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Abstract: Since the advent of compressed sensing (CS), many reconstruction algorithms have been
proposed, most of which are devoted to reconstructing images with better visual quality. However,
higher-quality images tend to reveal more sensitive information in machine recognition tasks. In
this paper, we propose a novel invertible privacy-preserving adversarial reconstruction method
for image CS. While optimizing the quality, the reconstructed images are made to be adversarial
samples at the moment of generation. For semi-authorized users, they can only obtain the adversarial
reconstructed images, which provide little information for machine recognition or training deep
models. For authorized users, they can reverse adversarial reconstructed images to clean samples
with an additional restoration network. Experimental results show that while keeping good visual
quality for both types of reconstructed images, the proposed scheme can provide semi-authorized
users with adversarial reconstructed images with a very low recognizable rate, and allow authorized
users to further recover sanitized reconstructed images with recognition performance approximating
that of the traditional CS.

Keywords: compressed sensing; image reconstruction; privacy preserving; adversarial examples;
invertible

1. Introduction

With the rapid development of the Internet of Things, the scale of the network becomes
larger and larger, and the network environment becomes more and more complex. In the
Internet of Things, the number of smart wireless sensors has increased significantly, which
has brought great challenges to network communication. Problems such as energy sav-
ing, transmission efficiency, and security have gradually attracted attention. Compressed
sensing (CS) [1] can help to solve the three problems of intelligent network communication
simultaneously. CS is an advanced signal sampling and reconstruction method, which
breaks the Nyquist sampling theorem. It can approximately restore the original signal
through a few measurements, and its speed of sampling is much faster than similar tra-
ditional frameworks. It is usually used as a data encryption and compression scheme for
energy-constrained wireless sensor networks.

Over the past decades, many classic traditional CS reconstruction algorithms have
been proposed [2–4], such as the orthogonal matching pursuit algorithm (OMP) [2] and
the gradient projection for sparse reconstruction algorithm (GPSR) [3]. However, such
traditional reconstruction algorithms often have high computational costs, and when the
sampling rate is low, it is usually difficult to obtain a reconstructed image with good quality.

Fortunately, the emergence of deep learning provides new possibilities for the recon-
struction of CS. In recent years, deep learning, as a hot technology in the era of big data,
has been successfully applied to the field of computer vision and has made a series of
breakthroughs in tasks such as image recognition, super-resolution, and image restoration.
The problem that the sparse hypothesis model in traditional CS cannot fully meet the
application requirements can be solved by introducing deep learning. The CS methods
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based on deep learning [5–7] not only improve the reconstruction performance but also
complete image reconstruction in a very short time, meeting the real-time requirements in
real-world applications.

Most of the existing CS-related works based on deep learning are dedicated to im-
proving the visual quality of reconstructed images, and the security they are concerned
about is usually reflected in whether illegal users can restore the image content with the
measurements. In fact, after the receiver has recovered high-quality reconstructed images,
the privacy threat still is living. In the past, if the image content could not be recognized by
human eyes, we said the image’s privacy was protected. However, in the era of big data,
reconstructed images may be collected by unauthorized third parties, and then intelligent
algorithms may be maliciously used for data analysis or model training, which poses a
great threat to the privacy of image owners. Therefore, we propose a privacy-preserving
requirement for practical applications: we hope that the reconstructed image can only
meet the observation needs of the receiver’s eyes, but it cannot be used for machine
tasks successfully.

From the perspective of an individual, Kashmir from the New York Times reported on
Clearview.AI, a company that has collected more than 3 billion online photos and trained a
large model to identify millions of citizens. However, the company finished the collection
without the knowledge or explicit consent of the photo owners [8], which poses a huge
threat to personal privacy. In response to this threat, Ref. [9] suggests that users add an
imperceptible “cloak” perturbation before uploading their photos to social networks. As a
result, the facial recognition model would make wrong judgments. From the perspective
of the companies, they also want to prevent valuable internal data from being stolen by
malicious employees for analyzing data or training pirated models because both of these
behaviors may cause huge economic or reputational losses to the company.

Taking the above scenarios as examples, therefore, we hope that the defensive version
of the reconstructed image can be viewed normally by human users. However, if receivers
try to collect a large number of reconstructed images without authorization to train the
pirate model, it is impossible for them to obtain a model with good performance. Of course,
the receivers cannot obtain accurate and reliable privacy information by analyzing the
defensive version of the reconstructed images. That is, although reconstructed images have
good visual quality, they cannot be used for effective training or accuracy recognition.

This motivation reminds us of adversarial examples [10]. Nowadays, adversarial
examples are a research hotspot in the security field of artificial intelligence, which aim
to deceive deep neural network (DNN) models by adding imperceptible perturbations to
the original samples. We use this double-edged sword in a defensive way to preserve the
privacy of CS reconstructed images.

Destroying the availability of reconstructed images for machine tasks is very costly,
as huge amounts of data are essential to building a well-performing deep learning model.
However, both collecting data and labeling it are costly tasks, which are time-consuming
and labor-consuming. Therefore, datasets are often viewed as digital property, and some
companies offer them to users as paid content. If reconstructed images are simply trans-
formed into images that cannot be trained or recognized, authorized users will lose the
right to use the data properly, which causes unnecessary waste of resources. Thus, it is
imperative for authorized users to restore the privacy-preserving reconstructed images to
clean samples that can be used for training and recognition effectively. In other words, the
adversarial reconstructed images should be reversible [11]. A reversible privacy-preserving
framework for face recognition is also proposed in [12].

Inspired by [13], we pay more attention to the performance of reconstructed images in
machine tasks. However, our goal is not to improve the recognition performance of recon-
structed images but to achieve privacy protection by reducing their recognition accuracy.
Therefore, we propose a novel invertible privacy-preserving adversarial reconstruction
method for image CS based on adversarial examples (IPPARNet). We divide the users
into two categories: semi-authorized users and authorized users. The adversarial recon-
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struction network takes the measurements as input and then outputs the reconstructed
image, which is an adversarial sample. Such reconstructed images could be obtained by a
semi-authorized user. Although they can be recognized normally by human eyes, the DNN
models will be misled by them and make incorrect inferences, so as to achieve the purpose
of privacy protection. At the same time, we also consider the invertibility of machine task
availability. For authorized users, they can employ an additional restoration network to
restore the adversarial sample to a sanitized sample which is helpful for machine tasks,
avoiding the secondary transmission of available data. The authors of [13] point out that
machine users pay more attention to machine metrics such as image recognition accuracy,
rather than visual quality. Inspired by this, we also regard recognition accuracy as an extra
optimization goal of the authenticated restoration network to improve the recognizability
of recovered clean samples.

The main contributions of this paper are summarized below:

• We consider both the visual quality of reconstructed images and their ability to confuse
DNN models during the reconstruction process of CS so that the reconstructed images
have the ability to fool the DNN models at the time of generation.

• We propose a privacy-preserving reconstruction method for image CS based on ad-
versarial examples for users with two levels. While guaranteeing the visual quality
of the reconstructed images, we take the machine recognition metric as the starting
point and focus on the privacy needs of different users. We not only follow the
original adversarial samples but also consider the invertibility of task availability of
reconstructed images. Specifically, semi-authorized users can only obtain adversarial
reconstructed images, which protects user privacy by reducing the accuracy rate of the
recognition models. In contrast, authorized users can restore sanitized reconstructed
images from the adversarial reconstructed images for more efficient model training or
more accurate data analysis, enabling invertibility for machine task availability.

• The good performance of the IPPARNet is demonstrated with extensive experiments.
Keeping good visual quality, the recognizability of adversarial reconstructed images
is low enough to avoid being used illegally by malicious users, while the sanitized
reconstructed images can reach an approximate or even slightly higher recognition
rate compared with that of the original CS reconstructed images.

The rest of this paper is organized as follows. In Section 2, we review the related work
of CS and adversarial examples. In Section 3, we introduce the proposed scheme in detail.
Section 4 provides the experimental setting and presents the experimental results. Finally,
our work is concluded in Section 5.

2. Related Works
2.1. Compressed Sensing
2.1.1. Traditional Compressed Sensing

The proposal of CS breaks the Nyquist–Shannon theorem and provides a concise
and efficient signal acquisition paradigm. The theory of CS points out that as long as the
original signal x ∈ Rn is sparse in a certain transform domain, it is possible to project the
transformed high-dimensional signal onto a low-dimensional space with a measurement
matrix Φ ∈ Rm×n that is uncorrelated with the orthogonal transform basis Ψ ∈ Rn×n. Then,
by solving an optimization problem, the original signal can be reconstructed with high
probability from the measurements y ∈ Rm.

The formulation of the CS measurement process can be expressed as:

y = Φx = ΦΨs (1)

where s is the sparse coefficient of the original signal x with respect to the basis Ψ. In
addition, m << n and m

n is called the sampling rate. The commonly used measurement
matrices include structured random matrix, random Gaussian matrix, random Bernoulli
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matrix, etc. From Equation (1), it can be seen that the computational complexity of the
measurement process of CS is fairly low, which is one of its significant advantages.

The reconstruction of CS can be viewed as the inverse process of measuring, and
the original image can be reconstructed by seeking the sparsest solution of Equation
(1). Although it is an under-determined problem, it can be converted into a problem of
minimizing L0 norm due to satisfying the sparsity of the signal, i.e., solving

argmin ‖ s ‖0 subject to y = ΦΨs. (2)

However, solving Equation (2) is an NP-Hard problem, so it is usually solved itera-
tively using an approximation algorithm. The commonly used traditional reconstruction
algorithms can be divided into two main categories, one is based on convex optimization
class algorithms, such as basis pursuit algorithm (BP), GPSR [3], and ISTA-Net [7]. The
second is based on greedy algorithms, such as the matching pursuit (MP) algorithm and
OMP [2].

Although traditional CS greatly reduces the computational complexity in the mea-
surement process, its reconstruction cost is very expensive. In practical applications, the
computationally complex reconstruction work is usually outsourced to cloud servers with
abundant computing resources. However, the heavy computation of traditional reconstruc-
tion algorithms has not been improved from the root cause.

2.1.2. Compressed Sensing Based on Deep Learning

With the rapid development of deep learning, DNNs are applied to implement CS,
which not only further improves the reconstruction quality, but also significantly increases
the reconstruction speed. In 2015, Mousavi et al. [14] introduced deep learning into CS with
fully connected networks for the first time and proposed a stacked denoising autoencoder
(SDA) to capture the statistical correlation between different elements of the signal, thereby
improving the quality of the reconstructed signal. Compared with the fully connected
network, the convolutional neural network (CNN) reduces the number of parameters and
enhances the model expression ability with mechanisms such as parameter sharing and
local connectivity. In [15], Kuldeep Kulkarni et al. combined CS with CNN for the first
time, and proposed a non-iterative block CS (BCS) [16] reconstruction network named
ReconNet. In [17], after the reconstructed linear map from the measurement, a residual
network was introduced to narrow the gap between the initial reconstructed image and the
original image, leading to a higher reconstruction quality.

However, the above schemes only consider the reconstruction process and do not
involve the measurement process, and they use the same measurement matrices as the
traditional CS algorithms. In [18], based on ReconNet, a fully connected layer is used
to simulate the measurement process, and an efficient measurement matrix could be
adaptively learned. In this way, the measurements retain more image structure information,
and complex manual design is avoided at the same time. By jointly training the new
network consisting of a fully connected layer and ReconNet, visually better-quality images
can be reconstructed. Based on BCS, [19] employs deep CNN to achieve sampling and
reconstruction, and also trains the sampling network and the reconstruction network in an
end-to-end way to quickly restore the reconstructed image with better quality. The authors
of [20] further optimize the learned measurement matrices, and propose a {0, 1}-binary
matrix and a {−1, +1}-bipolar matrix, which are more convenient for storage and hardware
implementation in practical applications. In addition, residual learning is also introduced
for better reconstruction.

As mentioned above, most deep learning-based CS schemes focus on two issues: the
first is how to learn an effective measurement matrix; the second is how to reconstruct
images with better quality and higher speed. However, Ref. [13] points out that in some
scenarios, reconstructed images are not used for human viewing but for tasks conducted
by machine users. Therefore, we should pay attention to what metrics the machine users
are concerned about, such as recognition accuracy. Different from [13], it takes recognition
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accuracy as an extra optimization goal for CS reconstruction networks, aiming to further
improve the recognition rate while reconstructing. In this paper, although we also focus
on recognition accuracy, we hope that the reconstructed image is an adversarial sample
as it is generated, which has the innate ability to fool DNN models. Thus, the adversarial
reconstructed images can avoid being abused by unauthorized users for data analysis or
model training, and play an important role in privacy protection.

2.2. Adversarial Examples

In 2013, Szegedy et al. [21] first proposed the concept of adversarial samples. That is,
after applying an imperceptible perturbation to the original image, the DNN models will
wrongly classify the image with high confidence. Such perturbation is called adversarial
perturbation, and the image to which the adversarial perturbation is added is called an
adversarial sample.

In terms of the model prediction errors, the adversarial sample attack can be divided
into two categories: untargeted adversarial samples and targeted adversarial samples.
The former means that the adversarial sample can be misclassified by the model as any
class other than its real class, while the latter refers to the adversarial sample that can
be misclassified as the wrong class specified by the attacker. In this paper, we focus on
untargeted adversarial samples.

In terms of the generation manner, adversarial samples can be divided into the follow-
ing three categories: gradient-based, optimization-based, and generation-based.

In [22], Goodfellow et al. proposed a fast method for generating adversarial samples
based on gradients called the fast gradient sign method (FGSM). The method adds a small
perturbation whose elements are equal to the sign of the elements of the gradient of the
loss function with respect to the input, and rapidly increases the loss in a single step, so
as to deceive the DNN models. Subsequently, the gradient direction-based adversarial
sample generation methods have been widely studied, such as the basic iterative method
(BIM) [23] and the projected gradient descent (PGD) [24]. The BIM provides more robust
adversarial examples by modifying the one-step update of FGSM to a multi-step iteration.
While the PGD, using gradient projection, is considered the strongest first-order adversarial
attack method available.

In [10], Carlini et al. considered generating adversarial samples as an optimization
problem and proposed the Carlini and Wagner attack (C&W) which continuously optimizes
the perturbations according to the set optimization decline, thus achieving a more efficient
adversarial sample with smaller perturbations.

However, the above algorithms based on iterative optimization generally suffer from
high computational cost and slow running speed. In recent years, with the development
of generative adversarial networks (GAN) [25], the generation of adversarial samples
has become more diverse. Based on GAN, Xiao et al. [26] proposed a fast adversarial
perturbation generation method called AdvGAN. The generator G takes the original image
x as the input and outputs the adversarial perturbation G(x). Then, the perturbation
is superimposed on the original image to obtain the adversarial sample x + G(x). The
mutual game between the discriminator and the generator drives the visual similarity
of the adversarial samples and the original images. Since this scheme does not require
iterative optimization and generates the adversarial sample in a single forward pass at the
inference stage, it significantly improves the generation speed of the adversarial sample
while guaranteeing the success rate of the attack and the image quality. AdvGAN++ [27],
based on AdvGAN, proposes to make full use of the potential features of the original image
to generate adversarial samples. In this paper, the adversarial reconstructed image is an
adversarial sample generated by the generation-based method.
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3. Proposed Method
3.1. Overview

Suppose (X, Y) = {(x1, y1), (x2, y2), . . . . . . (xN , yN)} is the original dataset with N
images, where xi represents the original image with the serial number of i, and yi rep-
resents the classification label corresponding to xi. The xi is sampled to obtain a mea-
surement vector mi, then receivers can reconstruct the approximate image of the orig-
inal image with mi. Similarly, the reconstructed image dataset can be expressed as(
X′, Y′

)
=
{
(x′1, y′1), (x′2, y′2), . . . . . . (x′N , y′N)

}
. In most cases, we hope the reconstructed

image x′i to be visually similar to xi as much as possible, pursuing higher visual quality.
However, images with high visual quality often bring privacy leakage problems. For exam-
ple, when y′i = yi, these reconstructed images can be analyzed by unauthorized models, or
a large number of them can be collected by illegal users for model training.

Therefore, we propose a novel privacy-preserving adversarial reconstruction frame-
work for CS, as shown in Figure 1. We designed it for semi-authorized users and authorized
users. Specifically, the adversarial reconstructed images x′i , which are reconstructed from
the measurement vector mi and could protect the privacy of the original image xi, can be
obtained by all users.
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Our goal is to make x′i visually similar to xi as much as possible; however, for the
recognition models based on deep neural networks, the corresponding label y′i of x′i is
different from yi. That is, the image x′i is an adversarial example at the beginning of the
reconstruction. In this way, although semi-authorized users obtain visually useful images,
they cannot use such images to perform data analysis tasks well, nor can they train effective
models. That is to say, while ensuring the practicability of the reconstructed images, we
also protect their privacy. When authorized users have task needs, they can restore the
adversarial reconstructed image x′i to the sanitized image x′′i with the restoration network R.
Similarly, for human eyes, the visual difference between x′′i and the reconstructed image of
CSNet should be indistinguishable. However, the classification labels of x′′i and xi should
be the same, that is, y′′i = yi. In this way, the sanitized image x′′i can not only be recognized
by human beings, but also be beneficial to machine users for downstream tasks. In this
paper, we take the task of recognizing categories as an example. It is worth noting that,
inspired by [13], we also pay more attention to the machine users, that is, x′′i is more helpful
to improve recognition performance than the reconstructed image of traditional CS.

3.2. Network Architecture

Our model framework consists of a measurement network MΘM , an adversarial
reconstruction network Adv-GΘAdv−G , a discriminator network DΘD , a restoration network
RΘR , and several pre-trained target classifiers, where the subscripts ΘM, ΘAdv−G, ΘD,
and ΘR are the trained parameters. For simplicity, if there is no ambiguity, we omit the
subscripts. Figure 2 shows the overall architecture of our proposed model.
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Formally, the measurement process can be expressed as:

mi = M(xi). (3)

After the original image xi is measured by the measurement network M, the measure-
ment vector mi is the output.

As for reconstruction, our proposed IPPARNet includes two stages. The first recon-
struction stage can be defined as:

x′i = Adv−G(mi). (4)

With the input mi, the Adv−G network outputs the adversarial reconstructed image x′′i .
Both networks M and Adv−G are derived from CSNet [20].

We employ several pre-trained classifiers as a joint target network F. x′′i should have the
ability to induce the ensemble target network F to make wrong inferences while ensuring
good image quality. At the same time, we introduce a discriminator D to encourage the
adversarial reconstructed image x′′i to achieve a high visual quality.

The second reconstruction stage can be described as:

x′′i = R
(
x′i
)
. (5)

With the additional restoration network R, authorized users can take the adversarial
reconstructed image x′′i as the input, and further restore the sanitized image x′′i . For the
target network F, x′′i can achieve a high recognition accuracy, which is more conducive to
subsequent recognition tasks.

3.2.1. Measurement Network: M

Based on BCS, we firstly divide the original image into non-overlapping blocks of
size B × B × c, where c represents the number of channels. As shown in Equation (1), the
measurement process of traditional CS can be expressed as mi = ΦBxi. Regarding each
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row of the measurement matrix ΦB as a filter, the measurement process can be done by a
convolutional layer without biases.

For the non-overlapping measurement process, the convolutional layer measures the
original image with filters of size B × B × c and a stride of B. When the sampling rate is M

N ,

the convolutional layer contains n =
∣∣∣M

N cB2
∣∣∣ filters. An image block of size B × B × c is fed

into the measurement network to obtain the output measurement vector of size 1 × 1 × n.
Furthermore, there is no bias in each filter. The measurement network can learn an efficient
measurement matrix adaptively, thereby avoiding complicated and possibly inefficient
manual design of the measurement matrix.

3.2.2. Adversarial Reconstruction Network: Adv-G

This network can be divided into two components: the initial reconstruction network
(referred as I_Rec) and the deep reconstruction network (referred as D_Rec).

In the traditional BCS, the pseudo-inverse matrix is usually used to reconstruct the
primary reconstructed image from the measurement value. The implementation of the
corresponding network is similar to that of the measurement network. We can also obtain a
rough reconstruction of the image with the network I_Rec, which includes a convolutional
layer with filters ignoring the bias.

In the I_Rec network, cB2 filters of size 1 × 1 × n and a stride of 1 can be used to
obtain reconstructed image blocks. However, the output of each image block is still a vector
at this time, so we need a combination layer to reshape it to a block of size B × B × c
and then concatenate these blocks together to obtain the reconstructed image. Since the
network I_Rec does not employ any activation layer, the initial reconstruction is a linear
operation. The linear mapping produces a relatively good initial reconstructed image x̃i
with fast speed and low computational cost, but its visual quality is poor and has obvious
block artifacts.

Therefore, we hope to further narrow the gap between x̃i and xi with the network
D_Rec. The D_Rec network learns the residual di = D_Rec(x̃i), and the final output of the
adversarial reconstruction network Adv-G is x′i = x̃i + di. For the so-called “adversarial
reconstruction”, we hope that the learned perturbation di, on the one hand, can further
improve the visual quality of the output image of network I_Rec. On the other hand, when
it is added to x̃i, x′i can induce the target network to make wrong predictions, that is to
say, x′i has the ability to mislead the target model at the moment of generation. For the
architecture of D_Rec, we replace residual blocks with those in [28].

3.2.3. Restoration Network: R

U-Net [29] is widely used in image processing tasks with DNNs. It uses skip con-
nections to combine the high-level semantic feature maps from the decoder with the
corresponding low-level detailed feature maps from the encoder, which is helpful to gen-
erate high-quality images. Since the goal of the restoration network R is to obtain the
sanitized image x′′i with the best possible recognition performance while receiving the
adversarial reconstructed image x′i , the network R employs U-net as the backbone. Specif-
ically, its encoder includes four encoding segments, and each segment consists of two
convolutions, each of which is followed by a rectified linear unit (ReLU) and a 2 × 2 max
pooling operation with stride 2 for down sampling. In addition, each encoding segment
doubles the number of feature channels. Correspondingly, the decoder also consists of four
decoding segments. Each decoding segment contains a deconvolution layer with stride
2, a connection with the corresponding feature maps from the encoding segment, and
2 convolution layers, each followed by a ReLU. Moreover, each decoding segment reduces
the number of channels by half. Finally, the output image of the decoder has the same size
as the original image.
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3.2.4. Discriminator: D

Our discriminator D is designed as a common 4-layer CNN which outputs a value from
0 to 1 by the sigmoid function. It is used to distinguish between the original image xi and the
adversarial reconstructed image x′i generated by the network Adv-G. After the continuous
game between the network Adv-G and D, x′i could have the better visual quality.

3.2.5. Ensemble Target Networks: F

We select three classic classifiers and integrate them as our target network F, which
include VGG16 [30], ResNet-50 [28], and DenseNet-121 [31]. Then, we train them on the
clean Tiny-ImageNet dataset.

3.3. Loss Functions

As mentioned before, we represent the original dataset as
(X, Y) = {(x1, y1), (x2, y2), . . . . . . (xN , yN)}, where xi represents the original images with
the serial number of i, and yi represents the classification label corresponding to xi.

LG: The loss function LG of network Adv-G mainly includes four components: the
reconstruction loss LG−rec, the adversarial loss LG−adv, the perception loss LG−per, and the
classification loss LG−cls.

In order to make the output image x′i of the network Adv-G similar to the original
image xi on the pixel level, following most deep learning-based image restoration meth-
ods, we use the L2 norm between x′i and xi to constrain the difference of them. For the
reconstruction loss, we have

LG−rec = ||G(M(xi))− xi||22. (6)

To further narrow the difference between x′i and xi, we employ the idea of generative
adversarial network and introduce the discriminator D. With the help of the discrimina-
tor D, the network Adv-G is trained in an adversarial way. The adversarial loss can be
described as:

LG−adv = log(1− D(G(M(xi)))). (7)

Furthermore, we introduce the perceptual loss LG−per [32], which is based on feature
extractors of VGG16, to optimize the similarity of x′i and xi in the feature space. The
perception loss can be express as:

LG−per =
1

CHW
∣∣∣∣∅j

(
x′i
)
−∅j(xi)

∣∣∣∣2
2. (8)

Specifically, we calculate the Euclidean distance between feature maps of x′i and xi
from the second max-pooling layer. That is, j of ∅j in Equation (8) is 2.

We take the visual quality and recognition metrics into account at the same time.
However, unlike the goal of [13], while they try to improve the recognition performance
of the reconstructed images, we attempt to make the adversarial reconstructed images
mislead the target network. Therefore, we use the negative cross-entropy to encourage x′i
to be classified wrongly by the ensemble target networks F. We take the average loss of the
three target classifiers as the final classification loss LG−cls,

LG−cls = −Lce(F(G(M(xi))), yi), (9)

where Lce is the cross-entropy loss function, Lce(ŷ, y) = −∑ yi log ŷi, which is used to
calculate the cross entropy between the predicted label ŷ and the ground truth y.

In summary, the total loss of the adversarial reconstruction network Adv-G is defined
as follows:

LG = LG−rec + g1·LG−adv + g2·LG−per + g3·LG−cls, (10)
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where g1, g2, and g3 are hyper-parameters that play a very significant role in the
training process.

LD: The same as in [25], the discriminator D is used to distinguish whether the image
is the original one or the reconstructed one, and its loss is:

LD = −logD(xi)− log(1− D(G(M(xi)))). (11)

LR: The goal of the restoration network R is to output the restoration image x′′i that is
not only visually similar to the original image xi, but also beneficial for machine recognition
tasks. We still use the L2 norm to optimize x′′i ,

LR−rec =
∣∣∣∣R(x′′i )− xi

∣∣∣∣2
2. (12)

To facilitate the correct recognition of the sanitized image x′′i by the ensemble target net-
works, we introduce the positive cross-entropy loss LR−cls,

LR−cls = Lce(F(G(M(xi))), yi). (13)

Similarly, we take the average loss of the three target classifiers as the final classification
loss. The loss function of the restoration network R can be expressed as:

LR = LR−rec + r1·LR−cls, (14)

where r1 is a hyper-parameter.
In summary, the total loss of the proposed IPPARNet is defined as follows:

L = LG + α·LR, (15)

where α is a hyper-parameter.

3.4. Training and Inference

In the training process of the proposed IPPARNet, we alternately train the discrim-
inator D, the adversarial reconstruction network Adv-G, and the restoration network R.
Specifically, we optimize the discriminator D by minimizing Equation (11) and then opti-
mize the total loss L. In this way, both the adversarial reconstruction network Adv-G and
the restoration network R can generate images with good visual quality, but the former hin-
ders the prediction of the recognizer while the latter can increase the recognition accuracy.

In the inference process, there is no need to use the discriminator D. Feeding the
measurement vector mi into the adversarial reconstruction network Adv-G, the adversarial
reconstructed image x′i is obtained, which can be comprehended by semi-authorized users
with human eyes. However, for machine users, x′i cannot be recognized accurately, nor can
it be used for meaningful training. Therefore, even if malicious users collocate a mass of
adversarial reconstructed images, they cannot analyze them effectively or use them to train
a model with good performance. However, when the authorized user has task needs, x′i
can be fed into the recovery network R to output the sanitized image x′′i that can improve
the performance of the machine users in the recognition tasks.

It can be seen that the proposed method mainly introduces a discriminator D and a
restoration network R to the original CSNet, achieving our goal by designing loss functions
carefully. That is to say, there is no need to change the related hardware for the measuring
and reconstructing of the original CS.

4. Experiment and Results
4.1. Experimental Setting

In the experiments, we use a personal computer configured with an Intel i7-10700
CPU, a NVIDIA RTX 2080 graphics card, and 32 GB of memory. PyTorch1.11.0 is used to
implement all methods.
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Following [13], we select 30 classes of images from the original ImageNet database
and scale them to the size of 96 × 96 to obtain the Tiny-ImageNet as the dataset for our
experiment. Specifically, the training set contains 38,766 images and the test set includes
1500 images, while each class has 50 images. Since [20] used a grayscale dataset, all images
in this experiment received grayscale processing to facilitate performance comparison.

For a fair performance evaluation, firstly, we train the CSNet [20] network in this
environment with images divided into 32 × 32 blocks. Then, three classic classification
networks, VGG16, ResNet50, and DenseNet121, are trained with the Tiny-ImageNet dataset.

Finally, we train the proposed IPPARNet model with the pre-trained CSNet network
and the three classification networks. While training, we fix the parameters of the classifiers
and alternately train the discriminator network D and the adversarial network Adv-G.
Playing the two-player minimax game, the discriminator D can prompt the adversarial
reconstruction network Adv-G to generate adversarial reconstructed images that are more
similar to the original images. At the same time, the adversarial reconstruction network
Adv-G and the restoration network R are jointly trained to obtain better restoration of the
sanitized images.

The optimization algorithm Adam is employed and the batch size is 32. The learning
rate of adversarial network Adv-G, recovery network R, and discriminator D is set to
0.0001, which is reduced to 0.1 times every 50 rounds. When the sampling rate is 0.1, the
hyperparameters are set as follows: g1 = 0.001, g2 = 0.001, g3 = 0.0005, r1 = 0.001, and α = 2.

4.2. Results and Analysis
4.2.1. Benchmark

We not only take account of the quality of the CS reconstructed images and the ability to
fool the DNN models, but also have thought to reverse the adversarial reconstructed images
to sanitized samples. However, to the best of our knowledge, there is no previous study
dealing with the above tasks. Therefore, we use the reconstructed images X′CSNet from the
CSNet as the benchmark, then evaluate the performance of the adversarial reconstructed
images X′ and the restored sanitized images X′′. Specifically, X, X̃, X′, and X′′ that appear
in the following paper represent the set of all xi, x̃i, x′i , and x′′i on the test set, respectively.

For evaluation, we use 1500 grayscale images of size 96 × 96 from the Tiny-ImageNet
test set and employ peak signal-to-noise ratios (PSNRs) and recognition accuracy as evalua-
tion metrics.

At first, we test the performance of the pre-trained VGG16, ResNet50, and DenseNet121
classifiers for 1500 Tiny-ImageNet test images. Table 1 shows the recognition accuracy of the
original test set on the three classification networks. The row of “Average” means the aver-
age recognition rate of the three classifiers. Compared with the trained one on all ImageNet
database, the recognition rate of the three recognition networks we trained is much lower.
This is because our training set is much less than the ImageNet database, accounting for less
than 1/30. Therefore, getting relatively low recognition rate is a reasonable phenomenon.

Table 1. Recognition rates of VGG16, ResNet50, and DenseNet121 for original images of Tiny-
ImageNet dataset (%).

Recognizer
Testing Set Tiny-ImageNet

VGG16 81.4
ResNet50 80.2

DenseNet121 77.2
Average 79.5

Then, setting the sampling rate as 0.1, 0.2, 0.3 and 0.5, we employ the CSNet to imple-
ment reconstruction for the test set of the Tiny-ImageNet. Table 2 shows the image quality
of the CSNet reconstructed images under different sampling rates with the metric PSNR.
Table 3 shows the recognition rates of VGG16, ResNet50, and DenseNet121 for X′CSNet.
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Table 2. Evaluating image quality of X′CSNet in terms of PSNR (dB).

Sampling Rate PSNR
0.1 26.33
0.2 29.19
0.3 30.30
0.5 33.27

Table 3. Recognition rates of VGG16, ResNet50, and DenseNet121 for X′CSNet (%).

Recognizer
Sampling Rate

0.1 0.2 0.3 0.5

VGG16 40.8 69.8 70.8 79.6
ResNet50 61.0 73.4 74.4 79.4

DenseNet121 55.2 71.2 76.8 77.0
Average 52.3 71.5 74.0 78.6

One can see from Tables 2 and 3 that with the increase in sampling rate, the PSNR
values and recognition accuracy of CSNet reconstructed images X′CSNet were improved.
Compared with the original image, at different sampling rates, the recognition accuracy
of the reconstructed image X′CSNet on the three classifiers decreased to varying degrees.
However, even when the sampling rate is 0.1, the reconstructed images X′CSNet can achieve
a recognition accuracy of 41–61% on the three classifiers. While the sampling rate is 0.5, their
recognition accuracy is almost equal to that achieved on the original images. This means
that malicious users can acquire a lot of sensitive information from CSNet reconstructed
images, X′CSNet, which poses a great privacy threat.

4.2.2. Performance Evaluation

The goal of the proposed IPPARNet is to take the machine recognition metric into
account while retaining good visual quality. On the one hand, the adversarial reconstructed
images X′ can mislead the target classifiers, making it difficult for semi-authorized users to
abuse them effectively, so as to achieve the goal of privacy protection. On the other hand,
authorized users can restore sanitized images X′′ from X′, and the recognition accuracy can
be improved as high as possible, which is helpful for the machine’s subsequent recognition
tasks. That is to say, while keeping a reasonable PSNR, for the adversarial reconstructed
images X′, the lower the recognition rate, the better the performance. However, for the
sanitized images X′′, the higher the recognition rate, the better the performance.

1. Analysis of Recognition Accuracy

At different sampling rates, the recognition rates of VGG16, ResNet50, and DenseNet121
classifiers for adversarial reconstructed images X′ and sanitized images X′′ are shown in Ta-
ble 4. It can be observed that for each sampling rate, the recognition rates of the adversarial
reconstructed images X′ are significantly lower than that of the CSNet reconstructed images
X′CSNet. Take the sampling rate of 0.1 as an example. The recognition rates of X′, which
is generated by our adversarial reconstruction network, on the three classifiers VGG16,
ResNet50, and DenseNet121 are not more than 1/10, which are 6.0%, 10.0%, and 7.6%,
respectively. Compared with X′CSNet, the recognition rates of X′ are relatively reduced by
85.3%, 83.6%, and 86.2%. When setting the sampling rate as 0.2, 0.3, and 0.5, the average
recognition rate of adversarial reconstructed images X′ on the three classifiers drops from
71.5%, 74.0%, and 78.6% to 8.8%, 12.8%, and 13.5%, respectively. It can be seen that the
relative declines are all greater than 82.0%, which results in semi-authorized machine users
being unable to recognize these adversarial reconstructed images precisely. In other words,
semi-authorized machine users are prevented from performing effective data analysis and
model training tasks, and the privacy of images is protected.
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Table 4. Comparing recognition rates of three recognizers for X′CSNet, X′ and X′′ at various sampling
rates (%).

Recognizer
Sampling Rate

0.1 0.2 0.3 0.5

X′CSNet Average 52.3 71.5 74.0 78.6

X′

VGG16 6.0 7.2 11.6 10.4
ResNet50 10.0 12.8 15.2 19.0

DenseNet121 7.6 6.4 11.6 11.2
Average 7.8 8.8 12.8 13.5

X′′

VGG16 49.2 68.8 69.8 74.8
ResNet50 62.0 72.0 72.8 76.8

DenseNet121 55.6 68.0 68.4 72.4
Average 55.6 69.6 70.3 74.7

However, authorized users can obtain sanitized reconstructed images X′′ with the ad-
ditional restoration network. When the sampling rate is 0.1, the corresponding recognition
rates on the three classifiers are 49.2%, 62.0%, and 55.6%, respectively, which are slightly
higher than the recognition rates of X′CSNet reconstructed by the CSNet. At other sampling
rates, the average recognition rates of the sanitized reconstructed images X′′ on the three
classifiers can reach 69.6%, 70.3%, and 74.7%, which are approximate to that achieved by
X′CSNet. Obviously, X′′ contributes to the machine recognition tasks.

2. Analysis of Image Visual Quality

Table 5 shows the PSNR values of the CSNet reconstructed images X′CSNet, the adver-
sarial reconstructed images X′, and the sanitized images X′′. Take the sampling rate of 0.1
as an example. Compared with X′CSNet, the PSNR value of our adversarial reconstructed
images X′ is only reduced by 0.39 dB. At different sampling rates, the PSNR values drops
by 0.2–6.1%. When the sampling rate is 0.5, the PSNR value remains at 27.82 dB, which
still provides a good visual effect for human eyes. In comparison, the PSNR values of the
sanitized images X′′ have a smaller decrease. In the case of sampling rate 0.1, it is only 0.06
dB lower than X′CSNet. Since the PSNR value of X′′ is greater than that of X′ at the same
sampling rate, we infer that X′′ has better visual quality than X′.

Table 5. Comparing image quality of X′CSNet, X′ and X′′ in terms of PSNR (dB).

Images
Sampling Rate

0.1 0.2 0.3 0.5

X′CSNet 26.33 29.19 30.30 33.27
X′ 25.94 27.52 27.78 27.82
X′′ 26.27 28.91 29.09 31.25

To perceive the visual quality of the image intuitively, three images from the Tiny-
ImageNet test set were randomly selected as representatives. Figure 3 illustrates the original
images X, the corresponding initial reconstructed images X̃, the reconstructed images
X′CSNet of CSNet, our adversarial reconstructed images X′, and the restored sanitized
images X′′ of the three images.

It can be observed that our adversarial reconstructed images X′ are not disturbed
significantly compared with CSNet reconstructed images X′CSNet and the sanitized images
X′′ restored by authorized users are visually indistinguishable from X′CSNet. Both X′ and
X′′ have good visual quality for human beings and X′′ is better.
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at the sampling rate 0.1 are indicated from the first to the fifth column, respectively.

During the reconstruction, the network I_Rec of the CSNet learns a linear mapping
to obtain relatively good initial reconstructed images, X̃. Then, with a nonlinear network
D_Rec, the residual between the initial reconstructed images X̃ and the original images X is
learnt, which can eliminate the block artifacts of X̃ and further improve the visual quality
simultaneously. However, the adversarial reconstruction network Adv-G aims to learn a
perturbation that makes the final reconstructed images have the ability to deceive DNN
models with this nonlinear network. That is, by adding the perturbation, the final recon-
structed images X′′ can induce the recognizer to make wrong judgments while ensuring it
has good visual quality.

Figure 4 shows the perturbations learned by the network D_Rec of CSNet and the pro-
posed IPPARNet. It can be seen that in our method, the learned perturbations cannot only
eliminate block artifacts and supplement the contour details, but also acquire additional
adversarial perturbations.
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more than 82% compared with CSNet reconstructed images X′CSNet, while authorized users
can restore sanitized images X ′′ which achieve the approximate recognition accuracy of
the X′CSNet.

5. Conclusions

In this paper, we propose a novel image CS reconstruction method that supports
inversible privacy protection. On the one hand, we use adversarial samples as a weapon of
privacy protection. In the process of image CS reconstruction, we simultaneously consider
the visual quality of the reconstructed image and its ability to deceive the DNN models. On
the other hand, we jointly train both the adversarial reconstruction network and the restora-
tion network to ensure the invertibility of adversarial reconstructed images. Numerous
experimental results show that our method can generate adversarial reconstructed images
with a high attack success rate and sanitized reconstructed images with better recognition
accuracy, while maintaining good visual quality. The adversarial reconstructed images
can protect private data from malicious users, while the sanitized reconstructed images
can safeguard the legitimate rights of authorized users and avoid unnecessary resource
wastage. In future work, we will explore how to further improve the recognition accuracy
of the sanitized reconstructed images.
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Abbreviations

The following abbreviations are used in this manuscript:
CS Compressed sensing
OMP Orthogonal matching pursuit
GPSR Gradient projection for sparse reconstruction
DNN Deep neural network
BP Basis pursuit
MP Matching pursuit
SDA Stacked denoising autoencoder
CNN Convolutional neural network
BCS Block compressed sensing
FGSM Fast gradient sign method
BIM Basic iterative method
PGD Projected gradient descent
GAN Generative adversarial networks
ReLU Rectified linear unit
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