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Abstract: Three-dimensional video services delivered through wireless communication channels have
to deal with numerous challenges due to the limitations of both the transmission channel’s bandwidth
and receiving devices. Adverse channel conditions, delays, or jitters can result in bit errors and
packet losses, which can alter the appearance of stereoscopic 3D (S3D) video. Due to the perception
of dissimilar patterns by the two human eyes, they can not be fused into a stable composite pattern in
the brain and hence try to dominate by suppressing each other. Thus, a psychovisual sensation that is
called binocular rivalry occurs. As a result, undetectable changes causing irritating flickering effects
are seen, leading to visual discomforts such as eye strain, headache, nausea, and weariness. This
study addresses the observer’s quality of experience (QoE) by analyzing the binocular rivalry impact
on the macroblock (MB) losses in a frame and its error propagation due to predictive frame encoding
in stereoscopic video transmission systems. To simulate the processing of experimental videos, the
Joint Test Model (JM) reference software has been used as it is recommended by the International
Telecommunication Union (ITU). Existing error concealing techniques were then applied to the
contiguous lost MBs for a variety of transmission impairments. In order to validate the authenticity
of the simulated packet loss environment, several objective evaluations were carried out. Standard
numbers of subjects were then engaged in the subjective testing of common 3D video sequences.
The results were then statistically examined using a standard Student’s t-test, allowing the impact
of binocular rivalry to be compared to that of a non-rivalry error condition. The major goal is to
assure error-free video communication by minimizing the negative impacts of binocular rivalry and
boosting the ability to efficiently integrate 3D video material to improve viewers’ overall QoE.

Keywords: psychovisual impact; stereoscopic video; statistical analysis; human visual system;
macroblock loss

1. Introduction

Due to its immense demand in commercial applications, 3D video transmission has
drawn a growing amount of research interest in recent years. A greater emphasis has been
made on evaluating and minimizing the consequences of methodologies for 3D image
or video capture, processing, rendering, and display in an effort to enhance quality of
experience (QoE) [1,2]. Nonetheless, the impacts of artifacts introduced into a 3D video by
its transmission method have received less attention than those in a 2D video [3], despite the
fact that they affect the overall visual quality in a comparable manner. Errors in transmission
over unreliable communication channels are worse for 3D video than for 2D video because
3D video has two separate channels, each of which may suffer uncorrelated impairments;
for instance, a delay in one view can result in temporal desynchronization, which can
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reduce the comfort of 3D viewing [4,5]. However, the techniques used to eliminate these
abnormalities (such as error concealment) do not function as well for 3D videos as they do
for 2D films [6]. To provide accurate 3D depth perception, the two 3D channels should be
maintained and coordinated [7,8] and avoid binocular rivalry [6]. Binocular rivalry refers
to the spontaneous, unpredictable changes in perceived awareness induced by different
stimulation of the two eyes. The term “Binocular Rivalry” refers to the unpredictable and
inconsistent shifts in perceptual awareness that may be triggered by a variety of stimuli
presented to each of the two eyes [9,10].

2. Background

For a given set of stereoscopic pictures, the weighted average of a 2D and a depth
prominent map was calculated to produce a 3D prominent map. These reinforcements from
the left and right pictures were selected and fed into a 3D convolutional neural network
to assess the discerning quality when the value of 3D prominent map reinforcements
is higher than the threshold previously established. The quality scores of the distorted
stereoscopic picture were then calculated using a weighted average of the conspicuous
image reinforcements. Hu et al. [11] suggested a deep network based on binocular per-
ception to answer the situation of stereoscopic picture quality evaluation, employing four
channels, including left view, right view, binocular addition view, and binocular difference
view, taking them into account as the input of the network. Feng et al. [12] presented a
multiscale-attribute escorted 3D convolutional neural network for assessing stereoscopic
video quality. Using the stereoscopic films, they extracted temporal characteristics and
gathered multiscale data. They said that their approach demonstrated a strong link with
perceptibly detectable human behavior. Stereo perceptible masking under insensible binoc-
ular competition was investigated by Zheng et al. [13]. In order to quantify the binocular
noise amplitude in different backdrop lustrousness and noise acclimatization pairings, they
conducted a psychophysical experiment using the staircase approach. In contrast to ab
entirely compatible inclination, they discovered that irreconcilable binocular noise was
seen at a greater masking threshold.

The evaluation of quality of service (QoS) and quality of experience (QoE) has been
the topic of a significant amount of research, with a particular emphasis placed on video
compression standards and communication channel noise. Taha et al. [14] analyzes a
number of different network factors that are known to have an influence on quality of
experience (QoE), such as packet delay, packet delay variation, and packet loss. The authors
have suggested a solution for managing quality of experience (QoE), which is based on
machine learning. This system forecasts quality of experience (QoE) requirements and then
maintains end-user video quality by delivering optimal services in accordance with the
prediction. An adaptive model was presented in the research [2] in order to establish a link
between the quantization parameter (QP) of the H.264 and H.265 codecs and the quality
of service (QoS) of 5G wireless technology. Nevertheless, because of the limitations, the
model that is presented in [2] is unable to allow the development of subsequent generations
of codecs. In addition, the consumption of resources (CPU and memory) increases as the
complexity of the network topology rises.

In this study, the goal was to engrave the viewers’ quality of experience (QoE) by
performing objective evaluations to validate an appropriate simulation packet loss envi-
ronment and a comprehensive subjective study to elongate the impact of psychovisual
binocular rivalry. This was accomplished by analyzing the macroblock (MB) losses in a
frame and its error propagation caused by predictive frame encoding while stereoscopic
videos were being transmitted.

2.1. 3D Visual Perception

The impression of depth in stereoscopic 3D video is dependent on how the human
brain and eyes function. Two pictures representing two views of the same object appear in-
dependently to the eyes, with human vision interpreting the difference (disparity) between



Sensors 2023, 23, 3604 3 of 25

them to generate a depth feeling in the brain, which experiences a single image known
as the cyclopean view [15]. As a consequence of the eyes’ horizontal separation, disparity
refers to the difference in the picture positions of an item perceived by the left and right
eyes. In stereopsis, the brain extracts depth information from two-dimensional (2D) retinal
pictures via binocular disparity. Binocular disparity in computer vision is the difference
between the coordinates of comparable features in two stereo pictures.

As illustrated in Figure 1, a curving line that links all locations with zero retinal disparity
(same relative coordinate) is referred to as the horopter, and the points positioned at it have
the same perceived distance from a human subject’s fixation point. Panum’s fusional area
is a zone around the horopter in which objects with non-zero retinal disparities may be
merged binocularly, but items positioned outside of this region produce double pictures.
Howard et al. [16] demonstrates that the size of Panum’s area is not constant throughout
the retina and is dependent on the spatial and temporal features of the fixation object. As a
person focuses on an item, the picture of that object falls on the retina, and things closer to or
farther from the accommodation distance should seem hazy. While the human visual system
(HVS) is tolerant of a tiny degree of blur, objects that lie within a limited zone surrounding the
accommodation point may be regarded as having high resolution (i.e., not blurred), with the
size of this region known as the depth of field (DOF) [16].

Figure 1. Disparity in a binocular vision and the geometry of occured depth perception in our brain [9].

At a fixation point of B, as shown in Figure 1, the stereopsis geometry matches
the experimental setting of the two-needle test [17]. It states that the theoretical depth
discrimination ∆ f may be calculated using the convergence angle α by dividing by the
depth difference d f (dα/d f ), which provides

∆ f = − f 2

b

(
1 +

b2

4 f 2

)
· ∆α (1)

with b representing the inter-pupillary distance and f representing the average object
distance. With 4 f 2 � b2, which is true even for a close point distance of fnear = 250 mm,
Equation (1) reduces to the standard form ∆ f ≈ − f 2 ∆α

b , which is the stereoscopic acuity
(the lowest observable depth difference) necessary for binocular or 3D depth perception in
binocular vision. It is observed scientifically that ∆α = 10 arcsec (a value acceptable under
photopic lighting circumstances), which is added to transfer the vision from fixation point
A (α− ∆α) to (α) and for greater depth perception B (α) to C (α + ∆α). The least discernible
depth difference at a fixation distance of 650 mm is on the order of 0.3 mm. In addition
to other aspects, stereoscopic acuity is primarily impacted by an object’s brightness and
spatial frequency, as well as angular distances from fixation and object motion. Therefore,
it is necessary to build a multidimensional 3D visual experience model that incorporates
the aforementioned acuity parameters based on their perceptual significance.
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2.2. Binocular Rivalry

The only form of binocular interaction that can be described by the suppression theory
of binocular vision is the rivalry [18] type, which operates for both similar and distinct
images. It is a visual phenomenon that occurs, as seen in Figure 2, when separate monocular
stimuli are delivered to corresponding retinal areas on both eyes. In accordance with the
binocular suppression hypothesis [19], the better view (i.e., the left or right) typically
determines the overall perception, provided that the quality of the poorer view exceeds a
threshold value. Nevertheless, this potential is limited, since research has shown that an
additional cognitive load [18] is necessary to merge various views, causing eye strain and
visual fatigue and preventing individuals from seeing 3D information for lengthy periods
of time. This issue resulted in the shutdown of various 3D TV channels, including ESPN
3D, Foxtel 3D, N3D, and 3NET [20], and the limitation of broadcasting services, including
MSG 3D and Sky 3D channels.

Figure 2. Binocular rivalry: perceptual ambiguity caused by transmission loss.

2.3. Binocular Rivalry in S3D Transmission

The impact and modeling of binocular rivalry in stereoscopic videos is in an emerging
stage, and there are two issues that need to be clarified: (1) the types of inter-view picture
changes that might generate binocular rivalry and (2) how it impacts both 3D visual
comfort and video quality. It is often difficult to capture binocular rivalry artifacts in a
stereoscopic pair due to the fact that the pictures received by both eyes are merged into
a single 3D image. In addition, it is difficult to exactly characterize or depict the signals
employed by the HVS to generate depth perception in the human brain, as well as their
associated properties. A good 3D depth perception involves the probabilistic integration
of a number of depth signals, such as binocular disparity, and binocular and monocular
3D cues, such as accommodation, convergence, parallax, occlusion between objects, and
perspective relative size. In addition, these cues and their interpretations must be kept in
3D material throughout transmission and at the display decoder; otherwise, a collision of
binocular cues would quickly cause inconsistencies and annoyances. Recent research has
thus focused on determining the relative strength of these signals and comparing them
to stereoscopic disparity. The following characteristics impede 3D depth perception and
generate binocular ambiguities, which are the primary causes of visual discomfort and
video quality degradation:

• In any perspective of a 3D video frame, video coding and compression artifacts
(such as blocking, staircase, ringing, mosaic, motion, and blurring) may occur and
cause distortions. Modern picture processing and encoding methods, however, have
lessened these issues.
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• In transmission network channels, queuing, congestion, and serialization effects
generate variations in packet transit delays known as jitter. Higher degrees of jitter
may cause binocular ambiguity between views because the packets for either view are
received too late for their needed display time. In general, larger levels of jitter are more
likely to occur in either sluggish or highly crowded channels during transmission.

• A packet loss in the network might cause the decoder to fail to give accurate left and
right pictures, which can lead to data loss and binocular mismatch. This discrepancy
may cause spatial aliasing, color bleeding, motion artifacts, intensity discrepancies,
and other problems [21].

• The decoder synchronization necessary to recover losses and the packet delay brought
on by jitter in either of the two views can produce binocular rivalry artifacts that
impair accurate depth perception.

• The implementation of existing 2D error concealment approaches for 3D distorted
videos also introduces binocular artifacts and can result in binocular rivalry.

• At the acquisition and display phases of a 3D transmission chain, stereoscopic distor-
tions may cause binocular rivalry. Quick variations in object depth caused by motion
might result in fast vergence shifts that viewers must track. Additionally, an ob-
server may have crisp and double vision of ordinarily indistinct objects, while abrupt
scene changes affect the observer’s impression of the depth of the scene, requiring a
re-adaptation of the observer’s vision.

• A cardboard effect stereoscopic distortion provides an artificial depth impression in
which things look flat, as if the scene had been separated into distinct depth planes [17].
In addition, the absence of delicate visual elements creates a puppet-theater effect [22].

In conclusion, binocular vision is very susceptible to ambiguous stereo pairings being
presented to the human eye and creating binocular rivalry artifacts, which may cause sig-
nificant visual discomfort and lead to headache, eye strain, nausea, simulator sickness [23],
and visual fatigue.

2.4. Macroblock Loss in S3D Transmission

Similar to network impairments in 2D video transmission, 3D channels suffer from
one or more frame losses and MB or slice losses [24], which have negative effects on the
quality of the received service. Figure 3 depicts the MB and block structures used as the
foundation for motion-compensated prediction in H.264 video coding to decrease the
temporal correlation between frames. If there is a network delay, jitter, or packet loss, one
or more megabytes of data are lost. Figure 3 demonstrates that the frames or images in a
video are composed of slices, each of which is a group of rows of MBs that are composed of
blocks of pixels. These hierarchical structures make it easy to arrange compressed video
content packaging.

Figure 3. Partitioning of macroblocks (MBs) for inter-frame prediction.
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The kind of stereoscopic picture quality loss brought on by lost macroblocks (MBs)
or slices is not equivalent to that brought on by quantization or low-pass filtering, which
was researched in earlier publications [25,26]. The loss of a block or MB of data has a major
influence on the binocular perception of a stereo picture pair. Standard error concealing
algorithms are not suitable for stereoscopic pictures [27] because a block must be matched
(based on disparity) with the block from the opposite view to provide a correct 3D impres-
sion. Even moderately effective monoscopic concealments may cause severe stereoscopic
visual distortions. The chapter [28] provides a short description of recently developed 3D
error hiding techniques. Our most recent research and experiment results [29], demonstrate
that, in addition to transmission losses, using traditional 2D error concealment methods in a
3D video decoder also causes these artifacts and poses a perceptual challenge, necessitating
an analysis to ascertain the psychovisual effects. We concentrate on creating network losses
and using current error concealment technologies to evaluate their overall impact since
the goal of this research was to ascertain the psychovisual impact of error concealment
following the loss of one or more MBs. We try to broaden this by using the Student’s
t-test [30] to analyze and compare for various error propagation scenarios in order to define
the statistical significance of binocular rivalry in the former when error concealment is
applied independently to each view. This is because most researchers have limited their
subjective analysis to taking into account the mean opinion score (MOS) and confidence
interval (CI).

3. Materials and Methods

In order to investigate the total psychovisual effect of MB losses in one view and identical
portions of both, simulations of various MB and slice losses conducted in the JM reference
platform and conventional error concealing procedures are applied and addressed in this part
as shown in Figure 4. The approach is explored in more depth in subsequent subsections.

Figure 4. Block diagram of the proposed model.

3.1. Proposed Video Processing Chain

The detailed flow-graph of the overall processing chain used to encode the stereo
video, generate transmission losses, and apply error concealment techniques at the decoder
end is shown in Figure 5. These sequences were encoded in accordance with the guidelines
used in the H.264 JM 18.6 [31] reference platform. Several different scenarios, referred to
as hypothetical reference circuits (HRCs) in accordance with the terminology of the Video
Quality Experts Group (VQEG) [32], were used to create them. Round transport protocol
(RTP) packets and conventional MB-loss error hiding methods are used at the decoder end
to mimic data losses in the network.
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Figure 5. Block diagram of the proposed 3D video processing chain and evaluation of transmitted
error-concealed videos.

After that, a group of individuals is asked to evaluate the transmitted stereoscopic
videos’ video quality and visual comfort levels under certain system circumstances in
order to determine the overall effects. The analysis of the transmission process as a whole,
including the 3D video display, subjective assessment, and psychovisual effect, is conducted
in the evaluation portion.

3.2. Video Coding and Transmission

The ITU and ISO/IEC MPEG’s cutting-edge video coding standard, H.264/AVC, aims
to increase coding effectiveness and improve network adaptability. A video coding layer
(VCL) and a network abstraction layer (NAL) make up its two conceptual levels . Although
the latter establishes the interface between the encoded video data and transport medium,
the former deals with the effective encoding of the video data. H.264/AVC may partition an
image into slices in order to strengthen the resilience of the bit stream against transmission
defects at the expense of higher overhead. Erroneous slices are rejected before being sent
to the decoder, and the incoming data are delayed so that they may be retrieved in the
proper decoding sequence. According to Figure 3, the slice header provides details about
the image to which it belongs, the locations of the encoded MBs, and the hierarchical
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structure. A image may be split up into many slices by an encoder, increasing the bit
stream’s resistance against transmission defects. Each slice carries its own local information
to allow independent decoding. Slice losses may be handled by the simulation environment;
the topic of their concealment will be covered later. All algorithms, however, often deal
with instances when just a little amount of a received video frame is absent, such as a single
or a series of consecutive MBs. The details of the commands and configurations of the
encoding and decoding processes are included in Appendix A.

3.3. Frame Predictive Error Concealment

The H.264/AVC standard includes the non-normative error concealing function, which
effectively increases fault resilience at the decoder without adding any more data to the
bit stream. The majority of transmission faults should be detectable and hidden by an
error-resilient decoder. The error concealment techniques in H.264/AVC may typically
be classified into two groups of spatial and temporal concealments depending on the
information utilised. In order to recover the error areas in a frame, spatial error concealment
leverages spatial redundancy. Figure 6 shows how alternative inter-view frame predictions
may be used by H.264/AVC coding to encode a video frame. Temporal adjacent frames are
used in temporal error concealing to hide flaws in the current frame. In our research, the
following error concealing techniques were used for various types of prediction frames.

Figure 6. Different frame predictions in H.264/AVC encoding.

3.3.1. Bilinear Interpolation for I-frame

The easiest technique to hide any parts of an I-frame damaged by packet loss is to
use a traditional spatial interpolation algorithm because there is no inter-frame prediction
in an I-frame [33]. In order to help with bilinear interpolation, Sobel edge detection [34]
is based on the construction of a reliable Hough-transform-based approach [35] that can
systematically join edges, regardless of the number of edge points around empty regions,
using the following steps:

• Step 1: Choose n adjacent neighbors around the missing packet (e.g., n lines above
and below the lost area).

• Step 2: Identify all the cells whose peaks exceed a specified threshold (tp). (The
presence of a straight line in the picture is indicated by a peak in the accumulator array.
The Hough transform’s ability to connect edges relies on the size of the accumulator
cell used to identify the greatest peaks.)

• Step 3: Combine adjacent cells with similar Hough parameters into a single cell.
• Step 4: In order to join the jagged edges, use the inverse Hough transform.

The missing portions are divided into several regions for interpolation along the
direction of each identified line using the connecting edges. The missing portions must
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then be divided into several sections to facilitate interpolation, as shown in Figure 7. The
nearest reference pixels in the same zone [33] were subjected to bilinear interpolation by
Gharavi et al., who utilized their weights for interpolation as

Px,y =
Db

Da + Db
Px+k1,y−l +

Da

Da + Db
Px+k2,y+(N−l) (2)

where Da and Db are the distances between the interpolating pixel Px,y and its same-zone
bilinear reference pixels Px+k1,y−l and Px+k2,y+(N−l), respectively. The latter are the nearest
pixels to Px,y located above and below the missing area at the horizontal distances of k1
and k2 and vertical ones of l and (N − l), respectively, where N is the height of the missing
area (e.g., MB).

Figure 7. Region-based interpolation used for error concealment in I-frame.

3.3.2. Boundary Matching for P-Frame

For error hiding in P-frames, the spatio-temporal boundary-matching method [36]
is used. Temporal information may be utilized to hide lost slices or missing MBs since a
P-frame can be anticipated from either an I- or P-frame. Su et al., (2006) used the multiside
boundary-matching approach for error hiding. The suggested approach breaks a damaged
MB into four 8 × 8 sub-blocks and utilizes the information in the adjacent rows and columns
to disguise the MB, as illustrated in Figure 8.

E’tl E’tr

E’bl E’br

Q Q+8+M

P
P

+
8

+
N

(a) Search Range of Reference Frame

Etl Etr

Ebl Ebr

N

M

(b) Error Concealment for Single Slice

Etl Etr

Ebl Ebr

N

M

(c) Error Concealment for Multi-Slices

Figure 8. Boundary-matching algorithm for error concealment in P-frame.

The nearest adjacent pixels in the N rows and M columns of the MB are used to find
the best block for recovering the MB. In Figure 8, Etl , Etr,Ebl , and Ebr are the blocks divided
at different locations. To conceal a block, N rows and M columns from its top/bottom
and left/right boundaries, respectively, were used. The search range (P/Q) was set to 32
and a full search (FS) was used to evaluate all possible candidate sub-blocks within it, as
shown in Figure 8a. Then, the best block for recovering a lost one was determined by the
minimum sum of the absolute difference (SAD), expressed as
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SAD(Etl) =
−1
∑

j=−N

7
∑

i=0
| Etl(x + i, y + j)− E

′
tl(x + dx + i, y + dy + j) |

+
7
∑

j=0

−1
∑

i=−M
| Etl(x + i, y + j)− E

′
tl(x + dx + i, y + dy + j) |

(3)

where x and y are the top- and left-most positions, respectively, of the lost sub-block in
the current frame, and dx and dy are the displacements between that sub-block and the
candidate one in the reference frame. Sub-block Etl is recovered by the block with the
minimum SAD (Equation (3)) and sub-blocks Etr,Ebl , and Ebr concealed using the same
strategy. When concealing these kinds of errors, as the neighboring blocks of a corrupted
block may also be lost, the different error concealment methods for single and multiple
slices proposed in [37] are shown in Figure 8b,c, respectively.

3.3.3. Frame Copy for B-Frame

For the purpose of reconstructing the pixels lost in B-frames, frame-copy error conceal-
ment is used. In our approach, I-/P-frames are used to forecast B-frames via hierarchical
coding. As a B-frame cannot foresee the next frame, using pixels from the same positions
in the previous frame is a frequent technique for hiding missing pixels. In order to recover
quickly during real-time transmission, a decoder may sometimes throw away a whole
frame and replace it with the one before it. Instead of designing a better error concealment
method, our major objective was to study the psychovisual effects of 2D error concealment
techniques used in stereoscopic recordings that were hampered by transmission errors. We
will develop a suitable error-resistant stereoscopic video transmission system using the
results from this investigation.

3.4. Subjective Method and Testing Conditions

A subjective assessment is the most efficient way to assess the apparent quality of a
video that has been received but has had network faults that have been covered up distort
it. The 32-inch Samsung 3D TV utilized for the subjective evaluation came with an ACTIVE
shutter glass from Nvidia 3D vision that was necessary to see 3D content. In accordance
with ITU-R BT.500.13 [38] and the VQEG HDTV [39] test plan, the ideal viewing distance
was set to be three times the display’s height, which was one meter from the wall. The
room lighting was also adjusted so that background light was limited to no more than 15%
of the display’s illumination. The sole ambient illumination came from the wall behind the
monitor, and the light source was 6500 K0. The monitor was placed behind a wall so that
the light coming from it did not shine directly on the audience and did not exceed 5% of
the display’s maximum brightness (when used as a stereo monitor).

According to ITU-R BT.2021 [40], stereoscopic films may be evaluated subjectively
using a number of human perceptual criteria, including video quality and visual comfort.
The evaluation sessions were carried out using the Double Stimulus Continuous Quality
Scale (DSCQS) methodology. In each trial, distorted and undistorted movies were shown to
the audience in a random sequence. Participants were then asked to rate the videos’ overall
video quality and comfort on a range of continuous measures from 1 to 5. With regard to
the other rating criteria, scores that were close to 0 denoted the lowest quality or the most
miserable situation, while scores of 5 denoted excellent video quality or a very comfortable
position with regard to visual comfort. The approach used for the subjective investigations
received clearance from the University of New South Wales’ Human Research Advisory
Panel (approval number: A-13-41) for use in human research.

3.5. Experimental Datasets and Training Sessions

The RMIT3DV [41] and EPFL [42] video datasets and seven distinct stereoscopic
sequences (3D_01, 3D_02, 3D_26, 3D_38, 3D_40, 3D_45, and 3D_47) were employed in
our experiment (Figure 9). All had various graphical components, such as camera and
object motions and textures and had a 10-second playing length, full HD resolution of
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1920× 1080, and 25 frames per second. The first two sequences, 3D_01 and 3D_02, from
the EPFL dataset, as shown in Figure 9a, depicted individuals lounging on couches inside
rooms and riding bicycles on roads, respectively. The remaining images, 3D_26, 3D_38,
3D_40, 3D_45, and 3D_47 from the RMIT3DV collection, as in Figure 9b, were referred to as
State Library, Princes Bridge, La Trobe Corridor, La Trobe Reading, and La Trobe Exterior,
respectively. These films included diverse low-to-high 3D depth perceptions as well as
distinct movements.

(a) 3D Video from EPFL dataset.

(b) 3D Video from RMIT3DV dataset.

Figure 9. Video datasets: (a) EPFL (École Polytechnique Fédérale de Lausanne)-provided 3D video
dataset; (b) RMIT3DV (Royal Melbourne Institute of Technology)-provided 3D video dataset.

As illustrated in Figure 10, a training session was held before the final test to show
viewers how the subjective testing method, which had been approved by the UNSW Ethics
Panel, worked. It was explained that, because they were expected to give scores based on
videos that were simulated using the benchmark JM reference system, they might have
some minor problems while watching them, such as binocular rivalry phenomena and
visual discomfort, which could cause eye strain, headaches, nausea, and/or visual fatigue
as well as affecting the overall quality of the video. After hearing about the binocular
rivalry artifact and how it affects depth perception, the people who watched the video
gave their written permission and took part in the subjective tests. After this briefing,
there was 1-minute training on watching videos (W) and scoring (S). After that, there was
a time for questions and answers to clear up any confusion about how the scores were
made. Last but not least, the evaluation period was conducted and finished according to
the Double Stimulus Continuous Quality Scale (DSCQS) standard. As shown in Figure 10,
each one-minute trial was composed of one W and S where a 10-second video with packet
loss and error concealment in one view or both views were played one after another, which
were named A or B. The process was repeated again and was ended by scoring the videos.
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Figure 10. Timelines of evaluation session and the single trial.

3.6. Objective Video Quality Assessment

Packet loss and its effect on video signal quality may be evaluated by objective testing.
This data can be used to optimize network settings, enhance video encoding parameters, or
make other adjustments to provide the highest-quality video signal. To validate the packet
loss simulation in our experiment, we employed objective video quality measurements.
To accurately show the measure, both full-reference and no-reference quality evaluation
criteria have been utilized. The peak signal-to-noise ratio (PSNR) [43], mean square error
(MSE) [43], and Multiscale Structural Similarity Index Measure (MS-SSIM) [44] were used
as full-reference criteria, while the Naturalness Image Quality Evaluator (NIQE) [45] was
used to blindly estimate the quality without the source video (no-reference). These two
distinct methodologies will assure the applicability of subjective quality assessment for
simulated and transmitted 3D videos.

The Mean Squared Error (MSE) [43] is a measure of how well a regression model
fits the data. It measures the average of the squared differences between the predicted
values and the actual values. The main advantage of using MSE is that it gives more
weight to larger errors, which is useful in situations where larger errors are more significant
than smaller ones. However, it can also be sensitive to outliers in the data, as they can
significantly increase the value of the MSE. The metric can be computed by using the
following formula:

d(X, Y) =
∑m,n

i=1,j=1(Yi,j − Xi,j)
2

mn
(4)

where m—video width, n—video height, and image data are in range [0,1].
The Peaksignal-to-Noise Ratio (PSNR) [43] metric depends only on the difference of

original and distorted, and more precisely, only on the L2-norm of this difference. The total
PSNR is an aggregated value that considers all processed frames as a single huge image
and then calculates the PSNR. Unlike the MSE, the metric has logarithmic scale and can be
calculated using the following formula:

PSNR = 10 · log10
MaxErr2 · w · h

∑w,h
i=1,j=1(xi,j − yi,j)

(5)

where MaxErr—maximum possible absolute value of color component (MaxErr = 1 in
VQMT), w—video width, and h—video height.

The Multiscale Structural Similarity Index Measure (MS-SSIM) [44] is a method for
measuring the structural similarity between two images. The MS-SSIM method operates
by breaking down the images into multiple scales and comparing the structural similarity
at each scale. This is performed by first applying a series of Gaussian filters to the images,
each with a different standard deviation, to create a set of smoothed images at different
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scales. Then, the SSIM index is computed for each pair of corresponding images at each
scale, and the results are combined into a single overall score.

The Naturalness Image Quality Evaluator (NIQE) [45] is a no-reference quality assess-
ment method, meaning it does not require a reference image to evaluate the quality of an
image. Instead, it uses statistical models to analyze the naturalness of the image by measuring
the deviation of the image statistics from natural image statistics. The NIQE algorithm extracts
several features from an image, including statistical measures such as mean, variance, and
skewness, and applies a set of regression models to these features to obtain a quality score.
The score ranges from 0 to 100, where higher scores indicate better image quality. NIQE has
been found to be effective in assessing the quality of images and has been used in various
applications, such as image compression, restoration, and enhancement.

4. Results and Discussions

A total of 22 viewers who were not familiar with the ITU-R BT.2021 standard were
asked to subjectively evaluate the overall video quality and the sensation of visual comfort
associated with several pairs of video materials. The criteria for visual discomfort included
feelings of nausea, eye strain, double vision, and headaches. The viewers were asked to
rate the videos on a scale that ranged from one to five points. To construct exact MB losses
in both views, we used the same parameters, the CRF, fixed length slice, motion vector
search method, etc., to encode both the left and right views of a stereoscopic video and
then applied the same loss rate to both video streams. Since the videos were encoded in
the NAL packet format, the exact numbers of NAL unit sequences and equal quantity of
NAL units were discarded from both video streams using the H.264/AVC video stream
analyzer [36,46], an approach that enabled the same MB error to be maintained in both
views. After the simulated network loss, the videos were decoded and the same error
concealment approach was applied to both distorted views. However, as it was a major
challenge to maintain equal MB losses and exact error propagation in both views, with
the losses sometimes deviated and misplaced due to disparity, the accuracy of the final
experimental results was affected.

In each trial, error concealment in one and two views were represented as A and B,
respectively. The two videos were repeated and then, during a 10 s period, the viewers
rated each one. Therefore, the total duration for each trial was 60 s, with the timing of
each experiment shown in Figure 10. Packet losses of 1% and 3% were used and error
concealment was performed for each video dataset. In the case of error concealment in
both views, the order of the playback of the packet losses and error concealment in one and
two views varied in different trials. To refresh the error bit stream and re-synchronize the
decoder after an error, different group of picture (GOP) sizes (intervals between I-frames)
were used in the encoded videos, which led to viewers observing artifacts with both short
and long durations. For our experiment, for a short duration, we specified the occurrence
of an I-frame every 25 frames (1 s), which meant that, for short-duration sequences, the
decoder could refresh its bit stream every second and, for long-duration ones, every 125
frames (i.e., every 5 s). As for every video sequence, there were 4 experiments with short or
long durations and 1% or 3% packet losses; so, there was a total of 28 trials to be scored.
The motivation for using these different packet loss rates and artifact durations was to
determine viewers’ different perceptions based on their subjective scores in terms of video
quality and visual comfort for these 3D videos.

4.1. Mean Opinion Score and Confidence Interval

The scores given by observers are averaged to produce the mean opinion score (MOS)
and confidence intervals (CI) as indicated below:

Ûjkr =
1
N ∑N

i=1 Uijkr (6)
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Here, Ûjkr is the score of observer i for the degradation j in video sequence k and
repetition r, and N is the number of observers. To better assess the accuracy of the results,
as it is desirable to combine a CI with each MOS, we used a 95% one in

CImean =

{
CIlower = Ûjkr − δjkr
CIupper = Ûjkr + δjkr

(7)

δjkr = (Nt−val × SEmean) (8)

where δjkr is the standards deviation of mean Ûjkr, depending on the critical t-value (Nt−val)
and standard error of the mean SEmean. For sample size N = 22, the degree of freedom is
d f = N − 1 = 21 with Nt−val = 1.721 according to the one-tailed test t-table for a 95% CI.

In the final subjective assessment session, viewers were asked to record their obser-
vations of video quality and visual comfort in each trial. After considering all the scores
between 0 and 5, the MOSs were calculated by Equation (6), with those for video quality
and visual comfort for 1% and 3% packet losses (Pkt Loss) shown in Tables 1 and 2, re-
spectively. The table shows the MOSs for the 7 stereoscopic video datasets used to study
the impact of MB-loss error concealment. The perceptual characteristics for both video
quality and visual comfort were measured for short and long GOP video sequences. In both
Tables 1 and 2, it can be seen that both views achieved higher MOSs than single ones
because, in the latter, binocular rivalry artifacts were induced in 3D perception.

Table 1. MOS of video quality for macroblock-loss error concealment.

MOS of Video Quality

Experimental Videos Short GOP Long GOP

Datasets
1% Packet Loss 3% Packet Loss 1% Packet Loss 3% Packet Loss

Both Single Both Single Both Single Both Single

3D_01 2.87 2.54 2.77 2.39 2.18 1.63 1.95 1.50
3D_02 2.99 2.58 2.69 2.32 2.05 1.55 1.92 1.52
3D_26 3.02 2.64 2.83 2.39 2.72 2.39 2.42 1.95
3D_38 3.23 2.75 3.09 2.53 2.76 2.34 2.54 2.14
3D_40 3.05 2.58 2.88 2.42 2.50 1.99 2.37 1.89
3D_45 3.47 2.89 3.05 2.57 2.81 2.31 2.71 2.18
3D_47 2.65 2.25 2.39 2.07 2.47 1.88 2.34 1.87

Table 2. MOS of visual comfort for macroblock-loss error concealment.

MOS of Visual Comfort

Experimental Videos Short GOP Long GOP

Datasets
1% Packet Loss 3% Packet Loss 1% Packet Loss 3% Packet Loss

Both Single Both Single Both Single Both Single

3D_01 2.91 2.55 2.61 2.24 2.49 2.00 1.94 1.53
3D_02 3.07 2.62 2.87 2.45 2.25 1.96 1.91 1.60
3D_26 2.93 2.56 2.77 2.37 2.64 2.28 2.44 1.96
3D_38 3.20 2.65 3.06 2.58 2.70 2.22 2.48 2.03
3D_40 2.79 2.36 2.64 2.21 2.66 2.21 2.59 2.20
3D_45 3.32 2.80 2.94 2.51 2.79 2.33 2.69 2.07
3D_47 2.59 2.20 2.33 1.84 2.37 1.86 2.25 1.79

A comparison of the scores is shown in the graph in Figure 11 in which the x-axis
indicates the 1% and 3% packet losses (PLs) and error concealments (ECs) for the 7 different
stereoscopic videos and the y-axis the viewer’s MOSs from 1 to 5 (a maximum MOS of 4.0
is shown as none of the experiments exceeded this value). Different loss rates for the same
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video are connected by a solid line, with the green and red ones indicating the connections
between the PL and EC values for both views and a single one, respectively. The significant
differences between the green and red lines show that there was a clear division between
the viewer’s scores obtained from the approaches for single and both views. Moreover, the
successive red lines demonstrate that binocular rivalry in one view generated much greater
visual degradation for viewers than that in both views (green lines).

Figure 11. Video quality and visual comfort charts: lines indicate MOS variations for different packet
losses and plot different artifact durations.

In order to analyze the accuracy and confidence of the given scores, 95% CIs were
calculated using Equation (8). In general, a small range of CIs indicates that, if the experiment
was repeated, we could be confident of obtaining a similar result whereas a large one suggests
less certainty and implies that results need to be collected from more people as CIs are
influenced by the number of people participating in the experiment. Using Equation (8), the
95% CI was calculated from the MOSs of 22 observers and, in most cases, lay between ±0.3,
which indicated high confidence in the viewers’ scores. Most evident was the viewers’ CIs for
single-view error concealment which, according to our experiment, were between ±0.23 for
most cases and less than those for error concealment in both views. This also indicated viewer
certainty in terms of the binocular rivalry artifacts imposed by single-view error concealment,
as shown in Figure 12, where 1% and 3% PLs and ECs of the 3D_01 dataset are shown as
01_1B and 01_3B for both views and 01_1S and 01_3S for a single one, respectively. The same
naming convention is maintained for the other experimental video datasets.
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(a) (b)

(c) (d)

Figure 12. The 95% CIs for MOSs of visual comfort and video quality for short- and long-duration
(GOP) videos with packet loss and error concealment. (a) Visual comfort: short-duration videos.
(b) Video quality: short-duration videos. (c) Visual comfort: long-duration videos. (d) Video quality:
long-duration videos.

4.2. Objective Quality Assessment

Video quality can be significantly impacted by network packet loss, which can lead
to visual discomfort, artifacts, and other issues. We used an MSE-, PSNR-, MS-SSIM-, and
NIQE-based technique to estimate the objective testing for network packet loss in videos.
The method allows us to determine if the simulation environment produced the necessary
losses in the left and right views of a stereoscopic video.

Both the short GOP videos and the long GOP videos underwent a comparison analysis,
as seen in Figures 13 and 14. For instance, in the following images, we have two stereo
films, 3D_01 and 3D_40. The MSE, PSNR, and MS-SSIM were used as full-reference metrics
for objective assessment. The red line in the graph represents a 1% packet loss, whereas the
green line represents a 3% packet loss. In a sense, the three percent error ended up being
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greater than the one percent loss. Moreover, the blue line depicts the bit rate of the videos,
where I-frames contain more bits, which can be seen as a continuous high pulse in between
the video frame bit rates in the short GOP video.

Figure 13. Objective quality assessment of simulated 3D_01 video sequence. Left column shows the
metrics for short GOP and right column shows the metrics for long GOP. X-axis shows the frame
numbers and Y-axis shows the metric for individual quality measure.
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Figure 14. Objective quality assessment of simulated 3D_40 video sequence. X-axis shows the frame
numbers and Y-axis shows the metric for individual measure.

During 3 percent packet loss, the MSE experiences a greater loss than when 1 percent of
packets are lost. Meanwhile, the PSNR declines when packet losses occur and significantly
worsens for extended GOP when there is no I-frame present during encoding. The same
outcomes in terms of structural difference brought on by mistake are likewise shown by
the MS-SSIM. The score that confirms the video has acceptable losses for greater inspection
during the subjective assessment is obviously reduced by the higher proportion of packet
losses. The no-reference video quality metric NIQE was then used to measure a video’s
naturalness. The red line in this example displays the original encoded video without any
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degradation. In contrast, the green line indicates the score for 1% pkt loss and the blue line
indicates the score for 3% pkt loss.

If there is any ambiguity or mismatch in the bit rate or an unwelcome drop or rise in
the video, the video is rejected and re-run through the simulation environment in order
to pass the objective assessment part. To determine if loss rates are correctly caused, the
identical approach is applied to all experimental video datasets. With the help of all of
these assessments, we would be able to verify that the simulation-based methodology is
maintained throughout the whole study.

4.3. Analysis of Student’s T-Test and Statistical Significance

In our approach, we used the paired-sample t-test to compare the means of two
variables for a single group by computing the differences between the values of these
variables for each case and testing whether the average differed from zero. This sample was
then used to compare the mean of a single sample of scores with a known or hypothetical
population mean (Hmean) [47]. Based on the null hypothesis, we computed whether one
group of samples was better than the other through a t-probability distribution, where N
was the equal number of samples in each distribution and S1, S2 the two sample groups.
The Ttest was the Student-t test value used to express the CIs for a set of data and compare
the results obtained from different experiments. The aim was to state the possible range of
true mean, Ûtrue, from the measured mean Ûjkr with probability.

Ûtrue = Ûjkr ± Ttest
Sjkr√

N
(9)

Ttest =
Xmean−Hmean√
∑N

i=1(Xi−Xmean)2

N(N−1)
(10)

where Xi represents the differences between sample groups S1 and S2, and Xmean represents

the mean of these differences (Xmean = Xi
N = ∑N

i=1(S1i−S2i)
N ). The calculated Student’s t-test

value Ttest was compared with the critical (threshold) value Tth corresponding to the degree
of freedom (d f ) calculated as d f = N − 1 and then the confidence level, i.e., 90% or 95%,
was chosen. If Ttest ≥ Tth, H0 was rejected; otherwise, H0 was accepted. The critical
threshold Tth was estimated from the probability of obtaining test statistics called the
P-value. The obtained Ttest value, was used to calculate the P-value to determine how
confident we are that the difference between the two distributions was significant. In
statistics, the least degree of significance that may be observed while still rejecting the null
hypothesis is referred to as the P-value. To put it another way, the less significant it was, the
stronger the evidence was that supported the alternative theory. The value of the integral
has to be found by the following integral in order to satisfy the area under the t-probability
distribution in the interval (a, b). In the case when the degree of freedom, d f = 21, and
Gamma, the gamma function defined by the integral [47] was used,

P−Value =
∫ b

a f (Ttest)dTtest (11)

The validity of a claim made about a population may be investigated via the use of
hypothesis testing. This experiment compared the error concealment in both views (S1) to
the error concealment in just one view (S2). We performed an analysis on the t-test scores
that were derived from Equation (11) and estimated the p-value using Equation (10). Con-
sidering that the suggested method was inferior to those already in use for concealing, the
new population mean (Xmean) ought to have been lower than or equal to the hypothetical
population mean (Hmean), as shown here:

Null Hypothesis H0 : Xmean ≤ Hmean

Alternative Hypothesis HA : Xmean > Hmean
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The findings that supported the alternative hypothesis revealed that the proposed strat-
egy was superior to other ways that are already in use. We were only interested in one side of
the distribution; thus, in order to compute the result of the t-test, we used what is known as a
one-sided test, also called a one-tailed test. Although a lower p-value (usually ≤ 0.05) gave
strong evidence against the null hypothesis, as this hypothesis could be rejected, there would
be a statistically significant difference between the two populations, which would aid in the
comprehension and demonstration of this difference. Table 3 classifies statistical significance
into numerous categories based on different p-values.

Table 3. Categories of statistical significance based on p-value.

Type Significance p-value Comment

ExSS Extreme statistical significance ≤0.001 Extremely strong evidence against the null hypothesis

VSS Very statistical significance ≤0.01 Very strong evidence against the null hypothesis

SS Statistical significance ≤0.05 Strong evidence against the null hypothesis

NqSS Not quite SS ≤0.1 Marginal

NSS Not SS >0.1 Fail to reject null hypothesis

The MOSs obtained from 22 participants were then compared using a one-tailed
paired (dependent) t-test, and the p-values specified in Equation (11) were computed to
establish the statistical significance between the 2 populations, taking into account the
null hypothesis that MB error concealment in both views is worse than that in a single
view. Accepting the null hypothesis requires a p-value ≤ 0.05, degrees of freedom (df)
of (N − 1) = 21, and Ttest ≤ 1.721 for a 95% confidence interval. Otherwise, it would be
rejected and replaced with a substitute. On the basis of the MOSs, the t-test and p-value
scores were generated to examine the statistical significant values of error concealments
in single and both views for short and long GOP sequences, with the results shown in
Tables 4 and 5 demonstrating that there were varying degrees of significance for different
p-values, as indicated in Table 3.

Table 4. Statistical significance analysis of video quality and visual comfort of error concealments in
short GOP sequences.

Comp. of Single and Both Views Video Quality Visual Comfort

PLR (%) Video Datasets Ttest p-Value Stat. Sig. Ttest p-Value Stat. Sig.

1% PL and EC

Indoor Sofa 2.5903 0.00854 VSS 2.1841 0.02022 SS
Bicycle Ride 3.6643 0.00072 ExSS 3.4265 0.00127 VSS
State Library 2.8603 0.00469 VSS 2.6045 0.00828 VSS
Princess Bridge 4.4514 0.00011 ExSS 3.1701 0.00231 VSS
La Trobe Corridor 4.0153 0.00031 ExSS 2.3050 0.01574 SS
La Trobe Reading 3.0548 0.00351 VSS 3.4056 0.00133 VSS
La Trobe Exterior 3.3775 0.00142 VSS 2.4221 0.01228 SS

3% PL and EC

Indoor Sofa 3.8847 0.00043 ExSS 3.7059 0.00065 ExSS
Bicycle Ride 2.6516 0.00746 VSS 2.5249 0.00984 VSS
State Library 2.6291 0.00784 VSS 2.7456 0.00606 VSS
Princess Bridge 6.1220 <0.00001 ExSS 3.9772 0.00034 ExSS
La Trobe Corridor 2.8565 0.00047 ExSS 3.7742 0.00056 ExSS
La Trobe Reading 3.7413 0.00060 ExSS 3.1259 0.00255 VSS
La Trobe Exterior 1.8838 0.03676 SS 2.1597 0.02125 SS

PLR = packet loss rate, PL = packet loss, EC = error concealment, Stat. Sig. = statistical significance.
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Table 5. Statistical significance analysis of video quality and visual comfort of error concealments in
long GOP sequences.

Comp. of Single and Both Views Video Quality Visual Comfort

PLR (%) Video Datasets Ttest p-Value Stat. Sig. Ttest p-Value Stat. Sig.

1% PL and EC

Indoor Sofa 2.6845 0.00694 VSS 2.3228 0.01516 SS
Bicycle Ride 2.5989 0.00828 VSS 3.0603 0.00297 VSS
State Library 4.5819 0.00008 ExSS 4.4152 0.00012 ExSS
Princess Bridge 3.4693 0.00115 VSS 3.1775 0.00227 VSS
La Trobe Corridor 5.0294 0.00003 ExSS 2.0932 0.02433 SS
La Trobe Reading 3.1865 0.00222 VSS 5.6085 <0.00001 ExSS
La Trobe Exterior 4.3416 0.00014 ExSS 3.1509 0.00241 VSS

3% PL and EC

Indoor Sofa 2.5493 0.00934 VSS 2.8627 0.00466 VSS
Bicycle Ride 3.3732 0.00144 VSS 2.9815 0.00356 VSS
State Library 4.5425 0.00009 ExSS 2.6932 0.00681 VSS
Princess Bridge 2.7983 0.00054 ExSS 3.5398 0.00097 ExSS
La Trobe Corridor 4.1138 0.00025 ExSS 4.2103 0.00019 ExSS
La Trobe Reading 3.1755 0.00228 VSS 3.2616 0.00187 VSS
La Trobe Exterior 3.8512 0.00046 ExSS 3.5696 0.00091 ExSS

PLR = packet loss rate, PL = packet loss, EC = error concealment, Stat. Sig. = statistical significance.

Tables 4 and 5 provide the results of the statistical significance analysis of error conceal-
ments in both views against one view, together with their estimated t-test and p-value scores
and distinct significant criteria assigned depending on the threshold levels established in
Table 3. We may examine the psychovisual changes in the MOSs induced by binocular
competition in 3D depth perception based on the statistical significance thresholds. For
short GOP sequences, 28 comparison studies were undertaken, and statistical significance
was attained for both 1% and 3% packet losses in all video datasets. Ten of them displayed
great statistical significance by rejecting the null hypothesis unequivocally. In addition,
the statistical significance values of all the video datasets, including 13 very significant
ones, demonstrated that, for a short GOP sequence, MB error concealment is significantly
superior in both perspectives compared to a single view in terms of visual comfort and
video quality. Since 26 of the 28 experiments unambiguously rejected the null hypothesis
for lengthy GOP sequences using VSS or ExSS, the effect of binocular rivalry on single-view
error concealment was proven.

Moreover, more ExSS in the 3% than 1% packet losses explained that binocular rivalry
artifacts affected them more due to more artifacts being induced for packet losses and error
concealment afterwards. Even in the matter of comparing Tables 4 and 5, it can be found
that more VSS and ExSS are analyzed for longer GOP than short GOP. It also explains that
if artifacts such as binocular rivalry sustain a longer period of time it creates more visual
discomfort in 3D QoE.

It was found that MB-loss error concealment in both views rejected the null hypothesis
more often and supported the alternative hypothesis that error concealment in both views
is superior to that in one. The null hypothesis stated that error concealment in one view
is superior to that in the other two views. However, it was found that this was not the
case. Instead, it supported the alternative hypothesis that error concealment in both views
is superior to that in one. The Ttest results offered quantitative evidence for rejecting
the null hypothesis, in contrast to the statistical evidence that was given by the MOSs
and the Student’s t-test analysis. As a result of this, a severe binocular rivalry artifact
can be seen in the stereoscopic video’s MB-loss error concealment in a single view. This
is the leading cause of viewers’ lack of visual comfort when watching transmitted or
broadcasted stereoscopic videos, which were subjected to real-life simulated transmitting
conditions and observed in a standardized assessing environment. Stereoscopic videos
were tested using real-life simulated transmitting conditions and were evaluated in a
prescribed scientific environment.
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5. Conclusions

This study identified the binocular sensitivity and rivalry effects of error concealment
and showed that 2D EC methods are not acceptable for 3D videos without adjustments.
The binocular rivalry artifact’s effect on stereoscopic video transmission was tested using
independently encoded streams. For a single view, the MOS score for packet loss and error
concealment falls between 2.25 and 2.75, while on both views the range is 2.65–3.37 for a
1% point loss in the short GOP sequences. The same holds for a 3% packet loss, such as
2.39 to 3.09 for both and 2.07 to 2.53 for single-view artifacts. Due to the adverse effect of
binocular rivalry, a single view may score lower than both views. Additional analyses of
the visual comfort of long GOP or MOS suggest similar concerns. To make it profound, we
expanded the method to statistical t-test analysis and discovered that the negative effect
is so pervasive that, in the vast majority of cases, the comparisons between single and
both perspectives are statistically significant (SS) to extremely significant (ExSS): 13 out
of 14 (93%) video quality metrics for short GOP are VSS and ExSS; 10 out of 14 (71%)
visual comfort measurements are VSS and ExSS. In addition, the score for lengthy GOP
increases to 100% for video quality and 86% for visual comfort. However, utilizing this basic
approach, binocular rivalry disrupts the HVS and produces eye strain, headaches, nausea,
weariness, etc. This work analyzed binocular rivalry to create a robust error-resilient 3D
video communication system without perceptual ambiguity or rivalry. This investigation
will enable researchers to develop real-time error concealment algorithms for 3D videos
that do not degrade visual perceptual comfort.
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Appendix A. Encoding and Decoding Process

In our tests, the command initiated the encoding process below:

# lencod.exe − d < configuration file >

where the configuration file included all the settings for parameters required to encode
the video sequence and create the bit stream. Below is a brief summary of the specific
parameter values we utilized in our experiment to encode the videos: Table A1. In our
experimental movies, other elements, including the constant rate (CRF), were employed to
keep the video quality consistent. Just the most recent encoded frame was utilized as the
reference frame, and the search range for motion estimation was set to ±32 pixels. Subpixel
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precision and sub-MB motion compensation were also permitted. The loss was induced by
applying the following command:

#rtp_loss.exe < input_file > < output_file > < loss_rate in % > [skip packets]

Table A1. Parameters of encoder configuration file.

InputFile = "input.yuv" # Input sequence
FramesToBeEncoded = 250 # No of frames to be coded
FrameRate = 25.0 # Frame rate (1–100)
OutputFile = "output.264" # Bitstream
ProfileIDC = 100 # Profile IDC
IntraPeriod = 25 # Period of I-picture
IDRPeriod = 0 # Period of IDR picture
QPISlice = 28 # Quant.param for I slices
QPPSlice = 28 # Quant.param for P slices
SearchRange = 32 # Max search range

NumberReferFrm = 1
# Previous frames for
inter-motion search (0–16)

Log2MaxFNumM4 = −1 # −1
SymbolMode = 1 # Entropy coding
OutFileMode = 1 # Output file mode, 1:RTP
SliceMode = 1 # Slice mode (1=fxd mb)
SliceArgument = user-defined # Slice argument
num_slice_grp_m1 = 0 # No. of slice groups - 1
slice_grp_map_typ = 0 to 6 # Different group types
ConfigFileName ="sg0conf.cfg" # slice_group_map_type 0,2,6

Finally, the decoding of the error-impaired videos was initiated by the following
command:

# ldecod.exe < configuration file >

where the user’s experimental needs may be taken into account while setting up some of
the decoding settings, which were specified in the configuration file. These criteria include
some of the following. Table A2 lists specific decoder configuration file parameters.

Table A2. Parameters of decoder configuration file.

InputFile = "test.264" # H.264/AVC coded bitstream
OutputFile = "test_dec.yuv" # Output file, YUV/RGB
RefFile = "test_rec.yuv" # Ref sequence (for SNR)
WriteUV = 1 # Write 4:2:0 chroma components
FileFormat = 1 # NAL(0=AnnexB,1=RTP packets)

ConcealMode = 1 # Err concealment, 0: Off,
# 1: FrameCopy, 2: MotionCopy
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