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Abstract: The rotation error is the most important quality characteristic index of a rotate vector (RV)
reducer, and it is difficult to accurately optimize the design of a RV reducer, such as the Taguchi
type, due to the many factors affecting the rotation error and the serious coupling effect among the
factors. This paper analyzes the RV reducer rotation error and each factor based on the deep Gaussian
processes (DeepGP) model and Sobol sensitivity analysis(SA) method. Firstly, using the optimal
Latin hypercube sampling (OLHS) approach and the DeepGP model, a high-precision regression
prediction model of the rotation error and each affecting factor was created. On the basis of the
prediction model, the Sobol method was used to conduct a global SA of the factors influencing the
rotation error and to compare the coupling relationship between the factors. The results show that
the OLHS method and the DeepGP model are suitable for predicting the rotation error in this paper,
and the accuracy of the prediction model constructed based on both of them is as high as 95%. The
rotation error mainly depends on the influencing factors in the second stage cycloidal pinwheel drive
part. The primary involute planetary part and planetary output carrier’s rotation error factors have
little effect. The coupling effects between the matching clearance between the pin gear and needle
gear hole (J]) and the circular position error of the needle gear hole (df) is noticeably stronger.

Keywords: RV reducer; rotation error; deep Gaussian processes; sensitivity analysis

1. Introduction

The term “rotate vector (RV) reducer” typically refers to a two-stage reduction mecha-
nism consisting of the first-stage involute planetary gear transmission and the second-stage
cycloidal pin-wheel transmission. This mechanism has the advantages of a compact struc-
ture, a high transmission accuracy and a large reduction ratio, and it is frequently used
in high precision equipment in Computerized Numerical Control (CNC) machine tools,
aerospace and industrial robotics industries [1,2]. The most crucial performance metric
for an RV reducer is the positioning transmission precision, which is often quantified by
the output rotation error. The rotation error is determined by the precision of the parts
processing and the assembly of the transmission chain from the input to the output of
the RV reducer, as well as the state of motion and force; even under the same operating
conditions, the quality characteristics of each link in the transmission chain do not have
the same degree of influence on the RV reducer’s output rotation error. It is challenging to
accurately optimize the design of RV reducers, such as the Taguchi type, that will handle
the problem satisfactorily because of the transmission chain’s influence from a variety of
parameters and the presence of random coupling effects. A sensitivity analysis (SA) of a
precise RV reducer’s rotation error is urgently required.

Scholars both at home and abroad are currently conducting extensive research on
rotation error analysis. YANG et al. provided an analytical error modeling approach for the
RV reducer’s over-constrained structure and demonstrated the link between the original
error and the transmission precision [3]. Hidaka et al. used the equivalent spring approach
to model the exact system, and they qualitatively examined the transmission accuracy of
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the entire RV reducer [4-6]. Using the dynamic sub-structure method, HE and SHAN devel-
oped the transmission error dynamics model and mathematical equations for the RV-40E
reducer for robots [7]. CAO et al. created an equivalent model of the transmission error of
the RV reducer and solved the model’s parameters using the empirical stiffness formula to
determine the theoretical transmission error of the reducer [8]. By analyzing the structural
characteristics of the RV reducer, the parts processing and assembly process, and the influ-
ence of the manufacturing errors on the clearance, CHU et al. proposed a selective assembly
method to make the clearance of the RV reducer meet the requirements [9]. LIU analyzed
the transmission accuracy of the reducer from multiple angles, such as manufacturing and
assembly errors and external working conditions, using theoretical analysis, numerical sim-
ulation, dynamics, and transmission accuracy tests [10]. Meng et al. provided transmission
error models for positive and negative transmission by analyzing the static analysis of the
actual meshing process between the gear pairs while taking friction into account [11]. The
accuracy of the RV reducer’s equivalency error model significantly increased when Liu et al.
introduced an RV reducer transmission error modeling and optimization approach and
used the particle swarm algorithm to refine the empirical parameters of the identification
model [12]. Based on the Adams software and virtual prototype technology, Tong created
many virtual prototypes of the RV reducer and investigated the effects of the load, part
elastic deformation, and component manufacturing error on the transmission error [13].
JIN et al. proposed a new method for predicting the rotation error based on improved grey
wolf optimal support vector regression. This method overcomes the shortcomings of the
previous rotation error research methods, such as their time-consuming nature and low
computational precision [14]. On the basis of error sensitivity analysis, Hu et al. suggested
an elastic transmission error compensation approach for a rotating vector to boost its trans-
mission accuracy [15]. Wu et al. used the dynamics analysis program ADAMS to create
a virtual prototype of the RV reducer employed in the robot and tested the transmission
accuracy of the Japan RV-40E reduction using the Grating method [16].

The studies mentioned above provide many valuable insights for the analysis and
evaluation of the RV reducer rotation error, but the majority of them are based on qualitative
analysis results, which have some limitations and do not provide an accurate analysis of
the RV reducer rotation error. For example: the calculation process of the pure geometric
method is relatively complicated and does not take into account the actual manufacturing
error of the parts. Due to a large amount of simplification in the modelling process, the
equivalent spring method has a large gap between the final modelling result and the
actual situation, and the model construction of the virtual prototype analysis method is
complicated and time-consuming. In order to address the limitations of the traditional
modelling and analysis methods of the rotation error, this paper proposes a novel modelling
method for predicting the rotation error of a RV reducer based on deep Gaussian processes
(DeepGP) and conducts sensitivity analysis on each factor influencing the rotation error.

To begin with, the optimal Latin hypercube sampling (OLHS) method is combined
with a DeepGP model to develop a high-precision rotation error prediction model. The
model’s accuracy and efficiency are validated by comparing it to the spring equivalence
method and the virtual prototype. Then, using the variance-based Sobol method, a global
sensitivity analysis of the factors influencing the rotation error was performed based on
the prediction model to identify a number of factors that had a substantial impact on the
rotation error. Lastly, quantitative analysis of the influence of the coupling effect between
the factors on the rotation error will provide reference significance for RV reducer quality
improvement, cost reduction, and other optimization designs.

2. Analysis of the Factors Influencing the Rotation Error of RV-40E Reducer
2.1. RV Reducer Transmission Principle and Structural Composition Analysis
An RV reducer is a two-stage transmission mechanism compounded by the first-stage

involute planetary gear transmission and the second-stage cycloidal pin-wheel transmis-
sion, which has many different composition structures and transmission forms and can be
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applied to different occasions. A typical RV-40E reducer structure is shown in Figure la
below, including the input shaft with a sun gear, planetary gear, crankshaft, cycloidal
pinwheel, needle tooth shell, planet carrier, needle gear, and other parts. The RV reducer
transmission principle as shown in Figure 1b. Through the involute transmission, the
input shaft with a sun gear transfers the power to the planetary wheel to complete the first
stage of deceleration; the crankshaft and the planetary wheel are fixedly connected at the
same speed, the crankshaft drives the cycloid wheel to turn around the needle tooth shell
through a slewing bearing, and the rotation of the cycloid gear transmits the planet carrier
and flange plate. The planet carrier and flange plate are bolted together at the same speed
and act as the output mechanism to complete the second stage deceleration.

Planetary output

carrier
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planetary part
2 i
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Figure 1. Schematic diagram of RV-40E reducer structure principle. (a) The structure of RV reducer;
(b) Description of what is contained in the second panel. 1. Input shaft with sun gear; 2 (2/). Planetary
gear; 3 (3). Crankshaft; 4 (4'). Cycloid gear; 5. Needle tooth shell; 6. Planet carrier; 7. Flange plate;
8. Needle gear.

The rotation error is the difference between the theoretical output rotation angle and
the actual rotation angle; these are calculated by the following formula:

Per = Qin ~ i— Pout (1)

where @, is the rotation error; ¢;, is the input angle of input shaft; o, is the actual angle
of the output shaft; i is the transmission ratio. The main structural composition parameters
of the RV-40E reducer are shown in Table 1.
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Table 1. The main parameter of RV-40E reducer.

Parameters Value
Number of teeth of sun gear and planetary gear 18/54
Number of teeth of cycloid gear (z.) and needle gear 39/40
Eccentricity of crankshaft (a) (mm) 1.5
Circle center radius of needle tooth shell (6rp) (mm) 82
Radius of needle gear (61rp) (mm) 4
Total transmission ratio (i) 121
Short amplitude factor (k;) 0.73
Input power 1.05 (kW)
Nominal torque 377 (N-m)

2.2. Analysis of Factors Influencing the Rotation Error of RV Reducer

The rotation error is a major quality performance metric used to evaluate the per-
formance of the speed reducers. The influencing factors might be classified as static or
dynamic. Assembly errors, fit clearance between pieces, and machining faults are examples
of static variables. Despite the fact that there are many static elements that affect the rotation
error, just one region of the needle tooth shell has more than ten different types of mistakes.
If every static piece is evaluated, the work would be vast and unrealistic. Based on a study
of the reducer’s transmission chain and actual production research, 15 frequently static
influencing elements were selected from the transmission chain of the RV reduction at all
levels, and refer to [17] to create the parameter ranges for each factor, as shown in Table 2.
Factors 1-3 are generated by the primary involute planetary gear drive, factors 4-12 are
generated by the second-stage cycloidal pin-wheel drive, and factors 13-15 are generated
by the planetary output carrier. The dynamic factor is primarily the influence of the elastic
deformation of each part on the rotation error of the reducer when the reducer is loaded,
and when the reducer is running, the dynamic factor consists primarily of the load and the
speed. As the purpose of this research paper is to determine the factors influencing the
high sensitivity of the RV reducer to the rotation error in order to facilitate the Taguchi-type
optimized design of the RV reducer, the factors influencing this sensitivity will be identified.
The dynamic influence factor is an external influence factor of the speed reducer rotation
error that is not currently considered in this paper.

Table 2. RV reducer rotation error static influence factors and parameters to take the value range.

Sources of

. No. Influencing Factor of Rotation Error Code Name The Range/mm
Influencing Factors
. . 1 Center distance error of input shaft and planetary gear Af, 0.15~0.50
The }i;ﬁle?a?’ 1n\a7;)tlute 2 Radial error between gear and ring AF, 0.20~0.30
P yP 3 Fit clearance of gear and shaft ACy 0.001~0.003
4 Amount of equidistant modification of cycloid gear Aryp 0.016~0.048
5 The amount of radlal-movmg modification of Ar, 0.026~0.078
cycloid gear
6 Clearance of 1n51d§ hole of .Cyc101d gear and - 0-~0.01
slewing bearing
The second stage cycloidal 7 Radius error of needle tooth center circle orp 0.005~0.015
pinwheel part 8 Needle gear radius error Orrp 0.01~0.03
9 Matching clearance between the pin gear and needle o] 0.001~0.003
gear hole
10 Circular position error of the needle gear hole ot 0~0.01
11 Eccentricity error of crankshaft oa 0.01~0.03
12 Clearance of crankshaft and slewing bearing Ar 0~0.002
13 Eccentricity error of planet carrier Eh 0.005~0.015
Planetary output carrier 14 Carrier wheel crankshaft center distance error AFa 0~0.01

15 Bearing hole phase error of planet carrier JAY3 0.03~0.05
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The aforementioned static influencing factors combine to generate the RV reducer rota-
tion error, which can be represented as follows using the fuzzy comprehensive evaluation
mathematical method:

Per = WAF,OAf, + WAF,OAF, T WACOAC, T War,,0nr,, + Wonr,06Ar, + Woda
+Wsr, 051, + Wor,,06r,, + Wsj0s] + Widt + Wsalsa + Wardar (2)
+WERSER + WAFaOAFa + Wa,0p,

where ¢, is the rotation error of the RV reducer, J; is the rotation error of each influencing
factor, and wj; is the weight of each factor. The weights represent the overall degree of
influence of each influencing factor on the rotation error of the reducer [18].

2.3. RV Reducer Rotation Error Sample Data Acquisition

In this study, the factor-error data were obtained directly from the RV reducer pro-
duction and processing facility to ensure the practicality of the rotation error prediction
model and sensitivity analysis results. Each reducer’s rotation error is measured using a
dedicated RV reducer rotation error test bench, and the deviation of each influencing factor
is measured using the double cylindric rod measuring method, the common normal line
method, and other technologies. Figure 2 depicts the schematic diagram of the rotation
error test bench. The servo motor can be set to rotate at different speeds, the magnetic pow-
der brake can be used to apply different loads. Two circular encoders record the angular
signals at the input and output of the reducer; using the phase difference information of
the angular signals, calculate the rotation error of the reducer.

Servo motor Circular encoder Circular encoder Magnetic powder

Torque sensor / RV reducer/

brake

/

7777

Torque sensor

Figure 2. Schematic diagram of RV reducer rotation error test bench.

When testing each reducer, the test bench is configured with the same speed and
load, the rotation error data of each RV reducer in the stable operation is recorded, and
the average value is considered the rotation error value. Adjust the servo motor speed
to 1200 rpm, set the load bit to 200 N-m, record the rotation error after the reducer has
stabilized, and select at random the test curve chart for three reducers, as depicted in
Figure 3. The sample point of the factor-rotation error is the sum of the value of the rotation
error received from the test and the deviation of each influencing factor.



Sensors 2023, 23, 3579

6 of 19

——Reducerl Reducer2 Reducer3

2.0
e
=
2 1.4 -
.2
s
2 1.1 1

0.8 L] 1 ] T T 1

10,000 12,000 14,000 16,000 18,000 20,000 22,000
Input shaft angle /(°)

Figure 3. Test curve chart for reducers.

3. Construction of Prediction Model of RV Reducer Rotation Error Based on the
DeepGP Model

Due to the multiplicity of the components and their interactions, the regression of
the reducer’s rotation error exhibits high-dimensional nonlinearity. Surrogate models,
which have the advantages of simple model development, quick processing, and high
prediction accuracy, are now frequently used to solve nonlinear problems. Traditional
surrogate models, such as Kriging [19] and the Gaussian process (GP) [20], are frequently
constrained by the network structure and kernel functions, resulting in poor fitting ac-
curacy. The DeepGP model stacks multiple Gaussian process regression models, and by
combining probabilistic models and deep learning, it retains the excellent performance of
Gaussian process regression while having more powerful mapping capabilities in fitting
high-dimensional problems [21], and we decided to build a rotation error prediction model
based on the DeepGP model in this paper.

There are three essential steps in building the RV reduction rotation error predic-
tion model:

1.  Determine the range of values for each rotation error-influencing factor based on the
actual production research, and then use the OLHS technique to collect the sample
points for the prediction model’s training set.

2. Construct a rotation error prediction model using the DeepGP model and determining
the structure and parameters of the model.

3. Use a validation set to evaluate the prediction model’s accuracy in order to make it
easier to conduct a sensitivity analysis of each individual influencing element in the
following section.

3.1. Sample Point Extraction Based on the OLHS Method

During the construction phase of the prediction model, the distribution of the sample
points in the modeling space and the total number of sample points have a significant
impact on the model’s performance. An adequate number of uniformly distributed sample
points can significantly reduce the computation costs while accurately reflecting the change
trend and information of the real model in space. In all other respects, the proxy model
created using these sample points can accurately and credibly reflect the sample space [22].

The Latin hypercube sampling (LHS) method, which is based on the concept of
probabilistic stratification, divides the probability distribution space of the test factors into
N nonoverlapping subregions based on the range of values for each influencing factor, and
then conducts independent equal-probability sampling in each subregion. This method is
more capable of filling empty spaces than the orthogonal test method. Due to the numerous
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factors affecting the rotation error in this paper, if 100 sample points are to be collected,
the sample space must be divided into 100'® sub-regions, which significantly increases the
computer’s workload by excessively subdividing the spatial sample area. Moreover, there
may be a part of the design space missing due to too many areas, so the LHS method is
obviously not suitable for the task of sample point sampling in this paper. Based on the LHS
approach, the OLHS method can ensure that all design points are uniformly distributed
across the design space by evenly and orthogonally distributing them in the design space
region of the test factors [23].

The parameter range of each rotation error influence factor was determined in Table 2,
and 200 sample points of the influencing factor data were extracted from each parameter
range using the OLHS method. The following are the specific sampling steps:

1.  Each dimensional axis is subdivided into 10 equal intervals, thereby dividing the
sample space range into 10!° sub-regions with dimensions based on the 15 variables
that affect the rotation error of the reducer, such as the Ar;.

2. Obtaining 200 sub-regions of an optimal Latin hypercube sampling matrix with
uniform distribution based on the space-filling optimality criterion, space-filling
optimality criterion is shown in the following equation:

n n 2 n n n (l) (l) 2
ZdemmZZZ(xi —X; ) ®)
i=1j=1 i=1j=11=1
In this equation, x; and x; indicate any two points, d;; indicates the distance between

any two points, and / indicates the dimension of the sample points, and this equation is
used for the OLHS matrix calculation.

3.  Following that, a sample point is selected within each of the extracted sub-regions
and each parameter sampling, point is then used as the coordinate component of each
dimension of the sampling point.

Using the sample point’s coordinate set, each sample point is located in the sample
database of the rotation error. Due to the discrete nature of the database, some sample points
cannot be located. Instead, sample points near the spatial locations of these coordinate
points are chosen. The final extracted partial data of the factor-rotation error sample
points are shown in Table 3, which uses millimeters(mm) as the unit of measurement for
each influencing factor. These data comprise the training set for the prediction model.
Concurrently, 200 sample points were selected at random from the database to serve
as a validation set for testing the accuracy of the prediction model developed in the
subsequent paper.

Table 3. The set for training rotation error prediction model.

Sample Rotation
Point (Af,, AEy, ACy, Arey, Ary, 0, tp, vy, 8], Ot, a, Ar, Eh, AFa, Ay) Error)”
1 (0.037, 0.200, 0.001, 0.047, 0.044, 0.009, 82.015, 4.027, 0.001, 0.001, 1.519, 0.001, 0.011, 0.006, 0.037) 0.059
2 (0.164, 0.297, 0.002, 0.038, 0.072, 0.003, 82.011, 4.016, 0.002, 0.005, 1.525, 0.001, 0.011, 0.001, 0.041) 1.238
3 (0.325, 0.277, 0.001, 0.022, 0.047, 0.001, 82.013, 4.030, 0.001, 0.004, 1.528, 0.002, 0.010, 0.008, 0.034) 1.538
100 (0.164, 0.224, 0.003, 0.030, 0.076, 0.002, 82.009, 4.026, 0.002, 0.003, 1.516, 0.002, 0.008, 0.005, 0.041) 1.483
101 (0.420, 0.258, 0.002, 0.028, 0.063, 0.005, 82.012, 4.024, 0.002, 0.002, 1.529, 0.001, 0.008, 0.002, 0.044) 2.161
199 (0.436, 0.242, 0.003, 0.036, 0.042, 0.004, 82.015, 4.018, 0.003, 0.001, 1.515, 0.001, 0.011, 0.03, 0.047) 1.217
200 (0.286, 0.233, 0.002, 0.044, 0.068, 0.002, 82.008, 4.026, 0.001, 0.003, 1.510, 0, 0.007, 0.008, 0.050) 1.040
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3.2. Process of Building Rotation Error Prediction Model
3.2.1. Deep Gaussian Processes Model

The DeepGP employs the Gaussian process and deep learning as a hierarchical net-
work to address the nonlinear relationships between the nodes in the hierarchy [24]. Lay-
ering numerous single-layer Gaussian processes on top of one another results in a deep
network structure. These layers are then linked together. The DeepGP model’s organiza-
tional structure is depicted in Figure 4.

fX fZl fZ(n—l) on
X _— 7, — i — Zn —»*
\ J
|
Input layer Hidden layers Output layer

Figure 4. The structure of the DeepGP model.

The DeepGP model can be expressed as the following function:

y= (I ) e @

where x is the input layer, y is the output layer, Z; is the hidden layer, and ¢ is the noise. A
Gaussian process with only input and output layers and no hidden layers is standard.
The information transfer rules for the deep Gaussian process model are as follows:

Zy=f"(x) +e 5)

2 = fA(2y) + € ©6)

Zy = fz(nfl) (Z(n71)> + e(Z,in; (7)
y=f"(Zn) + e ®)

The layer’s nodes represent the input values of the network’s lower layer and the
output values of the network’s higher layer. A Gaussian process is utilized to map the
two layers of neurons. The layers are connected by a kernel function that automatically
modifies the connections between a large number of nodes and determines the ideal model
parameters while assuming different weights for each conceivable dimension. According
to Table 4, the most popular varieties of kernels are as follows.

Table 4. The commonly used kernel functions.

Kernel Function Expression
The Linear kernel k(x,x';0) = xx'
The absolute-exponential kernel (RBF) k(x,x';0) = o2 -1 [(x;xf)]z
The absolute-exponential kernel k(x,x';0) = Uzexp( |x ;X/‘ >
The Periodic covariance kernel function (PER) k(r) = oexp [_ ZSI'V'2(7T|;;—X'|/ P)]

Where, | denotes the characteristic length scale. p denotes the period.

DeepGP is no longer a straightforward Gaussian process due to its multi-layered
network structure and complex mapping relationships. Bayesian inference methods are no
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longer applicable to DeepGP model parameter estimation. Due to the complexity and high
dimensionality of the parameter space and the space where the hidden variables are located,
variational inference is frequently employed in deterministic approximation inference to
compute the model’s hidden variables [25]. Figure 5 depicts the training optimization
flowchart of the DeepGP model. The training of the model consists primarily of variational
inference within the DeepGP layers, variational inference between the DeepGP layers, and
DeepGP parameter optimization, and the specific steps are as follows:

[ Input dataset ]

[ Divide training set and testing set ]

Initialize model parameters and
variational score parameters

[ Training set ]—D[ Marginal likelihood, p(y/X) ]

[ Variational distribution ]
of input variables

[ Log-likelihood, log p(y/X) ]

Variational I’f“""l”:'v‘
Inference ariauona
. - — =7 —a extrapolation
Between layers [ Initial variational score I ' Variational lower bound of the ] :
lower bound DeepGP Model
Gradient descent-based Moldel Vaatonilsoore
Pa.rm.nctf:r [ parameters ] [ parameters ]
optimization

[ ety et I ' The final constructed DeepGP ]
model

End

Figure 5. DeepGP model training flow chart.

Stepl: The sample data are separated into training and test sets, and the number of
input variables is determined.

Step2: Initialize the model parameters and variational parameters of the DeepGP model.

Step3: Input sample training data to train the model.

Step4: Variational inference within the DeepGP model layer: using a sparse variational
inference method to derive an initial variational lower bound on the original probabil-
ity space.

Step5: Variational inference between DeepGP model layers: maximizing the log-edge
likelihood of the target data and obtaining the best approximation of log(p(y/X)).

Step6: DeepGP model parameter optimization: after determining the induced vari-
ables, the model structure and model parameters are determined using the conjugate
gradient algorithm with the lower bound of the variance as the objective function.

Step7: Lastly, using the validation data to assess the constructed model’s accuracy.
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The mean absolute percentage error (MAPE), the coefficient of determination (R?),
the mean absolute error (MAE), and the root mean squared error (RMSE) are also used to
evaluate the local and global accuracy of the developed model. The formulas for calculating
the four performance indicators are provided below:

MAPE = Z?:lmif}/lw
Yi

RZ —1— Z?:l(]?i_]/i)z
Y (0i—9i) (9)

MAE = Z;lzl‘gifyi‘

RMSE = %—y)z

where n denotes the number of sample points, y; denotes the measured value of sample
points, §; denotes the predicted value of sample points, and i7; denotes the average value
of sample points.

3.2.2. Construction of RV Reducer Rotation Error Prediction Model

The hyperparameters of the DeepGP model consist of the number of hidden layers,
the number of nodes within each layer, and the type of kernel between each layer. These
hyperparameters are critical for the model’s accuracy and effectiveness. Theoretically, the
more hidden layers there are in a deep network, the smaller the model’s regression error
will be. However, if there are too many layers, the model’s training time will be excessively
long, it will be overly intricate, and it will have overfitting issues. The literature [26]
suggests that DeepGP models with two or three hidden layers perform well in terms of
prediction. In this work, the hidden layers of the model are chosen as two layers to maintain
the prediction speed while reducing the model complexity.

Erickson et al. [27] concluded that GPy: a Gaussian Process framework written in
Python outperforms other packages. As a result, this study uses GPy packages to build
a DeepGP model. The number of nodes in the input layer corresponds to the number of
variables that influence the rotation error of the reducer. The output layer variable is the
rotation error, and the output layer contains a total of one layer. Therefore, the model-based
DeepGP model and the input X and output layers Y can be expressed as follows:

X = [xl,xZ,...,er,] = [Afa,AFr,...,AFﬂ,AZ] (10)
Y = Per (11)
y=F2(fA(f () +e (12)

As the rotation error increases gradually as the error value of each influencing factor
increases, the rotation error is linear with each influencing factor as a whole. As a result,
the linear kernel was selected as the kernel function between the input layer and the initial
hidden layer; The RBF kernel is selected as the kernel function between the first and second
hidden layers and between the second hidden layer and the output layer due to the severe
coupling effect between the influencing factors.

In this paper, the ideal number of nodes in the two hidden layers is determined by
the grey wolf optimization (GWO) algorithm [28]. The training set is utilized to construct
the prediction model, and the fitness function is the R? of the model’s ability to predict the
validation set collected above. The wolf count (P) of the population is set to 30, and the
number of iterations (N) is set to 100. It is determined through an iterative search that the
prediction model with the highest R? value is constructed when the number of nodes in the
first hidden layer is six and the number of nodes in the second hidden layer is three for
the validation set, as well as the prediction accuracy of this model. As a result, Figure 6
depicts the structure of the RV reducer rotation error prediction model developed using
the DeepGP model.
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Kernel between layers: Linear RBF RBF

Structure of the model: X I A > Z; —

Number of layer nodes: 15 6 3 1
Figure 6. Structure diagram of the rotation error prediction model.

3.2.3. Accuracy Check of Rotation Error Prediction Model

Using the 200 validation sample points collected above, the accuracy of the prediction
model developed for this study is evaluated. MAPE, R2, MAE, and RMSE are chosen as
the performance metrics to evaluate the model’s regional and overall accuracy. In order to
reduce the chance factor in the test data, the validation set was evenly divided into two
for the model regression testing. Table 5 shows the test results for the two validation sets.
In this study, the prediction model has a prediction accuracy of more than 95% for both
validation sets. The prediction model in this paper has a low prediction error and good
fitting accuracy.

Table 5. Results of model regression accuracy test.

Performance Metrics Validation Set 1 Validation Set 2
MAPE 0.05533 0.07584
R2 0.97871 0.95913
MAE 0.06059 0.07085
RMSE 0.07053 0.08143

The rotation error dynamics model proposed in the literature [7] based on the equiva-
lent spring error model and the virtual prototype constructed in the literature [13] were
selected for comparison in order to validate the applicability and superiority of the rotation
error prediction model constructed based on the DeepGP model proposed in this paper.
The equivalent spring schematic model of the RV reducer constructed using the dynamic
substructure method is depicted in Figure 7a, below, where Ki represents the stiffness of
each part. The virtual prototype of the RV reducer constructed in the Adams dynamics
software is depicted in Figure 7b below.

Input

Planetary gear
Input shaft with sun ge@agﬁ@q
On

Needle togth shell
Ky

T
Cycloidgear2 02

)

Cycloidgear1 0

¥

Needle gear

*

(a) (b)

Figure 7. Two model diagrams of RV-40E Reducer. (a) Equivalent spring error model of RV-40E
reducer. (b) Virtual prototype of RV-40E reducer.
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As the virtual prototype simulation is time-consuming and inefficient, this paper
arbitrarily selects 40 points from the validation set to compare the three models” accuracy
verification. The test results of the three models are depicted in Table 6 and Figure 8 below.

Table 6. Comparison of regression accuracy of three models.

The Proposed Equivalent Spring

Performance Metrics Method Method Virtual Prototype

MAPE 0.06533 0.17326 0.20461
R? 0.96846 0.78542 0.76941
MAE 0.08059 0.13212 0.12941
RMSE 0.07053 0.16819 0.20851
=== mean ’/ Pid

5 2.04 @ Equivalent spring method e

g ¢ Virtual prototype /" ‘

< 1.84 & The proposed model //z’

o] 7

5 "

o | 7’

o 1.6 ¥ ¢
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& ‘,‘»
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True value of rotation error

Figure 8. Test results of this model and two other models.

It can be seen from the Table 6 that the R? value of the prediction model presented
in this article reaches 96%. The model presented in this paper has stable mapping and
high prediction accuracy, whereas the R? value of the other two models is just over 75%.
Figure 8 shows that the values predicted in this article are more in line with the true value,
while the rotation error predicted by the other two models deviates from the measured
values and are, in most cases, smaller than the measured values. Due to the fact that this
paper is based on the actual production and processing plant data, the other two models
may not account for the influence of the friction force and disregard the influence of certain
components, such as the bearings, in the modeling process.

According to the model evaluation results, the samples collected using the OLHS
approach were uniform and representative, which matched the criteria for the sampling
points required by the prediction model and could guarantee the model’s construction
accuracy. This paper extracts the data directly from the actual production and processing
plant to assure the applicability and precision of its analysis results. The RV reducer rotation
error modelling method presented in this paper, which is based on the DeepGP model, is
faster and more precise than the traditional modelling techniques. The mapping stability of
the prediction model constructed in this paper paves the way for a later sensitivity analysis
of the factors affecting rotation error.
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4. Sensitivity Analysis of Factors Influencing the Rotation Error of RV Reducers Based
on Sobol Method

The examination of the rotation error prediction model reveals that it is stable in
mapping and has a high level of prediction accuracy, meeting the requirements of sensitivity
analysis (SA). As a result, the SA can use the newly developed rotation error prediction
model to reduce the computation costs and improve the analysis efficiency.

4.1. Sobol Sensitivity Analysis Method

SA focuses on the relative magnitude of the effect of the model input on the output
uncertainty, which identifies the important design variables and is crucial for the optimal
design of engineering products. SA is divided into local SA and global SA. In the current
process, global sensitivity is frequently used to analyze the issue. The common sensitivity
analysis techniques used today include the Fourier amplitude sensitivity test (FAST) [29],
Morris [30], one-factor-at-a-time methods with Latin-hypercube sampling (LH-OAT) [31],
Generalized Likelihood Uncertainty Estimation (GLUE) [32], and the Sobol method [33].
According to the analysis principles, the sensitivity analysis methods can be divided into
qualitative and quantitative methods. Table 7 lists the characteristics of the different
sensitivity analysis methods.

Table 7. Characteristics of sensitivity methods.

Sensitivity Analysis Methods Characteristics of Sensitivity Methods
Local sensitivity analysis FAST Simple operation, ignores pa'ram'eFer interactions,
low model applicability.
. Compared the output results of adjacent
Morris . P
parameters in the parameter space, inefficient.
Although the benefits of both the random
LH-OAT o.ne—factor-at—a—n.me and LHS sampling
techniques are taken into account, the computer
o program is complex.
Global sensitivity Combining the benefits of
analysis GLUE Rivest-Shamir-Adleman techniques and fuzzy

mathematics to rank sensitivities as scatter plots.
The sensitivity indices are solved using the
Monte Carlo sampling technique, which can
Sobol distinguish independently between
parameter-independent and
parameter-interacting sensitivities.

Comparing the characteristics of the aforementioned sensitivity analysis methods, the
variance-based Sobol method considers the influence of the parameter interactions on the
results and can not only solve the local and global sensitivity indexes of each uncertainty
variable, but can also quantify the influence of the parameter interactions on the results. In
this paper, the Sobol method is employed to quantify the sensitivity indexes of each factor
influencing the rotation error and to examine the influence of the interaction and coupling
between the factors on the rotation error.

For the multivariate function y = g(x), it can be decomposed into the following
summation form:

k
g(x) =go+ Y &ilx)+ Y &ij(xix)+...+g10. k(X1 %2, ., xK) (13)
=1

i 1<i<i<k

The right term of the above equation is expressed in the form of a multiple integral

as follows:
gO:/ .../g(x)dx:/ .../g(xl,...,xk)dxl...dxk (14)
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gi(x;) :/ / g(x)dx_; — Qo (15)

gij(xi,x]'):/ "'/8(x)dx—<if>—80_gi(xf)_gf(xf) (19

where dx_; denotes the integral of variables other than x;, dx_;;) denotes the integral of
variables other than x; and x;, the remaining terms of Equation (13) can be derived to find.
The variance V and bias a of y can be expressed as:

V:/ / & (x1, ..., x)dxy ... dx, — g3 (17)

Vipis = V[gi].“is] =/ / 81’21...1‘5 (xil""’xis)dxil ey (18)

where 1 <iy < ... <is <k, V; i /V denotes the sensitivity of {iy,...,is}. Sensitivity indi-
cators for different order variables can be obtained by adjusting the number of {i,...,is}.
Among them, the first-order Sobol sensitivity indicator S; and the global sensitivity indica-
tor St, are commonly used.

The first-order indices are also known as the main effects, and the corresponding
expression is shown in the equation below:

S, =V;/V (19)

Other higher-order Sobol sensitivity indices can also be obtained based on the bias
variance, and higher-order Sobol indices indicate the cross-correlation between two or more
factors. First-order and higher-order indices have the following properties:

k
Yo Si+ Zi<j Sij+.. +Sijx=1 (20)
The total-order indices are also known as the total effects, and can be expressed as:
St,=1-5_, (21)

where S_; denotes the sum of all 5;; x excluding variable x;.

S; denotes the first-order effect of the output parameter x; alone on the output result,
and the S; does not account for covariate cross-talk. St, denotes the sum of the first-order
and higher-order effects of the input parameter x; on the output results, and it evaluates
the parameter x;’s overall effect on the model output. When St, = 0, the variable x; has no
effect on the model output. In this paper, we will calculate each sensitivity index using a
Monte Carlo sampling method based on variance [34].

4.2. Sensitivity Analysis Process for Rotation Error Influencing Factors Based Sobol Method

The Python package SALib is used as the primary research tool in this study, and the
Sobol method is employed to conduct a sensitivity analysis of the variables influencing
the RV reducer’s rotation error. As a result of the small sample size used in this study,
the results of the SA using these sample points alone may not be accurate enough. The
inhomogeneity of the sample location space will lead to numerous inaccuracies if a large
number of samples are collected at random. As a result, the previously mentioned rotation
error prediction model is extracted first, followed by the use of SALib’s proprietary Saltelli
sampler to create uniform samples, and finally the Sobol method to calculate the SA for
each influencing component. Each test was repeated three times under the same conditions
to ensure that the sampling had no effect on the SA results, and the average of all the values
was used to determine each SA’s final result.
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4.2.1. Results of Total Effects of Factors Influencing the Rotation Error of RV Reducer

The SA method was built in Python software. Firstly, the prediction model of the
reducer rotation error constructed above was imported; then, each influencing variable and
its value range were determined, and the SA problem model of this paper was defined;
finally, 2400 uniform samples were generated by the Saltelli sampler for the quantitative
analysis of 15 influencing factors of the reducer rotation error.

To begin, the total effects of each rotation error influence factor are analyzed, and the
total effects indicators of the reducer rotation error influencing factors are displayed in
Table 8, where a and the other identifiers represent each component influencing the rotation
error. As shown in the table, the total effect of 5¢(j) is 0.568193, making it the factor with
the highest index. ét is the most sensitive to the rotation error’s effects. The effects of Ar,
Arp, 0, 6rp, Otyp, 8], 6t, Ar are more than ten times as much as the remaining influencing
factors’ effects. Analyzing the structure and transmission principle of the reducer reveals
that its first-stage planetary gear reduction mechanism is located far from the output end,
and its influence on the rotation error has been greatly reduced due to the error it produces
after the second stage reduction transmission. The combined force of two 180° out of phase
cycloid wheels is applied to the planetary frame. The impact of the planetary output carrier
on the RV reducer’s rotation error is significantly mitigated [35]. The rotation error of the
RV reducer can be attributed to the error affecting the factor of the secondary cycloidal
pin-wheel transmission mechanism.

Table 8. The total effects indicators of the reducer rotation error influencing factors.

Label Influencing Factor of Rotation Error Total Effects
a Afa 0.012414
b AF, 0.025427
C ACy 0.007129
d Aty 0.269588
e Arp 0.144105
f o 0.387645
g orp 0.112615
h Otrp 0.531029
i i 0.111341
j ot 0.568193
k oa 0.021295
1 Ar 0.228339
m Eh 0.014437
n AFa 0.012762
° Az 0.009721

4.2.2. Analysis of the Coupling Effect of Factors Influencing the Rotation Error of
RV Reducer

The involute planetary transmission component and the planetary output carrier have
a very small and negligible impact on the rotation error, as demonstrated by the above
study; thus, we will ignore these aspects for the time being. Figure 9 depicts the primary
influences and overall effects of each contributing element on the rotation error of the RV
reducer. Where each influence component, denoted by a data label, is the same as in Table 8.
As depicted in the figure, ér,,(h) and 6t(j) have higher sensitivity indices and their impact
on the rotation error is marginally greater. Their overall and primary effects are comparable.
The remaining factors, such as Aryp (d) and Ar (1), vary substantially in terms of their main
effects and total effects, despite having relatively smaller sensitivity indicators. As these
factors interact significantly with other factors, it is vital to study each factor’s coupling
relationship. The second-order sensitivity index of the factor influencing the rotation error
is then analyzed.
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Total effects
Main effects

Figure 9. The main effects and total effects of each influencing factor of RV reducer rotation error.

Figure 10 shows a heat map of the second-order sensitivity index between the variables
affecting the rotation error of the RV reducer, with the labels of the rows and columns
representing the same error factors as in Table 8. An increase in the thermogram readings
or a darkening of the color of the two elements indicates that the coupling between the
two components has a greater influence on the reducer’s rotation error. As shown in
the picture, the second-order sensitivity index between 6](i) and 4t(j) is 0.029, and the
second-order sensitivity index between 6](i) and d7p(h) is 0.025. These two coupling effects
are noticeably stronger. The second-order sensitivity index between Ar;,(d) and Ary(e) is
0.0077, and the coupling effects between Ar;,(d) and Ary(e) have less of an impact on the
rotation error. As the second-order sensitivity index between the other two components
was either zero or negative, none of the coupling effects were significant. By comparing
the first-order, second-order, and total effects of the factors influencing the rotation error,
we can conclude that the total effects of each factor is produced by the combination of the
main effects and the coupling between itself and the other influences.

-=0. 150

-=0.175

-=0. 200

Figure 10. Heat map of second-order sensitivity of RV reducer rotation error.
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4.2.3. Comparison of Sensitivity Analysis Results

We compare the Sobol method with the established Taylor midvalue theorem sensi-
tivity analysis method [13] to more thoroughly assess the Sobol method’s accuracy. In the
literature [13], the equivalence error method based on the principle of the equivalent spring
method was first used to derive the value of the rotation error caused by each factor of the
rotation error, followed by the Taylor midvalue theorem to obtain the sensitivity coefficient
for each factor, and finally the sensitivity index for each factor. The results of the sensitivity
comparison of some of the factors influencing the rotation errors calculated by the Taylor
and Sobol methodologies are shown in Table 9.

Table 9. Comparison of the sensitivity indexes of the factors influencing the rotation error obtained
by the two methods.

Infuencing Factor of

Taylor Sensitivity Method Sobol

Rotation Error Caused

Ratation Error by Each Factor Sensitivity Coefficient Sensitivity Index Total Effects
Afa Aax180x60 - 0.025 0.0124
TTX1XT]
AF, AF % 18060 - 0.025 0.0254
TTXIXT]
2XAr,
Aryp s 1 1 0.269588
2% Ar, xA/1—Kk? 2
Ary ; szc i 1 — K2 0.68 0.144105
2x0r, x4/1-k? 2
o1y 2 X\/%( i /1 K2 0.68 0.112615
Srrp —2X0ryp 1 1 0.5312
aAXZzZe
5] ] 0.5 0.5 0.1111
aAXZe
5t f1x0] k 0.73 0.56819
Ar 180x60xAr % 0.679487 0.228339

Where rq denotes the radius of the input shaft with sun gear.

According to Table 9, when comparing the normalized sensitivity index of each factor
deviation derived by the equivalent error method with the Taylor midvalue theorem and
the sensitivity index calculated in this paper, the calculation results of the two methods have
little difference, the sensitivity index of each factor deviation is in the same order, and the
sensitivity qualitative analysis of each factor deviation is the same. The approach proposed
in the literature [13] does not consider the effect of the coupling effects between factors and
is more of a qualitative analysis. In contrast, this paper analyzes the combined effect of
each factor on the rotation error, solves the sensitivity index of each factor quantitatively,
and examines how the coupling between the factors affects the rotation error.

As a result, the rotation error prediction model and the sensitivity analysis method
presented in this paper are correct.

5. Conclusions

Using the DeepGP model and the Sobol sensitivity approach, this paper investigates
the sensitivity of each contributing component of the RV reducer rotation error. The
preceding analysis leads to the following conclusions:

e  Using the OLHS method, actual production facilities were sampled to ensure the accu-
racy of the created prediction models, as well as the dependability and applicability
of the SA results. Using the Deep GP model, a high-precision prediction model for
the rotation error of each RV reducer was developed, and the accuracy was compared
with the equivalent method and virtual prototypes to demonstrate the validity and
accuracy of the prediction model, thereby establishing the conditions for the sensitivity
analysis of the RV reducer’s rotation error.
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e  On the basis of the prediction model, a global sensitivity analysis of the variables
affecting the rotation error of the RV reducer was conducted using the Sobol method.
The primary cause of the reducer’s rotation error is the second-stage cycloidal pin-
wheel transmission mechanism, with the influence of the planetary gear transmission
and the planetary output carrier being small and negligible.

o  The second-order sensitivity index is used to evaluate how multiple influencing
elements interact to affect the rotation error of the reducer. There is significantly
more coupling between ] and ¢t, as well as between dr,, and 6]. The coupling
effect between other variables has little effect on the rotation error. The total order
sensitivity index of each factor is calculated by adding its main effects and the coupling
of those effects to other influences. The results of this paper’s sensitivity analysis were
contrasted with the results of Taylor’s midvalue theorem to confirm the originality
and precision of the analysis results.
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