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Abstract: Transportation mode recognition is of great importance in analyzing people’s travel pat-

terns and planning urban roads. To make more accurate judgments on the transportation mode of 

the user, we propose a deep learning fusion model based on multi-head attentional temporal con-

volution (TCMH). First, the time-domain features of a more extensive range of sensor data are 

mined through a temporal convolutional network. Second, multi-head attention mechanisms are 

introduced to learn the significance of different features and timesteps, which can improve the iden-

tification accuracy. Finally, the deep-learned features are fed into a fully connected layer to output 

the classification results of the transportation mode. The experimental results demonstrate that the 

TCMH model achieves an accuracy of 90.25% and 89.55% on the SHL and HTC datasets, respec-

tively, which is 4.45% and 4.70% higher than the optimal value in the baseline algorithm. The model 

has a better recognition effect on transportation modes. 

Keywords: transportation mode recognition; deep learning; temporal convolutional network;  

multi-head attention mechanism 

 

1. Introduction 

With the rapid development of mobile internet technology and the advancement of 

technology, smartphones are becoming increasingly indispensable in people’s daily lives. 

Many sensors equipped on smartphones are mainly used to process and record infor-

mation. This data information can be used to effectively monitor people’s daily behavior 

and identify people’s transportation modes [1–4]. 

Transportation mode recognition is a judgment of the current transportation mode 

of the user, which is a considerable branch of people’s activity recognition. Daily trans-

portation modes include: stationary, walking, running, bicycle, bus, car, train and sub-

way. Users often use different means of transportation during travel and have different 

travel needs. These requirements require intelligent mobile terminals to determine in ad-

vance the transportation modes within the user’s location. Transportation mode recogni-

tion is a fundamental problem that plays a crucial role in several fields. Transportation 

mode detection can help individuals avoid congested routes and have a comfortable 

transportation experience. It is also beneficial for transportation planning and manage-

ment departments to carry out urban road planning and vehicle scheduling and solve the 

problem of transportation congestion. Furthermore, it can also quickly arrange the most 

suitable driving plan for ambulances. 

To date, researchers have proposed machine learning algorithms to solve transpor-

tation mode recognition problems, such as decision tree (DT) [5], random forest (RF) [6–

8], support vector machine (SVM) [9], etc. Nick et al. [10] used a plain Bayesian classifier 

and a support vector machine to preprocess the sensor data and extract features manually 

for transportation mode recognition. Hemminki et al. [11] preprocessed the collected da-

taset and gravity estimation, manually performed feature extraction and finally placed 

Citation: Cheng, S.; Liu, Y. Research 

on Transportation Mode Recognition 

Based on Multi-Head Attention  

Temporal Convolutional Network. 

Sensors 2023, 23, 3585. https:// 

doi.org/10.3390/s23073585 

Academic Editor: Claudia Campolo 

Received: 20 February 2023 

Revised: 23 March 2023 

Accepted: 28 March 2023 

Published: 29 March 2023 

 

Copyright: © 2023 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Sensors 2023, 23, 3585 2 of 15 
 

 

the extracted features in a classifier to identify the transportation mode. Ashqar et al. [6] 

use a two-layer framework that employs machine learning techniques, including a k-near-

est neighbor, classification and regression tree, support vector machine and random for-

est. The framework combines the newly extracted features with traditional time-domain 

features to form a feature pool, improving classification accuracy. These traditional machine 

learning algorithms have certain drawbacks, i.e., they require specialized domain knowledge 

to extract features manually, which can affect the accuracy of classification on the one hand, 

and on the other hand, they can cause a large workload due to the difficult feature design. 

Deep learning algorithms can effectively solve the above problems, i.e., they can au-

tonomously learn the intrinsic laws and potential features of data, improve efficiency and 

enhance recognition accuracy. As a result, researchers started to shift from traditional ma-

chine learning algorithms to deep learning algorithms [12–14], such as convolutional neu-

ral network (CNN) [15–17], recurrent neural network (RNN) [18,19], long short-term 

memory network (LSTM) [20,21], etc. Liu et al. [22] proposed an end-to-end bi-directional 

LSTM-based classification framework to classify users’ trajectories into different modes of 

transportation. Qin et al. [23] first used convolutional neural networks to learn features 

and then used LSTM to further extract features from the CNN output. Features are further 

extracted using LSTM, which ultimately leads to an improved accuracy of transportation 

mode recognition. Sharma et al. [24] used deep learning networks, recurrent neural net-

works and convolutional neural networks to learn time-related mode information, which 

performed well on the validation dataset. Gong et al. [25] proposed a convolutional neural 

network-based approach to identify subways, trains and buses with high accuracy and 

showed good robustness. 

However, these deep learning algorithms still have some shortcomings: recurrent 

neural network computation does not support parallelism and has high training over-

head. The convolutional neural network can only extract short-time local features due to 

perceptual wilderness. In addition, the existing methods do not assign reasonable weights 

to the extracted potential features, and the algorithms only show good recognition effects 

on a single small-scale dataset with insufficient generalization ability. 

This paper proposes a novel transportation mode recognition algorithm consisting a 

multi-head attention (MHA) mechanism, temporal convolutional network (TCN) and con-

volutional neural network (CNN), with the following main contributions: 

• We leverage the temporal convolutional networks to the transportation feature learn-

ing on individual sensor data. The temporal convolutional network uses inflated con-

volution to increase the perceptual field of view and learn the long-time dependent 

features of the sensor data. Simultaneously, it is trained with parallel computation 

and short-time overhead. 

• We adopt the multi-headed attention mechanisms to extract multiple spatial features. 

Compared with single-headed attention, the multi-headed attention model assigns more 

moderate weights to the features and highlights the vital feature information. It has high 

identification accuracy for similar modes of transportation, such as trains and subways. 

• Our proposed algorithm was validated on SHL [26] and HTC [27] datasets and com-

pared with machine learning algorithms (DT, RF, SVM) and deep learning algo-

rithms (LSTM, CNN, CNN + LSTM, MSRLSTM). The experimental results show that 

the TCMH model significantly improves the accuracy, precision, recall and F1-score 

classification metrics compared with the above algorithms. 

The rest of this paper is organized as follows: Section 2 introduces the overall archi-

tecture of the TCMH model and explains the basic principle of the algorithm. Section 3 

describes two datasets and evaluation metrics and shows the experimental results of the 

TCMH model. Finally, Section 4 summarizes the work of this paper. 
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2. Algorithm 

This paper proposes a TCMH model for transportation mode recognition. The model 

mainly consists an input layer, a temporal convolutional network layer, a multi-headed 

attention layer, a convolutional neural network layer and an output layer, and the overall 

architecture is shown in Figure 1 as follows: 

1. Input layer: Multiple sensor data are input to the input layer after normalization and 

its output is used as the input of the temporal convolutional neural network. 

2. Temporal convolutional layer (TCN): A network structure is superior to recurrent 

neural networks and convolutional neural networks, consisting causal convolution, 

expansion convolution and residual connectivity. 

3. Multi-head attention layer (MHA): The output of the TCN is used as the input of this 

module. The features acquired by each head are fused so that the final developed 

features can represent global dependencies. 

4. Convolutional layer (CNN): this network consists a convolutional layer with a convolu-

tional kernel size of 64, a maximum pooling layer and a global average pooling layer. 

5. Output layer: it consists a fully connected layer with neurons of eight and a Softmax ac-

tivation function. The maximum subscript of neurons is used as the final output of trans-

portation mode classification, i.e., eight transportation mode classification results. 

 

Figure 1. Schematic diagram of the TCMH model framework. 

2.1. Input Layer 

The sensor data collected by smartphones changes with time and is a typical time 

series data. Ten sets of data, linear acceleration sensors X, Y and Z axes, gyroscope sensors 

X, Y and Z axes, geomagnetic sensors X, Y and Z axes and barometric sensors are selected 

and processed through the input layer to obtain 10 tensors of (B, 500,1) size. Where B is 

the number of samples selected for each training, which is set to 32. 500, and is generated 

using a non-overlapping sliding window segment with a sampling frequency of 100 Hz 

at 5 s. One refers to the specific features used for transportation mode recognition, such 

as linear acceleration X-axis data features. 
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2.2. Temporal Convolutional Layer 

A recurrent neural network (RNN) is the preferred neural network in processing time 

series data, which can reflect the relationship between the current moment and the previ-

ous moment information and has certain short-term memory capabilities. As variants of 

recurrent neural networks (long short-term memory networks (LSTM) and gated recur-

rent neural networks (GRU)), they can solve the problems of gradient explosion and small 

memory capacity of recurrent neural networks. However, it also has the disadvantage of 

processing data serially and having high computational overhead. 

Temporal convolutional neural networks can effectively solve the above problems. 

Firstly, the TCN can easily obtain stable gradients, which can avoid the gradient explosion 

problem to a certain extent. Secondly, it can extract time-dependent features and increase 

memory capacity by increasing the perceptual field size. Furthermore, it can perform 

large-scale parallel computation, accelerate the computation speed and improve the com-

putation efficiency. 

Temporal convolutional neural networks include the following concepts: causal convo-

lution, expansion convolution and residual connection. Causal convolution only utilizes the 

sensor time series data before that moment and does not focus on the data information after 

that moment. Thus, it can solve the information leakage problem of relying on future data at 

that moment. Since causal convolution can only focus on the sensor time data of the preceding 

shorter moments, if we want to obtain information features on long-time scales, we need to 

add expansion convolution. Expansion convolution obtains more feature information by in-

jecting voids into the convolution. The dilation convolution has a hyperparameter dilation, 

which refers to the number of intervals performed during sampling. The hyperparameter 

dilation = 1 indicates that the sample is required for each data point. Dilation = 2 suggests 

that the sample is performed every two data points, and so on. The causal expansion convo-

lutional structure is shown in Figure 2. Adding residual connections in TCN can avoid the loss 

of transportation mode features due to the deepening of network layers, thus ensuring that 

the transportation mode recognition accuracy does not drop significantly. 

 

Figure 2. Causal expansion convolution structure diagram. 

The number of filters used in this paper is 32. Therefore, a data tensor with the input 

of (B, 500,1)  can obtain a feature tensor of size (B, 250,32)  after the temporal convolu-

tional neural network and maximum pooling. At the same time, the internal features of 

the eight transportation modes with long-time dependencies are fully explored to im-

prove the training efficiency when the sensor input data are used. 
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2.3. Multi-Head Attention Layer 

In recent years, the attention mechanism has been widely used [28–30] and has become 

one of the research hotspots in deep learning. It uses weight size to measure different feature 

information when processing data information, providing a larger weight to important fea-

tures and a smaller weight to relatively unimportant features. It improves the efficiency of 

feature learning and can dig out more valuable implicit information from the massive data. 

However, the ordinary attention mechanism only extracts the sensor data feature dependen-

cies from one dimension, which can only learn the feature information with limitations. In 

view of this, the multi-headed attention mechanism is introduced to solve this problem. 

The multi-headed attention mechanism first maps the input into b different sub-

spaces through a fully connected layer (FC). Each subspace contains a query matrix 𝑄𝑗, 

key matrix 𝐾𝑗 and value matrix 𝑉𝑗, where 𝑗 = 1, … , ℎ. Then, the attention calculation is 

performed in parallel in the b subspaces using the scaled dot-product attention function, 

and the attention calculation formula is shown in Equation (1).  

ℎ𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑗  , 𝐾𝑗  , 𝑉𝑗) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑗𝐾𝑗

𝑇

√𝑑
) 𝑉𝑗 (1) 

where ℎ𝑗 denotes the attention value of the jth space and 𝑑 represents the dimension of 

the key. 

Finally, the obtained attention values are stitched together and the output can be ob-

tained after the matrix 𝑊𝑜. 

𝑊𝑂 [
ℎ1

⋮
ℎ𝑏

] (2) 

where 𝑊𝑜 is the matrix of learnable parameters.  

The schematic diagram of the multi-headed attention structure is shown in Figure 3. 

According to the above principle, the output result x of TCN is passed through the multi-

head attention module to make the final extracted data feature information more compre-

hensive, which is helpful in improving the accuracy of transportation mode recognition. 

The input and output of this layer are all feature tensors of size (B, 250,32).  

 

Figure 3. Schematic diagram of multi-headed attention structure. 

  



Sensors 2023, 23, 3585 6 of 15 
 

 

2.4. Convolutional Layer 

The convolutional neural network is a feed−forward neural network proposed by re-

searchers inspired by the concept of perceptual wilderness. The convolutional neural net-

work is good at mining local features in a small range and extracting characteristic values 

of targets and has strong applicability. It is used for target recognition and classification 

in complex and diverse environments [31,32]. It has three properties: local connection, 

weight sharing and pooling. Local connection means that the neurons in the nth layer are 

connected to only some neurons in the (n − 1)th layer, and only local features are extracted. 

Weight sharing means that the neurons in the previous layer are scanned with a convolu-

tion kernel (the values in the convolution kernel are called weights), i.e., the same set of 

weights is used to convolve the neurons in the previous layer. The 1D convolution exam-

ple in Figure 4 exemplifies the two properties of local connection and weight sharing. The 

role of pooling is to perform feature selection and reduce the number of transportation 

mode features. Maximum pooling is chosen, which reduces the number of neurons used 

in the transportation mode recognition network while maintaining the constancy of the 

local features of the fused data. 

 

Figure 4. Schematic diagram of the one − dimensional convolution. 

In this paper, 10 sensors are first stitched together, and then a convolutional network 

with a convolutional kernel of 64 is used for local feature extraction. The maximum pool-

ing is used to select beneficial features for improving the accuracy of transport mode 

recognition. Where poolsize = 2, which in turn yields a feature tensor of size (B, 125,64). 

The global average pooling is calculated by averaging the 64 transportation mode data 

feature maps obtained through the convolutional neural network, which can reduce the 

dimensionality of the output and prevent overfitting. After averaging pooling, the feature 

tensor of the maximum pooling output (B, 125,64) becomes a tensor of (B, 64). 

2.5. Output Layer 

Since there are eight transportation mode labels in the dataset, the number of neurons 

in the last fully connected layer is set to eight; then, the Softmax activation function (the 

function can compress the data range of each neuron in the range of 0 to 1, and the sum 

of all data is 1) is used to output the probabilities corresponding to the eight transportation 

modes. Finally, the position corresponding to the maximum probability is used as the final 

result of transportation mode classification. 
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3. Experiments and Analysis 

3.1. Datasets 

Here, experiments are conducted on two public datasets to evaluate the performance 

of the TCMH model: 

1. SHL dataset. The dataset was recorded in 2017 by three volunteers who placed a 

Huawei Mate 9 phone on a part of their body, and it took the volunteers more than 7 

months. The SHL dataset contains 272 h of sensor data. The SHL dataset can be used 

to analyze transportation conditions and estimate satellite coverage, which this paper 

uses for transportation mode recognition. Eight transportation modes are classified 

as still, walk, run, bike, car, bus, train and subway. Ten sets of data are selected from 

the dataset as raw data: three-axis linear acceleration, three-axis gyroscope, three-axis 

magnetometer and barometric pressure sensor. 

2. HTC dataset. The HTC dataset was collected by more than 100 volunteers using HTC 

phones in 2012. It contains nine sensor types: acceleration sensors on the X, Y and Z 

axes, geomagnetic sensors on the X, Y and Z axes and gyroscopic sensors on the X, Y 

and Z axes. The dataset contains 8311 h of sensor data. Unlike the SHL dataset, the 

HTC dataset classifies transportation modes into 10 categories. Two transportation 

categories, motorcycle and high-speed rail, were dropped to maintain consistency 

between the two datasets. 

3.2. Data Preprocessing 

Since different sensor timing data have different dimensions, the final recognition effect 

will be affected if not processed. To eliminate the influence of the magnitude, improve the 

convergence speed of the model and to increase the recognition accuracy, we use the Z-score 

normalization method to operate on the data. The data processed by this method conform to 

the standard normal distribution. The formula of Z-score normalization is as follows: 

𝑋′ =
𝑋 − 𝑢

𝜎
 (3) 

where 𝑢 is the mean of the original data used for mode recognition and 𝜎 is the standard 

deviation of the original data used for mode recognition in the dataset. 

To better evaluate the model effect, the two datasets, SHL and HTC, are divided into 

training, validation and test sets, respectively, and the allocation ratio is 3:1:1. 

3.3. Metrics 

To verify the effectiveness of the TCMH model, we use the accuracy rate as the main 

index to evaluate the model. We use precision, recall and F1-score to assess the recognition 

effect of eight transportation modes. 

Accuracy is used to describe the proportion of correctly predicted samples to all sam-

ples, i.e., the proportion of correctly classified transportation mode samples to all samples 

used for transportation mode classification, as shown in Equation (4): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃𝑗

𝑘
𝑗=1

𝑁
     (4) 

where k is the number of classified transportation modes, N is the total number of all ex-

perimental samples and 𝑇𝑃𝑗 is the number of samples correctly classified by transporta-

tion mode j. 

Precision is relative to the classification prediction results of transportation mode and 

describes the proportion of samples with correct positive predictions to all samples with 

positive predictions, as shown in Equation (5): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑃𝑗
 (5) 
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where 𝐹𝑃𝑗 is the number of samples that misclassify other transportation modes as mode j. 

Recall is the proportion of samples correctly predicted as positive to all actual positive 

samples relative to the transportation mode classification samples, as shown in Equation (6): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃𝑗

𝑇𝑃𝑗 + 𝐹𝑁𝑗
 (6) 

where 𝐹𝑁𝑗 is the number of samples that misclassify transportation mode j as other modes. 

The F1-score is determined by both precision and recall, as shown in Equation (7): 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (7) 

3.4. Experimental Configuration 

We adopt the Keras deep learning framework to train the TCMH model. The Adam 

optimizer (learning rate is set to 0.001) is selected. For the multi-classification problem, the 

cross-entropy loss function is selected. The number of training epochs is set to 100, and 

the batch size is set to 32. The experimental configuration is shown in Table 1. 

Table 1. Experimental configuration. 

Name  Configuration 

CPU Intel(R) Xeon(R) CPU @ 2.20 GHz 

Memory 16G 

GPU Tesla P100 

Operating System Ubuntu 18.04.6 

Python Environment Python 3.7.15 

TensorFlow Version 2.9.2 

3.5. Experimental Comparison of Different Algorithms 

The RF, DT, SVM, CNN, LSTM, CNN + LSTM and MSRLSTM [13] are used as the 

baseline algorithms to evaluate the performance of our proposed TCMH model. Among 

these baselines, CNN is a part of the proposed model in this paper, and CNN + LSTM is 

composed of the above algorithms, CNN and LSTM. Three machine learning algorithms, 

RF, DT and SVM, are implemented using Sklearn. The detailed parameters of the baseline 

algorithms are shown in Table 2. 

Table 2. Detailed parameters of the baseline algorithms. 

Name Architecture 

DT criterion = gini 

RF n_estimators = 50 

SVM Kernel = rbf 

CNN C(64)- C(128)-GAP- FC(8)-Softmax 

LSTM LSTM(128)-FC(8)-Softmax 

CNN + LSTM 

TCMH 

C(64)-LSTM(128)-FC(8)-Softmax 

TCN(32)-MHA(5)-CNN(64)-FC(8)-Softmax 

Note: FC denotes fully connected layer; C denotes convolutional neural network; GAP denotes 

global average pooling. 

The accuracy of each algorithm on the SHL and HTC datasets is shown in Figures 5 

and 6. According to the experimental results, the following conclusions can be drawn:  

1. Deep learning algorithms show a higher recognition effectiveness than machine 

learning algorithms. This is due to the ability of deep learning algorithms to learn 
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deep potential features from the sensor temporal data, which are more helpful for 

transportation mode classification.  

2. Among the three machine learning algorithms, compared to DT and SVM algorithms, 

RF reduces the risk of overfitting by building many trees and has the highest recognition 

accuracy on SHL and HTC datasets, which are 77.23% and 82.27%, respectively.  

3. Among the deep learning algorithms, the TCMH model outperforms other baseline 

algorithms. This is because the temporal convolutional network included in the 

TCMH model can capture more transportation mode information without losing in-

formation features, and the multi-headed attention mechanism can fuse the features 

so that the final acquired features have a global view. The accuracy of the TCMH 

model exceeds the other algorithms on both the SHL dataset and HTC dataset at 

90.25% and 89.55%, respectively, while the accuracy of the other algorithms in trans-

portation mode recognition is below 86%. 

 

Figure 5. Accuracy of each algorithm on the SHL dataset. 

 

Figure 6. Accuracy of each algorithm on the HTC dataset. 

For each transportation mode recognition case, the precision, recall and F1-score of 

each baseline algorithm and the TCMH model are shown in Tables 3 and 4. 
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Table 3. Comparison of evaluation metrics of different algorithms on the SHL dataset. 

Algorithm Metrics Still Walk Run Bike Car Bus Train Subway 

 Precision 61.26% 84.32% 94.05% 78.10% 62.96% 47.34% 48.94% 45.89% 

DT Recall 60.15% 81.89% 96.13% 78.55% 61.15% 49.38% 51.45% 43.54% 

 F1-score 60.70% 83.09% 95.08% 78.32% 62.04% 48.34% 50.16% 44.68% 

 Precision 75.79% 91.15% 97.25% 88.82% 73.21% 63.23% 64.01% 63.14% 

RF Recall 79.69% 91.86% 97.79% 87.54% 83.21% 60.49% 66.15% 48.35% 

 F1-score 77.69% 91.50% 97.52% 88.18% 77.89% 61.83% 65.06% 54.76% 

 Precision 46.74% 84.10% 93.07% 83.96% 58.71% 45.77% 63.95% 62.28% 

SVM Recall 84.83% 86.09% 96.41% 77.39% 65.47% 36.73% 45.43% 31.23% 

 F1-score 60.27% 85.08% 94.71% 80.54% 61.90% 40.75% 53.12% 41.60% 

 Precision 85.61% 93.04% 99.59% 94.42% 88.19% 80.80% 74.29% 68.60% 

CNN Recall 90.27% 96.58% 98.77% 93.62% 87.55% 78.02% 75.09% 64.55% 

 F1-score 87.88% 94.78% 99.17% 94.02% 87.87% 79.39% 74.69% 66.51% 

 Precision 83.98% 87.94% 99.58% 91.89% 69.50% 64.65% 61.06% 61.46% 

LSTM Recall 75.49% 94.30% 97.12% 86.81% 80.95% 59.91% 66.79% 53.64% 

 F1-score 79.51% 91.01% 98.33% 89.28% 74.79% 62.19% 63.79% 57.28% 

 Precision 79.24% 92.86% 100.00% 91.60% 83.81% 81.31% 68.99% 68.78% 

CNN + LSTM Recall 89.11% 93.92% 98.35% 92.77% 85.35% 75.00% 71.48% 59.09% 

 F1-score 83.88% 93.38% 99.17% 92.18% 84.57% 78.03% 70.21% 63.57% 

 Precision 84.07% 95.02% 100.00% 88.98% 84.25% 82.41% 68.31% 63.51% 

MSRLSTM Recall 88.33% 94.30% 98.77% 92.77% 84.25% 76.72% 70.04% 60.91% 

 F1-score 86.15% 94.66% 99.38% 90.83% 84.25% 79.46% 69.16% 62.18% 

 Precision 89.47% 93.82% 100.00% 96.12% 95.47% 91.23% 81.02% 74.09% 

TCMH Recall 92.61% 98.10% 98.77% 94.89% 92.67% 89.66% 80.14% 74.09% 

 F1-score 91.01% 95.91% 99.38% 95.50% 94.05% 90.43% 80.58% 74.09% 

Table 4. Comparison of evaluation metrics of different algorithms on the HTC dataset. 

Algorithm Metrics Still Walk Run Bike Car Bus Train Subway 

 Precision 75.82% 72.26% 92.31% 72.73% 73.07% 40.22% 48.70% 56.73% 

DT Recall 79.91% 77.50% 93.66% 76.45% 70.94% 42.53% 46.79% 49.87% 

 F1-score 77.81% 74.79% 92.98% 74.54% 71.99% 41.34% 47.72% 53.08% 

 Precision 92.36% 80.65% 95.22% 80.45% 78.88% 80.00% 82.59% 76.03% 

RF Recall 83.59% 86.50% 97.07% 85.67% 90.99% 50.57% 66.07% 74.31% 

 F1-score 87.76% 83.47% 96.14% 82.98% 84.50% 61.97% 73.41% 75.16% 

 Precision 72.33% 74.59% 93.36% 71.94% 63.10% 56.41% 55.28% 81.91% 

SVM Recall 74.51% 79.25% 96.10% 76.11% 84.64% 12.64% 39.29% 58.19% 

 F1-score 73.40% 76.85% 94.71% 73.96% 72.30% 20.66% 45.93% 68.04% 

 Precision 91.64% 89.71% 96.95% 89.27% 85.03% 71.30% 74.77% 74.91% 

CNN Recall 87.09% 85.16% 93.38% 93.85% 88.63% 62.10% 79.21% 76.32% 

 F1-score 89.30% 87.37% 95.13% 91.50% 86.79% 66.38% 76.92% 75.61% 

 Precision 84.36% 78.44% 92.70% 78.61% 80.71% 70.48% 79.40% 75.58% 

LSTM Recall 85.76% 82.42% 93.38% 81.03% 87.86% 59.68% 78.22% 61.65% 

 F1-score 85.06% 80.38% 93.04% 79.80% 84.13% 64.63% 78.80% 67.91% 

 Precision 86.71% 86.45% 94.78% 87.38% 84.20% 79.00% 83.05% 78.76% 

CNN + LSTM Recall 90.73% 84.77% 93.38% 92.31% 90.37% 63.71% 72.77% 76.69% 

 F1-score 88.67% 85.60% 94.07% 89.78% 87.17% 70.54% 77.57% 77.71% 

 Precision 83.23% 87.93% 92.81% 84.83% 83.21% 58.74% 75.26% 77.13% 

MSRLSTM Recall 88.74% 79.69% 94.85% 91.79% 85.93% 67.74% 72.28% 64.66% 

 F1-score 85.90% 83.61% 93.82% 88.18% 84.55% 62.92% 73.74% 70.35% 

 Precision 92.93% 92.31% 98.52% 91.54% 87.34% 73.77% 84.00% 86.80% 

TCMH Recall 91.39% 84.38% 97.79% 94.36% 94.41% 72.58% 83.17% 81.58% 

 F1-score 92.15% 88.16% 98.15% 92.93% 90.74% 73.17% 83.58% 84.11% 
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Tables 3 and 4 show that the recognition effect of three transportation modes, bus, 

train and subway, is poor. Transportation modes’ recognition, such as running and cy-

cling, relies only on short-time data information, while recognition of the same three trans-

portation modes relies on longer-time data information. Each baseline algorithm is limited 

by the small memory capacity and short-time local features. Therefore, the precision, re-

call, and F1-score are all low in these three modes, with an average of about 60%. The 

TCMH model has good recognition results on all three transportation modes, with preci-

sion, recall and F1-score higher than 70%, reflecting the advantage of the TCMH model in 

recognizing transportation modes that depend on long-time information. Meanwhile, the 

experimental results show that the precision, recall and F1-score are higher for all algo-

rithms when classifying the three transportation modes of walking, running and cycling. 

The intrinsic reason is that when people perform these three sports, there are large sway-

ing and regular movements of the human body, which have more obvious characteristics. 

Although each baseline algorithm reflects good classification results on these three trans-

portation modes, the proposed TCMH model in this paper has an advantage over the 

recognition results of each other baseline algorithm. All three metrics are above 89% on 

the SHL dataset and above 84% on the HTC dataset. In particular, the transportation mode 

of running achieves a precision of 100% on the SHL dataset. 

3.6. Effect of the Number of Heads of Multi-Headed Attention Modules 

The accuracy of the TCMH model is affected by the number of multi-head attention 

heads. To explore the optimal number of heads, we set the different numbers to observe 

the effect of identification on the SHL and HTC datasets, as shown in Figure 7 and Figure 

8, respectively. 

 

Figure 7. Accuracy comparison for different numbers of heads on the SHL dataset. 
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Figure 8. Accuracy comparison for different numbers of heads on the HTC dataset. 

Figures 7 and 8 show that when head = 5, the accuracy is the largest, 90.25% and 

89.55% on the SHL and HTC datasets, respectively. When head = 1, there is only one head 

in the model, and the accuracies are 88.50% and 88.05%, respectively, which shows the 

advantage of multi-headed attention over single-headed attention in transportation mode 

recognition. When head = 12, the model has an overfitting phenomenon, and the accuracy 

decreases to 87.20% and 88.00%, respectively. 

3.7. Self-Contrasting Experiments 

To verify the necessity of the temporal convolutional neural network and the multi-

headed attention mechanism of the TCMH model, the removal of the temporal neural 

network and the multi-headed attention mechanism are experimentally compared with 

the TCMH model, respectively. The precision, recall and F1-score are used as the metrics 

to measure the model. 

Tables 5 and 6 show that removing the temporal convolutional network part of the 

TCMH model leads to a decrease in the precision, recall and F1-score, which reflects the 

contribution of the temporal convolutional network to the TCMH model. For subway, on 

the SHL dataset, the difference between the TCMH model and TCMH model when re-

moving the temporal convolutional network part is obvious, with 13.97%, 28.18% and 

22.03% difference in precision, recall and F1-score, respectively. On the HTC dataset, the 

difference in precision, recall, and F1-score is 19.91%, 17.67% and 18.76%, respectively. 

Table 5. Experimental results of removing temporal convolutional network. 

 SHL Dataset HTC Dataset 

Mode Precision Recall F1-Score Precision Recall F1-Score 

Still 75.78% 85.21% 80.22% 79.88% 85.43% 82.56% 

Walk 96.77% 91.25% 93.93% 86.25% 80.86% 83.47% 

Run 98.77% 98.77% 98.77% 97.73% 94.85% 96.27% 

Bike 89.34% 92.77% 91.02% 87.89% 85.64% 86.75% 

Car 81.89% 79.49% 80.67% 76.68% 85.55% 80.87% 

Bus 73.25% 71.98% 72.61% 63.16% 48.39% 54.79% 

Train 58.73% 66.79% 62.50% 72.47% 63.86% 67.89% 

Subway 60.12% 45.91% 52.06% 69.58% 68.80% 69.19% 
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Table 6. Experimental results of the TCMH model. 

 SHL Dataset HTC Dataset 

Mode Recall F1-Score Precision Recall F1-Score Precision 

Still 89.47% 92.61% 91.01% 90.45% 94.04% 92.21% 

Walk 93.82% 98.10% 95.91% 92.00% 89.84% 90.91% 

Run 100.00% 98.77% 99.38% 98.48% 95.59% 97.01% 

Bike 96.12% 94.89% 95.50% 93.53% 96.41% 94.95% 

Car 95.47% 92.67% 94.05% 87.07% 92.10% 89.51% 

Bus 91.23% 89.66% 90.43% 79.82% 70.16% 74.68% 

Train 81.02% 80.14% 80.58% 87.23% 81.19% 84.10% 

Subway 74.09% 74.09% 74.09% 89.49% 86.47% 87.95% 

Tables 6 and 7 show that the TCMH model has lower recognition results than the 

removal of the multi-headed attention mechanism part. However, three evaluation in-

dexes have been improved from the overall classification results of the eight transporta-

tion modes. Especially for still, on the SHL dataset, the precision, recall and F1-score im-

proved by 4.99%, 1.56% and 3.37%, respectively. On the HTC dataset, the precision, recall 

and F1-score enhanced by 3.30%, 1.99% and 2.68%, respectively. 

Table 7. Experimental results of removing the multi-headed attention mechanism. 

 SHL Dataset HTC Dataset 

Mode Precision Recall F1-Score Precision Recall F1-Score 

Still 84.48% 91.05% 87.64% 87.15% 92.05% 89.53% 

Walk 92.34% 96.20% 94.23% 88.40% 86.33% 87.35% 

Run 99.59% 98.77% 99.17% 98.50% 96.32% 97.40% 

Bike 93.59% 93.19% 93.39% 88.89% 94.36% 91.54% 

Car 91.64% 92.31% 91.97% 87.36% 91.91% 89.58% 

Bus 95.10% 83.62% 88.99% 80.53% 73.39% 76.79% 

Train 77.50% 78.34% 77.92% 86.81% 78.22% 82.29% 

Subway 72.56% 70.91% 71.72% 88.40% 83.08% 85.66% 

3.8. Experiment of Hyperparameter Adjustment 

The primary hyperparameters in the TCMH model are adjusted: the number of filters 

and convolutional kernel size in TCN, the dimensional value of keys in multi-headed at-

tention, and the number of filters and convolutional kernel size in CNN. 

According to the variable control method, one hyperparameter value is adjusted each 

time, and the results obtained are shown in Tables 8 and 9. It can be seen that the adjust-

ment of hyperparameters has a certain influence on the recognition precision of transpor-

tation modes. In particular, the precision of recognizing trains on the SHL and HTC da-

tasets differed by 11.39% and 8.91%, respectively.  

Table 8. Comparison of the precision of different hyperparameters on the SHL dataset. 

Hyperparameters Still Walk Run Bike Car Bus Train Subway 

TCN(32,3)d(64)CNN(64,3) 89.47% 93.82% 100.00% 96.12% 95.47% 91.23% 81.02% 74.09% 

TCN(64,3)d(64)CNN(64,3) 91.03% 95.82% 100.00% 96.93% 91.27% 88.66% 69.63% 72.31% 

TCN(32,2)d(64)CNN(64,3) 86.84% 95.56% 99.58% 96.55% 90.97% 91.67% 76.07% 76.80% 

TCN(32,3)d(16)CNN(64,3) 90.04% 93.82% 100.00% 97.36% 90.28% 91.03% 76.87% 73.87% 

TCN(32,3)d(64)CNN(32,3) 86.38% 92.45% 99.58% 95.07% 92.40% 85.65% 76.26% 62.85% 

TCN(32,3)d(64)CNN(64,2) 85.24% 95.51% 100.00% 94.09% 92.91% 92.17% 72.38% 75.40% 
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Table 9. Comparison of the precision of different hyperparameters on the HTC dataset. 

Hyperparameters Still Walk Run Bike Car Bus Train Subway 

TCN(32,3)d(64)CNN(64,3) 90.45% 92.00% 98.48% 93.53% 87.07% 79.82% 87.23% 89.49% 

TCN(64,3)d(64)CNN(64,3) 93.95% 89.87% 97.06% 88.18% 83.21% 66.10% 82.16% 82.86% 

TCN(32,2)d(64)CNN(64,3) 90.06% 90.04% 97.73% 93.43% 87.16% 81.31% 89.01% 86.33% 

TCN(32,3)d(16)CNN(64,3) 91.19% 87.75% 97.73% 91.67% 89.41% 67.91% 83.84% 89.02% 

TCN(32,3)d(64)CNN(32,3) 90.28% 83.83% 94.85% 91.54% 88.67% 68.55% 80.10% 84.12% 

TCN(32,3)d(64)CNN(64,2) 90.55% 91.90% 98.50% 93.14% 87.27% 79.09% 84.97% 85.29% 

4. Conclusions 

This paper proposes a novel transportation mode recognition model, TCMH. By 

combining TCN and MHA, the accuracy of transportation mode recognition is increased, 

and the training process is speeded up. The TCMH algorithm is also energy efficient, us-

ing only the multiple lightweight sensors integrated in the smartphone to detect transport 

patterns. The experimental results on two datasets show that the proposed model is sig-

nificantly better than baseline algorithms such as the RF-, DT-, SVM-, CNN-, LSTM-, CNN 

+ LSTM- and MSRLSTM-based transportation mode algorithms. It also confirms the rea-

sonable scalability of TCMH. 

There are some limitations in the TCMH model. The accuracy of recognition can be 

further improved, and the complexity of the model can be further reduced. In future sci-

entific work, we will continue to research deep learning models with lower computational 

overhead and higher recognition accuracy, and further improve transportation mode 

recognition performance in practical application scenarios. 
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