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Abstract: Inertial measurement unit (IMU) sensors are widely used for motion analysis in sports 

and rehabilitation. The a�achment of IMU sensors to predefined body segments and sides 

(left/right) is complex, time-consuming, and error-prone. Methods for solving the IMU-2-segment 

(I2S) pairing work properly only for a limited range of gait speeds or require a similar sensor con-

figuration. Our goal was to propose an algorithm that works over a wide range of gait speeds with 

different sensor configurations while being robust to footwear type and generalizable to pathologic 

gait pa�erns. Eight IMU sensors were a�ached to both feet, shanks, thighs, sacrum, and trunk, and 

12 healthy subjects (training dataset) and 22 patients (test dataset) with medial compartment knee 

osteoarthritis walked at different speeds with/without insole. First, the mean stride time was esti-

mated and IMU signals were scaled. Using a decision tree, the body segment was recognized, fol-

lowed by the side of the lower limb sensor. The accuracy and precision of the whole algorithm were 

99.7% and 99.0%, respectively, for gait speeds ranging from 0.5 to 2.2 m/s. In conclusion, the pro-

posed algorithm was robust to gait speed and footwear type and can be widely used for different 

sensor configurations. 

Keywords: sensor location; wearable sensor; IMU-2-segment pairing; I2S pairing; stride-time  

estimation; side identification; IMU sensor placement 

 

1. Introduction 

Thanks to technological advances, inertial measurement units (IMUs) are available 

in small sizes, at low cost, and are widely used for biomedical applications such as gait 

analysis [1], rehabilitation [2], sports [3–5], injury prevention [6,7], and activity monitoring 

[8]. In general, the data from single or multiple IMUs placed on body segments are fused 

to obtain spatiotemporal parameters [9] or joint orientation [10] during movement. While 

the setup time and ease of preparation are crucial for the popularity of the wearable sys-

tem, the user must often be very careful to place sensors correctly on each body segment, 

as the motion analysis algorithms usually rely on sensor configuration. Simple and quick 

installation/uninstallation of sensors has been considered the highest desired characteris-

tic for practical use of IMU in clinics [11]. We can consider two types of sensor misplace-

ment. The first assumes that the sensor is placed on the correct segment but its orientation 

with respect to the underlying bone is arbitrary. In this case, the placement error is usually 

minimized by a functional or anatomical calibration that aligns the sensors with the ana-

tomical framework of the segment [12]. The second type of misplacement which is the 
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subject of this study, is where the sensor is not placed on the correct segment, for example, 

when switching between the left and right limb or between the lower and upper limb. 

While a verification procedure could reduce this error, it adds additional load to the user 

who may not have the technical knowledge. Moreover, it extends the installation time 

which should be limited, especially when it comes to measurements on patients. In addi-

tion to this, any user is prone to human error, especially in multi-sensor applications 

where each sensor has to be a�ached to a specific body segment. The error is even more 

important for applications where the installation of the sensors should be carried out by 

the patient or his/her entourage. This study investigated solutions for this second type of 

error, where an automatic pairing of the IMU to the segment (I2S) was proposed to over-

come this problem and make the application of IMU motion capture systems simpler. 

Several algorithms have been previously proposed for automatic I2S pairing [13–23]. 

Weenk et al. [22] suggested an algorithm that identified the body segment of the IMU 

sensors using a decision tree with fixed thresholds, and features were extracted from the 

amplitude of the IMU signal. The algorithm works appropriately for the same sensor con-

figuration and self-selected range of gait speed in healthy subjects and patients with ante-

rior cruciate ligament injury. However, the amplitude of the IMU signal is highly depend-

ent on the gait speed [24,25], and the performance of the algorithm depends on the walk-

ing speed [22]. Mannini et al. [21] developed an accelerometry-based algorithm to reco-

gnize the sensor location on the ankle, thigh, hip, arm, and wrist using features in time 

and frequency domain that compared the amplitude of all sensors together. Although it 

solved the problem of gait speed, it required having the same sensor configuration, which 

limits generalizability. Other studies [18,19] developed algorithms to detect the location 

of smartphones in the breast/hip pocket, bag, or hand during normal walking. Weenk et 

al. [22] also proposed an algorithm to identify the side by extracting the orientation of the 

sensors in the global frame and computing the correlation coefficients with the sensor on 

the sacrum. Another study [25] proposed a method to categorize the side of the feet sen-

sors to side 1 and side 2, but it could not classify to the right and left. Therefore, to the best 

of our knowledge, there is currently no robust and generalizable method to identify the 

location and side of IMU sensors on body segments during gait analysis. 

The main objective of this study was to develop and validate a biomechanically-

driven machine learning algorithm that could accurately identify the location and side of 

IMU sensors on body segments. To ensure the algorithm’s robustness, we tested it under 

varying conditions, including different gait speeds, footwear types, and pathological gait 

pa�erns. We also designed the algorithm to accommodate a wide range of sensor config-

urations, whether they involve a single sensor or multiple sensors. In developing the al-

gorithm, we extracted features from individual sensors without making any inter-sensor 

comparisons. To improve accuracy in a wide range of gait speeds without complicating 

the I2S pairing, we developed a method to estimate the stride time when the sensor’s lo-

cation was unknown. We scaled the IMU signals by the estimated stride time to minimize 

the dependency of the I2S pairing algorithm on gait speed. 

2. Materials and Methods 

2.1. Experimental Protocol 

A total of 34 participants, including 12 healthy subjects and 22 patients with medial 

compartment knee osteoarthritis (OA), participated in this study (Table 1). Eight IMU sen-

sors (Physilog 4, GaitUp, Lausanne, Swi�erland) were a�ached to the feet, shanks, thighs, 

the sacrum, and the trunk and synchronously recorded data at 200 Hz. Each IMU meas-

ured the tri-axial angular velocity (����  ����  ����  ) and acceleration (����  ����  ����  ). 

The sensor locations were noted for validation and the sensor orientations with respect to 

the body segments were arbitrary. Participants were asked to walk along the lab back and 

forth at three different gait speeds. A pair of instrumented insoles (Pedar, Novel, Munich, 

Germany) were fixed in the shoes and were used as a reference system to measure the 
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contact time of hind foot with the ground. This insole has been reported as accurate and 

reliable as force plate in gait measurements [26]. So, we used it as the gold standard for 

estimation of the stride time. To investigate the robustness of the algorithm to footwear 

type, extra trials were collected without insoles. To avoid long test duration, these extra 

trials were performed only at self-selected speed (Figure 1). 

Table 1. Participant demographics. 

Group Age Sex Height (cm) Mass (kg) 

Healthy 

subjects (N = 12) 
34.3 ± 9.5 

11 males 

1 female 
177.5 ± 6.5 77.3 ± 16.1 

Patients (N = 22) 45.4 ± 11.6 
16 males 

6 females 
173.7 ± 10.1 87.6 ± 15.7 

In order to simulate abnormal gait pa�erns and to consider the effect of instruments 

on gait, healthy subjects repeated the test while wearing an ankle–foot orthosis (Agilium 

Freestep, O�obock, Duderstadt, Germany) that decreased the foot progression angle [24] 

and tibia varus [25]. For each condition (i.e., with/without brace or insole) and each gait 

speed (slow, self-selected, and fast), six straight walking bouts with minimum two gait 

cycles were captured. Wri�en informed consent was obtained from all participants, and 

the study was approved by the local ethics commi�ee (CER-VD protocol 2020-01894). 

 

Figure 1. Graphical summary of the experimental protocol, including healthy subjects and patients. 

All subjects walked at three speed levels: self-selected, slow, and fast while wearing an instrumented 

insole. All subjects also walked at self-selected speed after removing the insole. To investigate the 

deviated gait pa�ern, healthy subjects walked with the brace at three speed levels. OA: osteoarthri-

tis. 

2.2. I2S Pairing 

The I2S pairing consists of two parts: automatic segment detection (i.e., trunk, sa-

crum, thighs, shanks, feet) and then side (left and right) identification for lower limb seg-

ments. Prior to analysis, all IMU signals were low-pass filtered (recursive Bu�erworth 4th 

order with cut-off frequency at 4 Hz) to remove the noise [27,28]. 

2.2.1. Automatic Segment Detection 

We assumed that both the distal location of the sensor and the higher gait speed 

would increase the amplitude of the IMU signal. This is consistent with a previous study 

[25] in which the amplitude of IMU signals was higher at distal segments than at proximal 

and all changed with gait speed. Therefore, to find robust criteria, we first estimated the 

stride time as a proxy of gait speed and scaled the IMU signals before feature extraction 

since absolute thresholds typically change with gait speed [22,25] and relative compari-

sons of features [25] at different locations would limit the application of the algorithm to 
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the similar sensor configuration. In this regard, we first estimated the mean stride time for 

each walking bout when the sensor location is unknown. Then all IMU signals were scaled 

by multiplication by the mean stride time to reduce the effect of gait speed and amplify 

signal difference between segments. The relevant features from |Gyr| and |Acc| were 

extracted for a moving window (without overlapping) equal to one mean stride time. The 

median of the features for different windows in each walking bout was utilized for ma-

chine learning (Figure 2). 

 

Figure 2. Overview of the I2S pairing with the IMU input corresponding to each of the used signals. 

The inputs of the side identification algorithm are the foot, shank, and thigh sensors detected in the 

first part. 

Stride-time estimation—Existing algorithms for estimating gait cycle or stride time 

rely on knowing the location of the sensor on a specific body segment [9,29–31], which is 

not useful here. We proposed a generic algorithm to estimate the stride time when the 

sensor location is unknown. In this regard, two analyses were performed on time and 

frequency domain. In frequency domain, the power spectrum of each IMU signals and 

norms (i.e., 8 signals: (����  ����  ����  |���| ����  ����  ����  |���|) were computed (FFT 

function in Matlab 2021a [32]), and the first peak higher than a certain threshold was iden-

tified in each of eight spectrums. As initial estimates of the stride time the inverse of the 

eight multiplicative inverses of dominant frequencies were considered (������ �������). 

Then, we did an estimation in time domain, by assuming that the integration of each an-

gular velocity component (���� , ����  and ���� ) during a gait cycle should be close to 

zero, because the orientation of the sensor at the beginning and at the end of a gait cycle 

should be the same. Thus, for each IMU, we found the minimum window size that mini-

mize the root mean square of the residuals of three components of angular velocity. In this 

regard, the window size (WS) was incrementally increased ( ����� = ��� +
�

�������� ���������
) from the initial value of ��� = 300 ms. The initial value of 300 ms was 

selected to reduce the computation time since the stride time even in fast walking is 

greater than 300 ms. For each window size, the residual was computed as root mean 
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square of the median of residuals over different not-overlapping windows in each walking 

bout (Equations (1)–(4)). 

���� =  (����
�)� + �����

��
�

+ (����
�)� (1) 

with 

����
� = ������  � � ���� 

�����

�

�      (2) 

����
� = ������  � � ���� 

�����

�

� (3) 

����
� = ������  � � ���� 

�����

�

�      (4) 

��� � = 0 ∶  ���  ∶  � × ��� , � ∈ �    &   (� × ���) < ������ ��������  

To avoid errors sourced from gait initiation and termination (that the residuals are 

not zero theoretically), the median was used to select the residuals over different windows 

in each walking bout. The window size associated with the first index n that minimizes 

the residual in Equation (1) was considered as the second estimate of the stride time as 

shown in Equations (5) and (6): 

������ ������������ �������� = ����      (5) 

 �� = min��������(����)� (6) 

In the final step, out of eight estimates of stride times based on frequency analysis, 

the one closest to the second estimate of stride time based on residual analysis was se-

lected as the mean stride time of the walking bout (Equations (7) and (8)). 

���� ������ ���� = ������ �������
�̂

 (7) 

 �̂ = �������  �������� �������
�

  −   ������ ������������ ����������    1 ≤ � ≤ 8 (8) 

This procedure was performed for each IMU sensor. In the case of multiple sensors, 

the median of the stride times based on different sensors was considered as the stride time. 

Scaling IMU signal by stride time—The amplitude of the IMU signals is affected by 

sensor location and walking speed. To minimize the effect of walking speed and have 

be�er separation between segments regardless of walking speed, we scaled the IMU sig-

nals by multiplying by stride time. This way, the higher amplitude signal in fast walking 

was reduced via multiplication by the smaller stride time, and the low amplitude signal 

in slow walking was amplified by larger stride time. We assumed that the scaling should 

minimize the effect of gait speed on the kinematic profile (e.g., angular velocity, and ac-

celeration) of a single segment while be�er separating the kinematic differences between 

segments. 

Feature extraction—To obtain a more general model regardless of sensor orientation 

with respect to body segment, for each IMU, the norm (i.e., |���| ��� |���|) and deriva-

tive of the norm of the gyroscope and accelerometer (i.e., |���|� and |���|�) were used for 

feature extraction. We extracted the min, max, interquartile, 10th, and 90th percentiles, 

mean, median, kurtosis, skewness, standard deviation, and mean absolute deviation. We 

also extracted further features as follow: the percentage of motionless period, the number 

of peaks and valleys of |���| and |���|, and the number of zero crossing of |���|� and 

|���|� . The motionless period was defined as the time that |���| < 10
���

�
  and |���| <

1.3 �. 

Since the window size can affect some features, instead of se�ing a fixed value, a not-

overlapping window size of one stride time was personalized for feature extraction. The 
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median of features extracted from several windows in one walking bout was used for ma-

chine learning. Median was used rather than mean to avoid outliers from gait initiation 

and termination. Since the features were from different sources (gyroscope and accelerom-

eter and their derivatives) with different ranges and units (deg/s, deg/s2, m/s2, m/s3, and 

unitless), we normalized the features using the z-score method [33]. 

Feature selection—To avoid overfi�ing, the number of features was reduced by 

ranking them and selecting an optimum number [34]. The minimum redundancy maxi-

mum relevance (MRMR) method was used to rank features based on the importance score 

[35,36]. Then the number of sorted features was incrementally increased to observe the 

performance of the trained model on the development dataset. Three criteria were used 

to assess the performance of the model: misclassification error (MCE), F1-measure (har-

monic mean of precision and sensitivity), and area under the roc curve (AUC). The per-

formance graph versus the number of features was considered to select the optimum num-

ber of features. 

Machine learning model training—Healthy participants were randomly divided 

75–25% into training and development sets, and patients were considered only for the test 

set such that all of a participant’s data resided in only one set. Using the selected features, 

we trained two common machine learning models, including decision tree (gini criterion) 

and support vector machine (with linear, cubic, and Gaussian kernels) in Matlab 2021a. 

To select the classifier, we compared their accuracies using repeated cross-validation [37]. 

The model’s input could be one to eight IMUs a�ached to one of the body segments, in-

cluding foot, shank, thigh, sacrum, or trunk. 

2.2.2. Side Identification of Lower Limb Segments 

Once the segment of each IMU was detected, the side (i.e., right/left) needed to be 

identified for thigh, shank, and foot. The proposed algorithm starts with right/left segment 

identification of feet sensors, and then using this information, right/left shank and thigh 

were recognized. 

Foot side—Assuming that the sensor a�achment can be arbitrary, the orientation of 

the sensor with respect to the foot is then unknown. Aligning the sensor frame to the an-

atomical (with the Y-axis as vertical, the X-axis of walking direction, and the Z-axis from 

left to right) would lead to an inverse sign of the gyroscope signal during internal rotation 

and eversion of right and left feet while the similar sign for plantar flexion (Figure 3). 

Therefore, after aligning the sensor frame with the anatomical foot frame, the internal ro-

tation of the right and left foot would result in positive and negative signs of ���� , re-

spectively. The different signs also occur in eversion in ����  and lateral acceleration in 

���� . To benefit from these three discriminant features between right and left, first, the 

rotations that align the sensor frame with the foot frame are required. This procedure is 

called functional calibration and was performed in two steps: first, the Y-axis of the foot 

sensor was aligned with gravity during the foot flat period, and second, rotation was per-

formed around the new Y-axis to align the Z-axis with the mediolateral axis of the foot 

[38]. We hypothesized that the main movement of the foot during gait is plantar/dorsal 

flexion that occurs around Z-axis. Therefore, a principal component analysis (PCA) on the 

gyroscope signals was performed during gait to find the principal axis of the movement 

[38]. However, the direction of the axis (from left to right or vice versa) was not fixed yet. 

To confirm the direction, the sign of pitch angular velocity after the foot flat period was 

used to correct the direction of the Z-axis. We selected the sign of pitch angular velocity 

of the foot because almost in all normal and pathologic pa�erns, to clear the foot from the 

ground, the hind foot leaves the ground sooner than the forefoot, which leads to a negative 

sign of ���� . The following steps summarize the side identification of the foot sensor. 

1. Foot flat detection: to approximately detect the period that the foot is flat, find the 

periods that |Gyr| < 5 deg/s for at least 15% of the stride time (in fast walking, the 

foot flat period can decrease up to 15% of the stride time). 



Sensors 2023, 23, 3587 7 of 15 
 

 

2. Functional calibration 

 Rotate the signal to align Y-axis with gravity during foot flat. 

 Find the mediolateral axis of the foot by implementing a PCA on the rotated 

signal. 

 Rotate the signal around the new Y-axis to align Z-axis with foot mediolateral 

axis. 

 Check the sign of ����  after the foot flat; if positive, rotate the signals by 180 

degrees around Y-axis to have the data in anatomical frame with the Z-axis 

pointing from left to right for both feet. 

3. Feature extraction 

 Find the index of the first peak of |���| after foot flat.  

 At this index, extract the value of ���� , ���� , and ���� . 

 Take the median of these three features for several gait cycles in each walking 

bout. 

4. Decision tree for side identification of the foot sensor. 

 
(a) (b) 

Figure 3. (a) Anatomical frame of the foot: with the Y-axis aligned with the gravity in the foot flat 

period, the Z-axis aligned with the plantar/dorsal flexion with direction from left to right, and the 

X-axis formed by the external cross of the Y and Z. In this frame, the plantar flexion of both feet is 

reflected as negative signals in Gyr� . However, the internal rotation and eversion of the right foot 

led to positive signals in Gyr�  and Gyr� , respectively, while negative on the left side. (b) Foot clears 

the ground by rotating negatively around the Z-axis in almost all pathologic pa�erns. 

Shank and thigh side—The side of the foot was used to determine the side of the 

shank/thigh. During the foot flat period (identified by the foot sensor), the contralateral 

shank and thigh are in swing phase with higher amplitude of IMU signals. Therefore, 

during the foot flat period (right or left does not ma�er), the average of |���| was com-

puted for both shanks/thighs. The sensor with a smaller value was labeled similarly to the 

associated foot. 

2.3. Validation 

To evaluate the accuracy of stride-time estimation, we used data from the Pedar in-

sole as reference system. To compute the reference stride time, we considered the time 

difference between two consecutive heel strikes detected when the force reached a thresh-

old equal to 5% of body weight [9]. This threshold was selected based on the previous 

study [9] to have a similar reference system. The mean (SD) error of the estimated stride 

time was reported only for the tests with the Pedar system (see Figure 1). 

To compute the classification metrics, we used the one-vs.-rest strategy [33] and con-

verted a multiclass problem to a series of binary tasks for each sensor. So, we reported 

each sensor’s precision, accuracy, sensitivity, specificity, and F1-measure. To report the 

performance of the whole classifier, we used weighted analysis [39] because we had im-

balanced classes for the first part of the algorithm (the sacrum and trunk were half of the 

feet, shanks, and thighs). In addition to validating the whole algorithm, we evaluated the 

performance of side identifications of foot and shank/thigh separately because bilateral 

IMU on feet is a very common sensor configuration. In this regard, the algorithm’s input 

was only feet sensors for foot side identification, and the output was right and left foot. 
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For shank/thigh side identification, the input was a foot sensor with its side label 

(right/left) and both right and left shank/thigh sensors, and the output was right 

shank/thigh and left shank/thigh. To investigate the performance of the algorithm with 

less than eight sensors, we examined all possible sensor configurations, including single 

sensor to seven sensors. 

3. Results 

In total, 504 walking bouts (216 with insole, 216 with insole and brace, 72 without 

insole and without brace) of healthy subjects and 528 walking bouts (396 with, 132 without 

the insole) of patients with medial compartment knee OA were obtained. Each walking 

bout included at least two gait cycles and a maximum of ten gait cycles. 

3.1. Stride-time Estimation 

Figure 4 indicates the frequency spectrum of eight components of the gyroscope and 

accelerometer signals for one walking trial of a healthy subject where a threshold of 0.5 

was selected to identify the first frequency peak. The frequency value obtained through 

the optimization process (Equation (1)) is illustrated with the vertical dashed line. 

 

Figure 4. Fast Fourier transform of the gyroscope and accelerometer signals for one walking bout of 

a healthy subject for the trunk sensor. The first estimates of the stride time corresponding to the first 

peak in the frequency spectrum with a minimum amplitude of 0.5 are indicated by . The do�ed 

vertical line shows the second estimate of stride time obtained through Equation (1). The solid ver-

tical line indicates the measured stride time using the instrumented insole. In this case, the first 

estimates of stride time ( ) extracted from Gyr� , Gyr� , and Acc�  were similar and had a minimum 

absolute difference with the second estimate (do�ed line), so it was considered as the mean stride 

time of this walking bout. 

The mean ± standard deviation of the error for estimating the averaged stride time 

compared to reference system (instrumented insole) was 0.00 ± 0.08 s. The error was 0.02 

± 0.18 s when only dominant frequencies from fast Fourier transform were utilized. The 

best and worst accuracies were for the foot sensor (0.00 ± 0.05 s) and sacrum sensor (−0.06 

± 0.27 s) before taking the median of all sensors. 

3.2. Impact of Stride Time Scaling 
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The gait speed varied in a wide range between 0.5 and 2.2 m/s. To reduce the effect 

of gait speed on IMU signals, before feature extraction, gyroscope and accelerometer sig-

nals were scaled by multiplying by the mean stride time. After scaling, as shown in Figure 

5 for a single sensor (i.e., Figure 5a vs. Figure 5b and Figure 5c vs. Figure 5d), the signals 

at different speeds became more similar to each other and less dependent on walking 

speed. 

Furthermore, as shown in Figure 5c, the max amplitude of |GyrFoot| during stance at 

slow walking was very similar to the norm of angular velocity of the thigh sensor 

|GyrThigh| in fast walking, while after scaling, this feature became more discriminant be-

tween the sensors (Figure 5d). The boxplot of the features indicated that scaling resulted 

in more intraclass similarity and higher interclass difference. For example, the maximum 

of |Gyr| could vary in a wide range for the same sensor location and overlap with other 

sensor locations (Figure 5e), while after scaling (Figure 5f), the range of variation for the 

same location decreased, and the difference between locations increased. 

 

Figure 5. Effect of scaling by stride time. The amplitude of the foot gyroscope signal |GyrFoot| at 

different gait speeds (a) before and (b) after scaling shows more similarity. Comparison of the am-

plitude of the |GyrFoot| with |GyrThigh| at different gait speeds (c) before and (d) after scaling show-

ing more separation. Features corresponding to the maximum of |Gyr| at different locations (foot, 

leg, thigh, sacrum, trunk) (e) before and (f) after scaling, showing less variability at the same location 

(black arrow) and more separation between locations (red arrow). 
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3.3. Segment Detection 

The importance score of the ranked features (Table S1) extracted from MRMR after 

scaling by stride time and z-score normalization is illustrated in Figure S1. The perfor-

mance of the segment detection model versus the number of features (ranked based on 

MRMR) (Figure 6) proposed that seven features were an optimum point based on three 

evaluation criteria: MCE, F1-measure, and AUC. So, the final model was trained with the 

first seven features: interquartile range of |Gyr|, kurtosis of |Acc|’, number of zero-cross-

ing of |Gyr|’, minimum of |Acc| and |Gyr|, skewness of |Gyr|’, and mean of |Gyr|’. 

 

Figure 6. The performance versus the number of features based on the development dataset. (a) 

Misclassification error (MCE), (b) F1-measure, and (c) area under receiver operating characteristic 

curve (AUC) of the classifier vs. the number of features giving an optimum number of seven features 

with MCE = 0.03, F1-measure = 0.96, and AUC = 0.99. 

There were no significant differences between the accuracies of the decision tree and 

the support vector machine classifiers, and we selected the decision tree because of its 

simplicity and interpretability. The weighted precision and sensitivity of the segment de-

tection algorithm were 99.0% and 98.9%, respectively (Table 2a). The performance of the 

segment detection algorithm depends on the sensor location, with the highest F-measure 

for the foot (1.00) and the lowest value (0.96) for the sacrum (Table 2a). Specificity and 

accuracy were above 99%, while trunk and sacrum sensors showed minimum precision 

(97.5%/94.5%) and sensitivity (94.7%/97.5%). The precision and sensitivity of the whole 

I2S pairing algorithm, including the segment detection and side identification, were 99.0% 

and 98.9%, respectively (Table 2d). The misclassified sensors were all sourced from the 

first part (segment detection). In the case of majority voting of different trials of one sub-

ject, the precision enhanced up to 100%. The side identification algorithm perfectly iden-

tified the side of the foot with only three features and the side of the shank and thigh with 

only one feature. 

Among all possible sensor configurations (including single sensor to seven sensors) 

the precision decreased in two configurations; first, a single sacrum sensor (96.2%), and 

second, two sensors on sacrum and trunk (97.1%). In other configurations the performance 

was similar or higher than the eight-sensor configuration. 
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Table 2. The performance of the decision tree classifier (a) for the segment detection (b) for side 

identification of feet sensors, (c) for side identification of the shank and thigh, and (d) for the whole 

I2S pairing algorithm. For (b) and (c), the accuracy is reported based on the correct input of each 

part, i.e., the input for the side detection of the foot sensor was only feet sensors. 

(a) Segment detection classifier 

 Accuracy Precision Sensitivity Specificity F1-Measure 

Foot 100.0 100.0 100.0 100.0 1.00 

Shank 100.0 99.9 100.0 100.0 1.00 

Thigh 99.9 100.0 99.7 100.0 0.99 

Sacrum 99.0 94.5 97.5 99.2 0.96 

Trunk 99.0 97.5 94.7 99.6 0.96 

Overall 99.7 99.0 98.9 99.8 0.99 

(b) Side identification of foot sensor * 

Right foot 100.0 100.0 100.0 100.0 1.00 

Left foot 100.0 100.0 100.0 100.0 1.00 

(c) Side identification of shank/thigh based on a labeled foot sensor ** 

Right Shank 100.0 100.0 100.0 100.0 1.00 

Left Shank 100.0 100.0 100.0 100.0 1.00 

Right thigh 100.0 100.0 100.0 100.0 1.00 

Left thigh 100.0 100.0 100.0 100.0 1.00 

(d) The whole I2S pairing algorithm 

Right foot 100.0 100.0 100.0 100.0 1.00 

Left foot 100.0 100.0 100.0 100.0 1.00 

Right Shank 100.0 99.8 100.0 100.0 0.99 

Left Shank 100.0 100.0 100.0 100.0 1.00 

Right thigh 99.9 100.0 99.4 100.0 0.99 

Left thigh 100.0 100.0 100.0 100.0 1.00 

Sacrum 99.0 94.5 97.5 99.2 0.96 

Trunk 99.0 97.5 94.7 99.6 0.96 

Overall 99.7 99.0 98.9 99.8 0.99 

* The input of the algorithm was foot sensors. ** The input of the algorithm was shank/thigh sensors 

and one-foot sensor and its side. 

4. Discussion 

In this study, a novel framework was proposed for the automatic detection of sensor 

position on the body segment during walking in order to save time and energy for the end 

user of wearable IMU. First, a new algorithm was designed for an accurate estimation of 

stride time independent of sensor location. Then, by stride-time scaling and using training 

data obtained from healthy subjects, the proposed I2S pairing classifier was trained and 

was able to detect sensor locations in a wide range of walking conditions, including dif-

ferent gait speeds, different footwear (with/without insole), and in patients suffering from 

medial compartment knee OA. Finally, an algorithm using foot kinematics detected the 

sensor placement on each side of the lower limbs. 

One major specificity of the proposed algorithms is the possibility for I2S pairing 

when single or multiple sensor configurations are used. The only part of the algorithm 

that could alter with the number of sensors was stride-time estimation where it used the 

median of all sensors. The accuracy of the algorithm decreased slightly (98.9% vs. 99.7%) 

in case of single sensor on sacrum or two sensors on sacrum and trunk due to error in 

stride-time estimation. Because in sacrum location sometimes the step time can be taken 

as stride time and the scaling with a smaller value led to a lower-amplitude signal and the 

classifier would categorize it as the trunk sensor. However, the proposed algorithm does 

not compare the sensors together (for example, if this sensor is not foot, shank, thigh, 



Sensors 2023, 23, 3587 12 of 15 
 

 

trunk, then it should be sacrum). Such an approach is independent of the number of IMUs, 

meaning that instead of eight sensors if only one sensor is given, the algorithm can still 

recognize the body segment. This is clinically significant because it expands further its 

application to a wide variety of sensor configurations. Specifically, the configuration of 

two sensors on the feet is very common in sports [38], rehabilitation [40], and clinical gait 

analysis [1] in children and adults, and the algorithm can perfectly identify the side of the 

foot, even with an only one foot sensor. Moreover, the I2S pairing classifier used features 

from the norm of the gyroscope and accelerometer, so no caution is required for sensor 

orientation which drastically facilitates the preparation procedure. 

The performance of the proposed I2S pairing algorithm was high (e.g., the overall 

accuracy of 99.7%) in a wide range of gait speeds from 0.5 to 2.2 m/s, while it is known 

that the gait speed impacts the profile of the IMU signal [24]. Similar to previous studies 

[20,22], we noticed that the amplitude of the IMU signals was higher in distal segments, 

which was very helpful for distinguishing distal from proximal segments. However, this 

amplitude also depends on the gait speed [22] and interferes with the sensor location’s 

effect. For example, the amplitude of the thigh sensor in fast walking was very similar to 

the foot sensor in slow walking. Thus, se�ing a fixed threshold for the features related to 

the signal amplitude may not be sufficient when it comes to a wide range of gait speeds. 

Graurock et al. [25] addressed this issue by relative comparisons between the sensors and 

acquired a 99.2% successful pairing rate in slow speed and 100% in medium and fast walk-

ing. However, relative comparisons or features that require information on more than one 

sensor require the sensor configuration to be exactly the same as their method. To over-

come this limitation, Weenk et al. [22] removed the features extracted from more than one 

sensor, and the success classification rate decreased from 97.5% to 75.9%. Compared to 

the existing results, our method performed with a higher success rate of 97.7% in all walk-

ing conditions and free sensor configuration. The stride time scaling, as proposed in this 

study, increased the similarity of the signals within different trials of one subject while 

contributing to being less sensitive to the range of speed and leading to be�er discrimina-

tion of sensor location. Such as scaling might be a helpful method for further analysis 

where lowering the impact of speed on the variability of the IMU signals is required. 

Another outcome of the proposed study was estimating stride time without 

knowledge about the sensor location by combining the fundamental frequency detection 

with an optimization rule in the temporal domain. Such as stride-time estimation could 

be relevant for applications using smartphone’s IMU where the placement of the 

smartphone changes during the day (e.g., in the pocket in the thigh, upper or lower trunk 

area). The mean and standard deviation of the error was 0 ± 80 ms, which was higher than 

the best existing algorithms, ranging from −9.7 ± 7.5 ms on the dorsal foot to 51.9 ± 47.5 ms 

on the shank [40]. Nevertheless, after I2S pairing, when the sensor site is identified, in the 

next layer, the existing algorithms (for the specific sensor locations) for event detection 

[41] can be used and update the stride time. 

The whole algorithm was trained only on 12 healthy volunteers and tested on 22 pa-

tients with medial compartment knee OA (who were planned for surgery) walking 

with/without insole at different speeds. Using a totally new dataset for tests, compared to 

leave-one-subject-out or k-fold validation, ensures more reliable results. For segment de-

tection, it used only seven features, and for side identification, only three features. A small 

number of features eliminated the risk of overfi�ing and extended the generalizability of 

the algorithm [42]. Furthermore, the robustness of the algorithm in walking with/without 

insole and brace was confirmed. 

Compared to a previous study [22] that requires a minimum of 6 s of walking, this 

algorithm requires a minimum of only two gait cycles. About 20% of the test dataset in-

cluded only two gait cycles, and the sensors were classified correctly. So, it requires less 

data for real-time applications. 

This study also has some limitations. The first one was that the other sensor locations, 

including wrist, arm, and forearm, were not examined while they were used for some 
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applications. The second limitation was the necessity of one foot sensor for side identifi-

cation of shank/thigh sensor that should be addressed in future studies, for example, by 

detecting the foot flat using shank and thigh instead of foot [43]. Moreover, we designed 

the algorithm only for walking, and we did not validate it on other tasks. However, there 

are developed algorithms that can identify the walking bouts among different physical 

activities [44] and provide the input for the classifier. Future research could build upon 

these results by including the upper extremities. The features used for side identification 

of foot side would be beneficial to identify the side of the wrist IMU as well and can be 

widely used in smart watches. 

The proposed I2S pairing algorithm can decrease the risk of error and facilitate the 

use of IMU in current clinical applications for health professionals who are not explicitly 

trained in movement analysis. Furthermore, it opens new opportunities for applications 

by the patient without external support, including self-rehabilitation, self-measurement 

in real life, and remote patient monitoring. 

5. Conclusions 

The method proposed here can automatically detect the body segment belonging to 

the IMU sensors during walking in five common sites, including the foot, shank, thigh, 

sacrum, and trunk. Its performance was robust in patients with medial compartment knee 

OA over a wide range of gait speeds (0.5–2.2 m/s) and with different footwear types. The 

method can be used for many different sensor configurations where the input could be a 

single or multiple IMU. It can perfectly identify the side of the foot sensor and, subse-

quently, the side of the shank and thigh sensors. This way, it provides a plug-and-play 

solution where the user does not need to spend time and effort checking the sensor loca-

tion, facilitating the use of IMU-based gait analysis systems for non-professionals and de-

creasing the risk of errors and unusable measurements. 
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