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Abstract: In the highly competitive injection molding industry, the ability to effectively collect
information from various sensors installed in molds and machines is of the utmost relevance, enabling
the development of data-based Industry 4.0 algorithms. In this work, an alternative to commercially
available monitoring systems used in the industry was developed and tested in the scope of the
TOOLING 4G project. The novelty of this system is its affordability, simplicity, real-time data
acquisition and display in an intuitive Graphical User Interface (GUI), while being open-source
firmware and software-based. These characteristics, and their combinations have been present in
previous works, but, to the authors’ knowledge, not all of them simultaneously. The system used an
Arduino microcontroller-based data acquisition module that can be connected to any computer via a
USB port. Software was developed, including a GUI, prepared to receive data from both the Arduino
module and a second module. In the current state of development, data corresponding to a maximum
of six sensors can be visualized, at a rate of 10 Hz, and recorded for later usage. These capabilities
were verified under real-world conditions for monitoring an injection mold with the objective of
creating the basis of a platform to deploy predictive maintenance. Mold temperature, cavity pressure,
3-axis acceleration, and extraction force data showed the system can successfully monitor the mold
and allowed the clear distinction between normal and abnormal operating patterns.

Keywords: injection molding tool monitoring; information technology; data acquisition; graphical
user interface; user-computer interface; open source software; low cost; real time

1. Introduction

The mold is at the heart of the injection molding process. In its cavity, molten plastic
is transformed into a solid part. Thus, sensors to monitor in- and on-mold process and
tool parameters have been adapted and developed, providing valuable data relating to
part quality and mold condition [1]. The relevance and usefulness of such sensors is
maximized in the scope of Industry 4.0, as data collection and storage capabilities improve,
and data-driven prediction models become more accurate [2].

An activity that, while necessary, leads to machine down-time that is maintenance,
accounting for a significant portion of operational costs [3]. Through the usage of sensors
in the mold and algorithms developed from/based on the collected data, predictive main-
tenance becomes possible, allowing for the detection of operational patterns leading to
or indicative of a given fault [4]. This, in turn leads to less rejected parts [5], and enables
programmed corrective action, reducing machine down-time and inefficiency. Parameters
such as cavity pressure and temperature are commonly monitored to assess or predict part
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quality [6], or to automate process control [7], but can also be used for predictive mainte-
nance [4]. Other mold monitoring sensors previously suggested for predictive maintenance
include strain gauge sensors [4], 3D accelerometers [8], and custom pressure sensors [8].
Furthermore, less conventional approaches have been studied, and show potential for
being used for this purpose in the future, as is the case of acoustic signals collected from
microphones installed near the mold and machine [9]. Data from these sensors and/or
other sensors installed in the mold and machine, as well as contextual data can be col-
lected, processed, and used to develop predictive maintenance algorithms, as seen in the
work of Nunes et al. [10], through the application of generalized fault trees and abnor-
mality detection. Furthermore, mold monitoring sensors data can also be used develop
machine learning algorithms to optimize process parameters for part quality prediction
and improvement [11,12].

The high quality and highly reliable data acquisition systems typically used for
injection-molding monitoring, such as KISTLER’s ComoNeo [13], PRIAMUS’ FILLCON-
TROL or BlueLine Hardware and QFlow Systems Engineering [14], implement proprietary
monitoring and control solutions to acquire data from some of the previously mentioned
sensors. These systems are, however, economically demanding and closed, often posing a
barrier to the development and testing of customized new hardware and software solutions.
On this scope, the creation of open-source software and firmware data acquisition systems,
which can be based on lower cost hardware and/or excuse the payment of expensive pro-
prietary software license fees, is a solution that brings opportunities for a more widespread
and diversified implementation of some core Industry 4.0 concepts to injection-molding
mold monitoring [15]. These systems allow academic, research and development entities,
as well as companies to take part in the development of new, fit for purpose solutions,
dedicated to solving each specific set of problems, often not solvable with the commercially
available systems and solutions. Systems that answer similar challenges are described in
published literature, applied to aerodynamic studies or mechanical components wear mon-
itoring [16,17]. In these, software developed with MATLAB, LabView or Python, among
others, allows data visualization and storage.

In the injection-molding field, a low-cost monitoring system has been developed
by Silva et al. [18] using software written in Python programming language and imple-
mented on a Raspberry Pi single board computer. The system allowed data visualization at
each cycle end and was used to monitor legacy injection molding machines parameters,
successfully helping detect faults in real world context. A different work describes the im-
plementation of a custom pressure sensor and a 3D accelerometer in the injection-molding
tool for real-time monitoring towards smart predictive maintenance [8]. Data acquisition
was performed through a commercially obtained capacitance to digital converter for the
pressure sensor, and an analog-to-digital converter for the 3D accelerometer, connected to a
microcontroller that sent the data to a computer through a Bluetooth module. No infor-
mation is given regarding the used software by the authors in the publication. Kusić and
Slapšak proposed a low cost IoT-enabled system to monitor temperature and cavity pres-
sure [19]. Their system used Bluetooth, Wi-Fi and the MQTT protocol for communication
between sensors and devices, acquired data at a 2–3 Hz rate, and featured a web-based GUI.
An open-source machine and mold monitoring software based on an industrial Raspberry
Pi has been prototyped and tested by Ogorodnyk et al. [20]. It allows the acquisition of
data in hard real-time at a sampling rate of 2 Hz, or higher for soft real-time, registering
values for up to 97 machines and process parameters.

In the injection molding industrial practice and literature, there is a scarcity of mold
monitoring solutions that can meet the needs of smaller companies, research and education
institutions. Such a system needs to combine affordability, so it can be attained or assembled
and used on lower budgets. Furthermore, it needs to be kept as simple as possible, to
allow a wider range of operators to use it and service it. Simultaneously, data needs to
be collected in real-time and intuitively conveyed via a GUI, allowing for prompt action
from the operator on the process according to the displayed data or messages, if needed.
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In addition, to maximize the innovation potential of the created system, it needs to be
made as open-source as possible, allowing for incremental innovation stemming from a
community of users, leading to improvement of the system itself, and for it to be modified
and employed in different real-world situations with specific requirements not considered
originally. As verified in published literature, there are systems each with a combination
of one or more of these features, but, to the authors’ knowledge, none that meets them
all. Therefore, in the context of a case study aimed at collecting data to develop predictive
maintenance algorithms, this paper describes the creation of an open-source software
and firmware-based low-cost monitoring system encompassing all the above-mentioned
characteristics. It allowed the acquisition of data relative to mold cavity pressure, mold
plate temperature, as well as extraction force, and mold vibrations in real time. Furthermore,
a GUI displaying the real time data during the process was also successfully implemented.
The real-world performance of our system was tested and its validity as a potential basis
for later implementation of predictive maintenance algorithms was shown.

2. Materials and Methods
2.1. Hardware

The main components used to develop and implement the mold monitoring system are
listed and numbered on Table 1, along with their respective designations. The assembled
components, identified in accordance with Table 1 numbering can be observed in Figure 1.
The sensors were selected to allow measuring multiple process variables, namely tempera-
ture, cavity pressure, force, and vibration, via an inertial module with a 3D accelerometer
and a 3D gyroscope. Since the force and pressure signals obtained from the sensors were in
the order of 10−11 C/N and C/bar, the sensors were connected to their respective charge
amplifiers, which convert these signals into 0 to 10 V output voltages. The charge amplifier
assigned to the force sensor, in accordance with its measuring range, is programmable
through RS232. It is, therefore, possible to adjust its range to the sensor sensitivity and
quantities being monitored. A circuit based on the Integrated Circuit (IC) MAX232 was
created to enable the amplifier to be programmed through the Arduino microcontroller.
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Table 1. List of the main components used to develop the monitoring system and
corresponding designations.

Component Designation

1—Thermocouple HASCO Z1295/1 (HASCO Hasenclever GmbH + Co
KG, Lüdenscheid, Germany)

2—Pressure sensor Kistler Type 6157B (Kistler Group,
Zurich, Switzerland)

3—Force sensor Kistler Type 9133B (Kistler Group,
Zurich, Switzerland)

4—Vibration monitoring module

Sensors: ST LSM6DSL (STMicroelectronics, Geneva,
Switzerland); Microcontroller: Microchip
PIC18F27K42 (Microchip Technology Inc.,
Shanghai, China)

5—Pressure sensor extension cable Kistler Type 1661A (Kistler Group,
Zurich, Switzerland)

6—Pressure sensor charge amplifier Kistler Type 5155A2221 (Kistler Group,
Zurich, Switzerland)

7—Force sensor charge amplifier Kistler Type 5073A111 (Kistler Group,
Zurich, Switzerland)

8—Arduino interface circuit Made inhouse

9—Device driver chip to communicate
with component 7

Texas Instruments MAX232 (Texas Instruments Inc.,
Dallas, TX, USA)

10—Thermocouple signal amplifier Adafruit MCP9600 (Adafruit Industries LLC, New
York, NY, USA)

11—Arduino Arduino Mega 2560 R3 (Arduino, Monza, Italy)

12—Computer Laptop used in tests: Lenovo ThinkPad L380 (Lenovo
Group Ltd., Hong Kong, China)

13—Power supply Generic

The electronic circuit developed for the interface between the charge amplifiers and
the Arduino is represented in Figure 2. Two thermocouple signal amplifiers were also
connected to the Arduino, and their pins and respective connections can also be seen in
the figure. The MCP9600 thermocouple signal amplifiers were specifically chosen for their
versatility, since they allow the Analog to Digital Converter (ADC) resolution definition,
thus allowing the adjustment of conversion time to the required sampling rate.

2.2. Firmware

Arduino IDE was used to program Arduino. Three working modes were defined in
the code, available online at https://github.com/TEPGomes/OpenMMS-T4G (accessed
on 23 March 2023), as mentioned in the Supplementary Materials section. In measuring
mode, the charge amplifiers are activated with signals sent from the Arduino’s Pulse Width
Modulation (PWM) pins and data is read from each combination of sensor, amplifier,
and ADC. Temperature values are directly stored in a variable, while the pressure and
force values need to be calculated before being registered. These can be obtained through
Equation (1),

x =
xmax

Vmax
Vread, (1)

in which x is the variable value to be calculated (force in N or pressure in bar), xmax is the
maximum value of this variable measurable within the charge amplifier range, Vmax is the
maximum voltage that corresponds to xmax, in this case, the Arduino’s analog pins 5 V

https://github.com/TEPGomes/OpenMMS-T4G
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maximum voltage input. Vread is the voltage read in the input analog pin. Its value can be
calculated through Equation (2),

Vread =
Vmax

1023
Aread, (2)

where Aread is the ADC output value, 1023 is the decimal number corresponding to the
biggest decimal number representable by a ten-bit binary number. xmax can be obtained
through Equation (3):

xmax =
Qmax

S
, (3)

in which Qmax is the charge corresponding to the maximum defined range in the charge
amplifier, and S, the sensor sensitivity. The values received and converted for each sensor
are concatenated into a string and sent to the computer.

In the waiting or pause mode, the Arduino stops reading data from the sensors until
the next reading mode initiation message is received. The last operating mode allows
communication with the force sensor charge amplifier, and in the current system version it
is only accessible through a serial port monitor on operator command.
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charge amplifiers and voltage amplifier and ADC modules.

2.3. Software

To develop the system software, that can be viewed and downloaded from https:
//github.com/TEPGomes/OpenMMS-T4G (accessed on 23 March 2023), as stated in the
Supplementary Materials section, Python programming language was used. Qt Designer
was employed to create the GUI. It allows setting up the graphical layout of each window
through a graphical interface. The library pyqt5 was used for association between actions,
signals, and events with the GUI elements, as well as integration with the remaining
software functionalities. In Figure 3, a GUI schematic representation can be seen, where
each window’s possible actions and operation state have been highlighted. An image of
the main window during a test monitoring session, with the main zones highlighted and
identified, can be observed in Figure 4. Buttons to interact with the window can be found at
the top zone, the middle zone is reserved for visualization graphs display, and the bottom
area is used to display messages for the user with the system status and selected options.

https://github.com/TEPGomes/OpenMMS-T4G
https://github.com/TEPGomes/OpenMMS-T4G
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When developing a GUI, it must be considered that users should have permanent
access to the open windows’ active functions. This becomes critical when computationally
intensive tasks simultaneously need to be executed. This is the case with the application
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described in this work, in which it is important to assure data visualization with real-
time graphs, GUI responsiveness, and communication with the data acquisition modules.
Parallel computing was used to allow it, through multithreading, as represented in Figure 5.
Four thread types were created using pyqt5’s Qthread class, with the main one being
relative to the graphical GUI. The second and third were created for connection and
communication with data acquisition modules. The las thread type was developed for
updating the graphs with the data being received. Communication between threads is
implemented through signals leading to the execution of specific functions.
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Data acquisition modules communication was implemented through the pyserial
library, with Figure 6 showing a schematic representation of the code used to do so. As
defined in the Firmware Subsection, once the devices are successfully connected, as soon
as the start signal is received by the thread, the character for sensor reading initiation is
emitted. A timer is initiated and used for registering the time when each new set of data is
received. Data is received as a character comma-separated string of sensor reading values,
which, after being separated and associated with their timestamp, are put into a queue,
method used to transfer data to the graph-allocated threads. A signal for reading these
data is sent next.

Regarding data visualization, the pyqtgraph library was used, since its performance
overcomes that of alternatives, such as matplotlib, in applications requiring high graph
update rates. The code for graph creation and updating is schematically represented in
Figure 7. Besides managing the visualization graphs, the same thread is responsible for
storing the data, sending them to the main thread at the end of each monitoring session.

A target data acquisition rate of 10 Hz was initially defined. To maximize system
performance and allow this goal to be more reliably met, a compromise was made regarding
the graph’s visualization refresh rate. While data can be received at a rate of 10 Hz,
refreshing the graphs in the same interval was verified to be too computationally intensive.
This way, the graphs are only updated in 0.15 s intervals and show only the last 20 data
points. The data acquisition rate was verified through a timer, implemented in the code,
activated at the start session signal reception, and stopped at the stop session signal
emission.

Pyinstaller was employed to create an executable app for the software which can be
installed and run on any Windows 10 computer without the need for any additional file or
app. This makes the software easier to distribute and end-user friendly.
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2.4. Case Study Description

To verify the system’s ability to collect useful data for preventive and programmed in-
jection mold maintenance in a real-world setup, a set of consecutive injection molding runs
were carried out in normal operation, and with a simulated fault in the extraction system.
The monitoring system was used to register and visualize data from the sensors installed
in the injection mold. To carry out the tests, a Tederic D80 injection-molding machine
(INAUTOM Automação Lda.-Batalha, Portugal) was used, and low density polyethylene
(LDPE) of the DowTM LDPE 780E grade (DOW Europe GMBH, Horgen, Switzerland),
distributed by RESINEX (RESINEX Group, Braga, Portugal) was injected into a cup-shaped
part mold. The injection molding process parameters are listed in Table 2.

Table 2. List of the main process parameters used during the test runs.

Parameter Value

Barrel temperature zones (◦C) Nozzle: 220; Z1: 220; Z2: 210; Z3: 200
Mold temperature (◦C) 20
Hydraulic injection pressure (bar) 100
Injection time (s) 0.8
Hydraulic packing pressure (bar) 20
Packing time (s) 4
Cycle time (s) 19

The 3D CAD models of the injected part, sensors, and their installation placement are
shown in Figure 8. As displayed, the force sensor was installed in one of the extraction
pins, and the three-dimensional accelerometer and gyroscope module was mounted on
the extraction plate to monitor vibrations. Additionally, to monitor mold temperature and
cavity pressure, a thermocouple was installed in the mold plate and the pressure sensor
was installed in the cavity, directly contacting plastic flow.
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The test setup, with the monitoring system and injection molding machine, is rep-
resented in Figure 9. A total of 110 cycles were continuously recorded, with the first
54 Injection molding runs in normal operation. In the runs that followed, a fault was simu-
lated in the extraction system by gripping a screw against the pin in which the force sensor
had been installed. The fault was simulated multiple times, by retightening the screw.
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3. Results and Discussion

From the initial tests and characterization performed on the assembled system, it can
be verified that the developed software allows the visualization of information relevant to
the injection molding process in a simple and intuitive GUI. It also allows data acquisition
within the initially targeted 10 Hz rate. Higher acquisition rates may be possible, but, in
the current system version, it cannot be guaranteed. Still, in the event of a visualization
graphs delay, the acquired data can be stored anyway, with correct timestamps, and be used
posteriorly. It must be considered, however, that the acquisition and graph visualization
refresh rates are dependent on machine performance and should be verified independently
for each new computer.

The real-world context tests showed the system’s suitability for acquiring the data
from sensors installed in the molding tool. Data from the injection molding runs, both in
normal operation and with simulated failure in the extraction system, can be observed in
Figure 10, with no additional data processing. A gray line was used in each subfigure to
indicate where the extraction pin fault started to be applied. From cavity pressure data,
it is possible to identify the multiple injection molding cycles, with a peak and following
dip corresponding to a cycle. The temperature graph dips and long pauses in the pressure
graph correspond to the moments at which the screw used to simulate the extraction pin
defect was tightened. After these pauses, the highest recorded force sensor values were
registered, followed by considerably lower peaks, indicative of the screw carving a path
onto the pin, thus progressively providing lower friction. However, even several cycles
after fault introduction, the registered force peak values were still higher than under normal
operation, on average.
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A better direct comparison between normal and faulty operation cycles is given by
Figure 11. On it, data from the cavity pressure sensor (Figure 11a), force sensor (Figure 11b),
vibration (acceleration in the OX axis, Figure 11c, OY, Figure 11d, and OZ, Figure 11e), can be
viewed, with the injection cycles overlapped and identified as blue for normal operation and
red for simulated fault operation. Regarding cavity pressure data, it is possible to observe a
regular operation cycle that does not align with the remaining ones. This is due to the longer
time taken by the operator to start the first run, after the mold was closed. The remaining
cycles, however, do align, both in regular and simulated fault operation. Moreover, attesting
the system’s capability to acquire useful data in the scope of general injection molding
process monitoring, and not only for predictive maintenance, the pressure curves allow a
clear identification of the distinct process phases. More specifically, the registered curves
are consistent with the general shape presented in [21], being characterized by a steep
increase in cavity pressure during the filling phase, after which the maximum pressure is
reached. It is then followed by the packing or holding phase during which cavity pressure
registers a plateau slightly under peak pressure that is kept until the polymer freezes at
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the gate. With the gate closed, pressure drops until it reaches a lower plateau, with only
residual pressure while the part finishes cooling. At the end of this phase, the mold opens
and the part is extracted. The ejection phase can also be easily identified in Figure 11, as
it is characterized by the drop in cavity pressure to atmospheric pressure, the peaks in
the force values, and the most significant vibrations seen in the acceleration graphs. As
observed before in Figure 10, Figure 11 shows clear differences in force amplitude reached
in the cycles affected by the simulated fault. Additionally, cycles in which part extraction
took longer than normal can be identified and coincide with the extraction pin initially
jamming due to the added friction. The data collected from the 3D accelerometer could
be used to identify and monitor different machinery movements and respective process
phases, similar to the results presented by Moreira et al. [8] and Brunthaler et al. [22]. As
broadly verified in those works, the most noticeable vibrations in amplitude, and with a
significant duration, were observed for the part ejection phase. Mold closing is identifiable,
in the case of this work, at the beginning of the cycles and near the 25 s mark, the latter
being more obvious in the OZ acceleration graph. Data displayed after the 25 s mark
corresponds to cycles with a longer pause associated with them, or to cycles that required
a longer extraction phase due to the introduced fault. Mold opening vibrations can be
seen in the graph at 20 s. There are three small disturbances that can be viewed in the
acceleration graphs and that are common between the different acceleration directions and
multiple cycles. The first may correspond to the screw advancing before the filling phase
start, the second to the gate freezing and the third to the screw being retracted. Differences
in acceleration components’ amplitudes and time for stabilization can also be observed.
This demonstrates the usefulness and viability of the developed monitoring system and
similar proposals. The remaining sensors did not show any clear difference between normal
operation and otherwise, thus the emphasis on vibrations and force sensors.
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From a broader point of view, besides the specific objectives leading to this system’s
development having been achieved, its current version suffers from some limitations that
need to be addressed and overcome. An example is the fact that, reading the defined
sensors is possible, and these sensors cover a reasonable variety of variables that can be
monitored; however, the system still has a limited flexibility to easily incorporate other
kinds of sensor, with software needing the biggest improvement on that regard. The
inclusion of a monitoring mode without data visualization in real-time could be useful as
well, allowing data acquisition at faster rates. The capability to directly send the data to a
remote database can also be an important future development. Furthermore, there is a need
for IoT-enabling the system, as it will allow for wireless data transmission between sensor
modules and the computer, increasing its practicality and reducing the risk of damage
through wires caught during machine and mold movements. These limitations can be
tackled in future works based on this one, mentioned in Section 4.

4. Conclusions

The system described in this work has shown data acquisition capabilities compatible
with the initially set objectives. Data from up to six sensors installed in the molding tool
can be acquired at a rate of 10 Hz, including pressure, temperature, force, and vibration.
For applications in which the aim is the simple data acquisition from the mold monitoring
sensors, while allowing real-time visualization, in its current form, the system presents
a viable alternative to the use of the ones commercialized by the traditional monitoring
systems suppliers. Those suppliers generally present more complex solutions, integrating
a range of other functionalities, crucial in certain industry applications, making them,
however, significantly more expensive. This way, the developed system can be placed
as a sensible, reduced cost proposal for mold monitoring in research and/or educational
context. Thus, it is fit for the intended application: data collection from sensors installed in
the mold for its preventive and programmed maintenance.

The developed software can, in future versions, be adapted in a relatively simple and
inexpensive way, showing high potential to become a truly useful tool for advanced mold
monitoring algorithms development. A change that can be implemented is the real-time
comparison between measured values and an acceptable or ideal working value range.
This would be coupled with the development and implementation of an algorithm with
an output that allows identifying data patterns close to or over the operational limits,
in-process. Thus, the software would be able to perform the early detection of the need
for maintenance, as well as suggesting or even autonomously implementing parameter
alterations for fault compensation or require process halting. Another adaptation that can
improve the system, making it more practical and physically flexible, is enabling wireless
communication between the microcontrollers and computer. Monitoring online, mobile, or
otherwise, devices, would be a further step in that direction.

Supplementary Materials: The integral software and firmware code have been made available in
open-source, and can be found at: https://github.com/TEPGomes/OpenMMS-T4G (accessed on
23 March 2023).
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