADRC should be differentiable at the piecewise point
and smooth to the uttermost extent. The actual value for ∆ is always tiny in engineering.
If the optimal control function is not differentiable or not sufficiently smooth at the piece-
wise point, when ∆ is tiny, there are great system amplitude output oscillations, which
are detrimental to the improved system performance quality. A new novel differentiable
nonlinear optimal control n f al(e, α, δ) based on primitive function f al(e, α, δ) by the func-
tion of inverse hyperbolic arsinhe and tangent tane is proposed in [32]. However, as far as
n f al(e, α, δ), the tangent function is not enough smooth, key parameter α is not involved,
and it will not be conducive to the effective improvement of ADRC.
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Based on the above analysis, this paper constructs a novel differentiable and smooth
optimal control function new f al(e, α, δ) based on primitive function f al(e, α, δ) by the
function of inverse hyperbolic arsinhe and sine sinαe. The specific details of the design can
be seen as given below.

As for the issues about the non-smooth linear segment and the non-differentiable at
the piecewise point in function f al(e, α, δ) in the case of |e| ≤ δ, it is replaced by the linear
function containing the inverse hyperbolic sine function with superior smoothness and sin
αe function in this paper.

The specific formula about the novel optimal control function new f al(e, α, δ) with
|e| > δ is as follows:

new f al(e, α, δ) = sign(e)|e|α (20)

The specific formula about the novel optimal control function new f al(e, α, δ) with
|e| ≤ δ is as follows:

new f al(e, α, δ) = a1 · arsinhe + a2 · sin αe (21)

If |e| ≤ δ, the optimal control function new f al(e, α, δ) comprises the inverse hyper-
bolic sine function and sine function, and it is capable of guaranteeing the constantly
differentiable property of function within a scope of |e| ≤ δ. To guarantee the constantly
differentiable property of function within the overall defined domains, the requirements
given below must be satisfied:{

new f al(δ−, α, δ) = new f al(δ+, α, δ)
new f al(−δ−, α, δ) = new f al(−δ+, α, δ)

(22)

{
new f al′(δ−, α, δ) = new f al′(δ+, α, δ)
new f al′(−δ−, α, δ) = new f al′(−δ+, α, δ)

(23)

Putting Equations (20) and (21) into Equations (22) and (23), the coefficients in
Equation (24) can be given as

a1 = αδα−1(δ cos αδ−sin αδ)

α arcsin δ cos αδ− sin αe√
1+δ2

a2 = δα−1

cos αδ −
δα−1(δ cos αδ−sin αδ)√

1+δ2α arcsin δcos2αδ−sin αδ cos αδ

(24)

By replacing the coefficients of Equation (24) into Equation (21), the proposed novel
nonlinear optimal control function is decided.

As can been seen in the above analysis for the optimal control function new f al(e, α, δ)
design, its degree of difficulty of coefficients calculation can be accepted, and it can be
differentiable and smooth at the segment point; in addition, parameter α can also be
fully taken into account, so the proposed design is more reasonable and suitable than the
primitive and traditional modified designs.

In this paper, ADRC using the optimal control function n f al(e, α, δ) and ADRC using the
optimal control function new f al(e, α, δ) are abbreviated to NADRC and NewADRC, respectively.

4.2. Adaptive Nonlinear Decreasing Strategy for Convergence Factor

The key parameters of optimization algorithm have a certain degree of impact on
its optimization performance. However, invariable, blind randomization or fixed change
mode for parameters is not conducive to the global convergence of the algorithm. A large
convergence factor for WOA should be selected in the early iteration so as to improve
the global searchability of the algorithm. With the continuous evolution of population, a
smaller convergence factor should be selected, which is conducive to the local searchability.
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An adaptive nonlinear decreasing strategy using the exponential form for the convergence
factor is given in this paper.

The specific convergence factor calculation a(tr) function is as follows:

a(t) = −0.5 + 2.5× etr
βa×ln( 0.5

2.5 ) (25)

where βa represents the adaptive nonlinear decreasing optimization factor for convergence
factor; and tr represents the iteration progress, tr = t/Tmax.

The diagram of the above adaptive nonlinear decreasing function for the convergence
factor is shown in Figure 4.

Figure 4. Diagram of adaptive nonlinear decreasing function for convergence factor.

As can be seen in Figure 4, if the adaptive nonlinear decreasing strategy for conver-
gence factor is adopted, the convergence factor will be decreased nonlinearly from 2 to 0,
and its deceleration rate changes with the iteration progress. Thus, the nonlinear decreasing
trend curve for convergence factor can be optimized by choosing appropriate optimization
factor βa so as to improve the global search capability ulteriorly.

4.3. Gaussian Mutation for Simulated Annealing

In traditional simulated annealing, average random distribution is a commonly used
method for generating novel solutions in the neighborhood of the original individual.
However, the difference-blind intensity for local search is not beneficial for generating
superior solutions. Gauss distribution is a kind of commonly random distribution that
obeys the law of normal distribution; the disturbance is called Gaussian disturbance,
as its intensity obeys Gauss distribution. The Gaussian mutation mechanism is a local
search mechanism by imposing Gaussian disturbance, and it can realize the mutation with
constrained intensity [33]. According to the characteristics of normal distribution, compared
with the mutation mechanism using average random distribution, Gaussian mutation can
realize the key search of the local area nearby the original individual. Thus, through the
introduction of Gaussian mutation, simulated annealing is improved to a considerable
extent not only in the local search range and intensity but also in the escape possibility
for lying in local minimum. A solution generating strategy for simulated annealing by
introducing the Gaussian mutation mechanism is given in this paper.

The specific X(u) solution generating function by introducing the Gaussian mutation
mechanism is as follows:

X(u) = Xe(t, q) + λ(k− 1) · Gaussian
(

µ, σ2
)

(26)

where λ(k− 1) represent the weight vector of the disturbance characteristics for the elite

set of the k− 1-th period, λ(k− 1) =

NE
∑

w=1
Xe(t,w)

NE , NE represents the size of elite set Xe, and
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Gaussian
(
µ, σ2) is a Gaussian distribution random number with mean µ and standard

deviation σ.

4.4. Learning Mechanism Using Mixtures of Competitive Mechanism and OBL Mechanism

Generally, the learning mechanism of the memetic algorithm is based on a competitive
mechanism. However, the inferiority clustering caused by using a competitive mechanism
poses a huge risk for population diversity in the later stages of evolution, and it leads to
local convergence easily. The opposition-based learning (OBL) mechanism was proposed
by Tizhoosh, which can generate massive superior opposition-based learning solutions
far away from present local optimal solution, and it is helpful for improving the global
convergence capability [34].

The specific opposition-based learning formula is as follows:
Xe(t, q)′ i = k(ai + bi)− Xe(t, q)i
Xe(t, q)′ i, Xe(t, q)i ∈ [ai, bi]
i ∈ [1, 2, . . . , d]

(27)

where ai and bi represent the minimum and maximum values on the boundary of the i-th
dimension; k ∈ [0, 1] is the random generalization coefficient; Xe(t, q)′ i represents the i-th
dimension of the opposition-based learning solution for the q-th elite individual; and d
represents the number of solution dimension.

In the iteration process, a proportion of solutions is likely to fall into ‘overflow’,
and these ‘overflow’ solutions are necessary to deal with immediately; otherwise, the opti-
mize performance of the memetic algorithm will be weakened.

The specific overflow disposal formula in this paper is as follows:

x(t)′ i = ai + β(bi − x(t)i) (28)

where β ∈ [0, 1] is the random overflow disposal coefficient. The search in the WOA
algorithm depends entirely on randomness, resulting in low convergence accuracy and slow
convergence speed. Therefore, an improved WOA on the basis of chaotic sequences and
adaptive cross-mutation is developed in this paper, which greatly improves convergence
speed and precision.

4.5. Elite Set Maintenance Mechanism Based on Fusion Distance

In the evolution process of each iteration, the high-quality solutions in the population
will be expanded into an elite set so as to save the existing optimization achievements
effectively. Aiming at preventing an adverse effect for algorithm computational efficiency
about the rapid growth of the elite set size, elite set size Es should be less than the allowable
maximum elite set size Eas, that is, ES ≤ EAS. So, the design of the elite set maintenance
mechanism is very significant for MA. The distance measurement is an important part of
elite set maintenance. The Euclidean distance is popularly used in traditional optimization
algorithms for elite set maintenance; these redundant and crowded solutions with shorter
Euclidean distance will be deleted. However, the calculation of Euclidean distance is depen-
dent on the dimensions of variables; in addition, the linear distance between solutions is
calculated by Euclidean distance, but because the distribution of solutions is not considered,
the Euclidean distance cannot measure the correlation between variables [35]. Similarly,
the Mahalanobis distance is also an accurate distance measurement. Based on these con-
siderations, the fusion distance combined linear-weighted total value of the Mahalanobis
distance and Euclidean distance is given in this paper.
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The specific calculated formula in this paper about fusion distance dMix is as follows:

dMix = ω×MD(X, Y) + (1−ω)× ED(X, Y)

CY =


ρY1Y1 ρY1Y2 · · · ρY1Yn

ρY2Y1 ρY2Y2 · · · ρY2Yn
...

...
. . .

...
ρYnY1

ρYnY2 · · · ρYnYn


ω =

√
1− |CY|

(29)

where MD represents the Mahalanobis distance, CY represents the correlation coefficient
matrix for the sample set Y, n represents the sample set size Y, Yi(i = 1, . . . , n) represents
the corresponding elements for sample set Y, ρ represents the correlation coefficient, ω
represents the weight value about relevant information of the Mahalanobis distance, and the
other 1−ω is the weight value about relevant information of the Euclidean distance [36].

4.6. Design of ADRC Based on Improved Memetic Algorithm

The design core of the ADRC based on improved memetic algorithm (IMA) is the
integration parameters optimization mechanism for ADRC. Aiming at improving the
integration parameters optimization effect, an adaptive nonlinear decreasing strategy for
the convergence factor, Gaussian mutation mechanism, improved learning mechanism
and an elite set maintenance mechanism based on fusion distance are integrated into the
moth–flame algorithm.

The flowchart for the proposed ADRC based on improved memetic algorithm is shown
in Figure 5.

Figure 5. Flowchart of ADRC based on improved memetic algorithm.
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5. Experiment Analysis
5.1. Experiment Platform

In order to better verify the proposed active disturbance resisting controller (ADRC)
based on IMA, an experiment platform is adopted, which includes the actual controllers,
PMSM, inverter, sensor, etc. The real-time resistance is provided by using PMSM dynamic
loading, and reference speed and torque signal flow for PMSM velocity control is set in
advance so as to establish the corresponding virtual PMSM velocity control environment.
The physical system diagram of the experimental platform is shown in Figure 6.

In Figure 6, such as velocity control PMSM, dynamic loading PMSM, velocity control
controller, dynamic loading controller, intelligent digital torque/speed sensor and its
measuring instrument, monitoring computer, transformer, main breaker and RS485 serial
transmission lines are significant components for experiment platform. The RS485 serial
transmission lines can connect with the monitoring computer and controller. The PMSM
velocity controller is suitable for the velocity reference curve with uniform, smooth slope
line increase or decrease and finite-amplitude sinusoidal disturbances.

Figure 6. The physical system diagram of experiment platform.

The PMSM velocity control environment in the experiment is built with real PMSM
and velocity controller containing DSP chip. A detailed configuration of the experiment
platform is shown below: dynamic loading PMSM and velocity control PMSM share identi-
cal parameters, and the corresponding rated voltage, current, power, velocity and torque
are set as 220 V, 4.18 A, 750 W, 3000 r/min and 2.39 Nm. In addition, the corresponding
safety overload rate of torque is set as 0.83, in other words, the short-term safety torque
is 4.37 Nm. Configuration in the dynamic loading monitoring computer as well as speed
control monitoring computer remains identical, and the relevant processor is ‘Core i7-7700K
@ 4.2GHZ’. Monitoring software revision is ‘Visual studio 2017’. Controller core chip and
programming software revisions belong to ‘TMS320F28335’ and ‘CCS 6.0’. Embedded LCD
display screen type for control circuit board belongs to ‘12864B V2.0’. The type of intelligent
digital torque and speed sensor as well as matching measure instruments are ‘NO. JN338’.
The velocity and torque ranges reach 0–6000 r/min and 0–20 Nm.

5.2. Experiment Scenario

In this paper, as far as the modified NewADRC redesigned in this paper, the opti-
mization integration of ADRC key parameters is obtained by IMA, and the specific ADRC
is abbreviated as NewADRC-IMA. Detailed parameters of improved IMA are shown be-
low: the population size is set as 40, the maximum number of iteration times is set as 80,
the probability of the surrounding preys is set as 0.6, the adaptive nonlinear decreasing
optimization factor for convergence factor is set as 1.75, the probability of mutation selec-
tion behavior is set as 0.15, the initial temperature is 200 ◦C, the cooling coefficient is 0.75,
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the termination temperature is 50 ◦C, and the elite size is set as 25. Detailed results about
the optimization integration of ADRC key parameters by using IMA are shown below:
obtained optimization integrated parameters α11 = 0.90, α12 = 0.53, ω0 = 357.7, α21 = 0.63,
α22 = 0.35 and ωc = 26.0.

In order to verify the performance of NewADRC-IMA proposed in this paper, PMSM
velocity control experiments are implemented. Fuzzy PI and traditional ADRC based on
the genetic algorithm are two popular traditional control algorithms, widely used in PMSM
velocity control due to the traits of being stable in control and easily realized; however, their
tracking control accuracy is relatively low. In this paper, traditional ADRC based on the
genetic algorithm is abbreviated as ADRC-GA. An improved ADRC with effective strategies
was proposed to solve the defect that the nonlinear function of traditional ADRC is not
differentiable at the piecewise point, and an improved moth–flame optimization (MFO)
was proposed to obtain its key parameters, which can effectively improve the tracking
control performance. The above specific modified ADRC is abbreviated as NADRC-IMFO.

The PMSM velocity control scenario involved in the research can be given as below:
the experimental time is set as 0.4 s; the reference speed is set as 1000 r/min, and beginning
with upload; the experimental uploaded torque is set as 0.05 Nm; and the experimental load
torque is set as 2 Nm. The boundary constraints for the PMSM velocity control scenario
are shown as follows: the maximum acceptable stable control speed error Amax(SES) and
torque error Amax(SET) are set as 2.5 r/min and 0.8 Nm, and the maximum acceptable
speed error Amax(ES) and torque error Amax(ET) are set as 250 r/min and 5.5 Nm.
In addition, the reference speed and torque signal flow for PMSM velocity control are
necessary to be set up. The reference speed and torque signal flow diagram of experiment
platform is shown in Figure 7.

0 2 4 6 8 10 12 14 16
Time/s

0

0.5

1

1.5

2

2.5

T
or

qu
e/

(N
�m

)

fuzzy PI fuzzy PIADRC-GA ADRC-GANADRC-IMFO NADRC-IMFONewADRC-IMA NewADRC-IMA

Given Torque Signal Expected Torque Signal

0 2 4 6 8 10 12 14 16
Time/s

0

400

800

1200

S
pe

ed
/(

r/
m

in
)

fuzzy PI fuzzy PIADRC-GA ADRC-GANASSO-IMFO NASSO-IMFONewADRC-IMA NewADRC-IMA

Given Speed Signal

Capture Time

Figure 7. The reference speed and torque signal flow diagram of experiment platform.

The automatic capture configuration is prescribed as follows: The automatic capture
curves can be classified into torque and speed types. The control algorithms include fuzzy
PI, ADRC-GA, NADRC-IMFO and NewADRC-IMA (proposed in this paper). The dy-
namic loading torque signals total 0.053 Nm and 2.153 Nm under sequential and cycle
transmission types. The torque transmission efficiency totals 0.944 and 0.952 at 0 r/min
and 1000 r/min point. As shown in Figure 7, the time points in preparation, rotating speed,
loading, and capture-start reach 0 s, 0.8 s, 1.1 s and 0.8 s; the time width in preparation,
rotating speed, loading, and capture reach 0.8 s, 1.2 s, 0.9 s and 0.6 s; and the cycle number
and total time reach 8 and 16 s.
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In view of conventional use and emergency (or escape) treatment, the stable speed-
regulating and quick speed-regulating modes about the PMSM velocity control can be
chosen in practice. In quick speed-regulating mode, rapid start-up and achieved reference
are necessary; contrarily, in quick speed-regulating mode, smooth transition is the most
important consideration. In order to verify the effectiveness of the IADRC in this paper,
two practical cases are given. The first practical case is set up for reflecting quick speed-
regulating mode, and there are no additional alterations based on the above PMSM velocity
control scenario. The second practical case is set up for reflecting the stable speed-regulating
mode, where enough time should be given for the start-up and load operation, and for
which the specific configurations are as follow: the start-up and load operation types follow
’slick inclined line’, the start-up and load operation duration time are set as 0.01s.

5.3. Experiment Result and Analysis

The performance of proposed control algorithm NewADRC-IMA is necessary to be
verified, and three control algorithms (fuzzy PI, ADRC-GA and NADRC-IMFO) are used
for comparison.

The experiment results and analyses of PMSM velocity control experiment are pro-
vided as follows.

Tables 1–4 list the speed and torque ITAE for two PMSM speed control practical cases.

Table 1. The speed and torque ITAE for each practical case.

Variable Practical Case PI ADRC-GA NADRC-IMFO NewADRC-IMA

ITAES first practical case 7.95× 10−1 4.67× 10−1 1.25× 10−1 8.64× 10−2

ITAES second practical case 6.61× 10−1 4.30× 10−1 9.35× 10−2 5.80× 10−2

ITAET first practical case 8.27× 10−2 3.26× 10−2 7.35× 10−3 3.81× 10−3

ITAET second practical case 5.31× 10−1 2.44× 10−1 6.65× 10−2 3.69× 10−3

Table 2. The maximum absolute value of speed and torque error for each practical case.

Variable Practical Case PI ADRC-GA NADRC-IMFO NewADRC-IMA

|ESmax| first practical case 1158 r/min 1113 r/min 1061 r/min 1037 r/min
|ESmax| second practical case 1127 r/min 1095 r/min 1056 r/min 1040 r/min
|ETmax| first practical case 5.26 Nm 4.58 Nm 3.72 Nm 3.09 Nm
|ETmax| second practical case 4.70 Nm 3.85 Nm 3.77 Nm 4.13 Nm

Table 3. The maximum absolute value of stable control speed and torque error for each practical case.

Variable Practical Case PI ADRC-GA NADRC-IMFO NewADRC-IMA

|SESmax| first practical case 2.47 r/min 1.58 r/min 0.87 r/min 0.76 r/min
|SESmax| second practical case 2.34 r/min 1.27 r/min 0.96 r/min 0.90 r/min
|SETmax| first practical case 0.75 Nm 0.64 Nm 0.57 Nm 0.44 Nm
|SETmax| second practical case 0.72 Nm 0.63 Nm 0.59 Nm 0.37 Nm

Table 4. The adjusting time for each practical case.

Variable Practical Case PI ADRC-GA NADRC-IMFO NewADRC-IMA

At first practical case 0.090 s 0.087 s 0.083 s 0.076 s
At second practical case 0.102 s 0.093 s 0.094 s 0.081 s

As listed in Tables 1–4, compared with fuzzy PI, ADRC-GA or NADRC-IMFO, ex-
cept |ETmax|, the NewADRC-IMA can obtain lesser ITAES, ITAET , |ESmax|, |SESmax|,
|SETmax| and At in the PMSM velocity control practical cases, and there are very significant
decreasing degrees.
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The specific speed and torque curves gained under the two PMSM speed control
practical cases can be seen from Figures 8–11.
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Figure 8. The speed curves under the first PMSM velocity control practical case.
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Figure 9. The torque curves under the first PMSM velocity control practical case.
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Figure 10. The speed curves under the second PMSM velocity control practical case.

0 0.1 0.2 0.3 0.4 0.5 0.6
Time/s

-4

-2

0

2

4

6

T
or

qu
e/

(N
�m

)

Reference
fuzzy PI
ADRC-GA
NADRC-IMFO
NewADRC-IMA

1.7

2

2.3

2.6

Figure 11. The torque curves under the second PMSM velocity control practical case.

As shown in Figure 8 and 10, compared with the speed curves for the tracking tra-
jectory using fuzzy PI, ADRC-GA or NADRC-IMFO, the speed fluctuation degree can be
reduced, and the restricting ability for overshoot can be improved by using NewADRC-
IMA effectively. As shown in Figure 9 and 11, compared with torque curves for the tracking
trajectory using fuzzy PI, ADRC-GA or NADRC-IMFO, the torque ripple can be descended
by using the NewADRC-IMA effectively.

Clearly, the improved strategies introduced in this paper are effective. The nonlinear
optimal control function constructed in this paper is differentiable and smooth at the
piecewise point for modifying ADRC, and IMA proposed in this paper has powerful global
optimization capability, so the modified ADRC based on IMA is improved obviously.
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6. Conclusions

For the complex practical PMSM speed control problem, the key parameters of control
algorithm have a noteworthy influence on the control effect. Furthermore, the optimal
control function are also a non-negligible issue for it.

A modified ADRC of PMSM based on an IMA is designed in this paper. Specif-
ically, for solving the issue that the traditional optimal control function for ADRC is
non-differentiable and unsmoothed at the piecewise point, a modified novel differentiable
and smooth nonlinear optimal control function is constructed. Furthermore, an improved
memetic algorithm based on an adaptive nonlinear decreasing convergence factor strat-
egy for the whale optimization algorithm, a Gaussian mutation for simulated annealing,
a learning mechanism using mixtures of competitive mechanism and OBL mechanism and
an elite set maintenance mechanism based on fusion distance is proposed for solving the
issue that the traditional intelligent optimization algorithm cannot optimally integrate key
parameters of ADRC effectively. Compared with fuzzy PI, ADRC-GA, NADRC-IMFO,
the modified ADRC of PMSM based on the IMA proposed in this paper has better tracking
control performance.

In order to verify the performance of NewADRC-IMA proposed in this paper effec-
tively, an experimental platform of PMSM velocity control was built. The experimental
results can illustrate the efficacy of the NewADRC-IMA. Compared with the existing repre-
sentative control algorithms (PI, ADRC-GA, and NADRC-IMFO), the NewADRC-IMA has
several significant performance advantages, such as faster response, smaller steady-state
error, tinier overshoot, etc.

There are several future directions suggestions for ADRC of PMSM: I draw lessons
from the existing advanced control methods, such as robust predictive control, fuzzy
predictive control or adaptive model predictive control, to further improve its control
performance; II design a more suitable novel nonlinear optimal control function so as
to improve its control accuracy; III combine the improved ADRC with fuzzy controller
to further improve its control performance; and IV construct a verification environment
using the complex experiment so as to further improve the verification precision.
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