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Abstract: In response to challenging circumstances, the human body can experience marked levels of
anxiety and distress. To prevent stress-related complications, timely identification of stress symptoms
is crucial, necessitating the need for continuous stress monitoring. Wearable devices offer a means
of real-time and ongoing data collection, facilitating personalized stress monitoring. Based on our
protocol for data pre-processing, this study proposes to analyze signals obtained from the Empatica
E4 bracelet using machine-learning algorithms (Random Forest, SVM, and Logistic Regression) to
determine the efficacy of the abovementioned techniques in differentiating between stressful and
non-stressful situations. Photoplethysmographic and electrodermal activity signals were collected
from 29 subjects to extract 27 features which were then fed into three different machine-learning
algorithms for binary classification. Using MATLAB after applying the chi-square test and Pearson’s
correlation coefficient on WEKA for features’ importance ranking, the results demonstrated that the
Random Forest model has the highest stability (accuracy of 76.5%) using all the features. Moreover,
the Random Forest applying the chi-test for feature selection reached consistent results in terms of
stress evaluation based on precision, recall, and F1-measure (71%, 60%, 65%, respectively).

Keywords: objective stress measurement; wearable sensors; machine learning; IoT; chi-square test;
Empatica E4

1. Introduction

One of the main factors contributing to both physical and mental illnesses in people is
stress [1]. An organism’s natural reaction to an intrinsic or extrinsic situation, whether it
be favourable or unfavourable, physical or mental, is known as stress [2]. It is the body’s
method of coping with an oppressive or negative situation and constantly works to restore
the body to its normal balance [3]. Stress-related pathologies or disorders are thought to be
the second most common cause of disease in both Europe and the United States, accounting
for three out of every four doctor visits [4].

The first stage of stress is the disruption of an organism by a stimulus or event known
as stressors [3].

Although stressors can take on many different forms, they can be broadly divided into
two categories: psychological and physiological. Psychological stressors include things such
as debt, the death of a loved one, losing a job, studying for an exam, and other similar items.
Physiological stressors include things such as infections, high temperatures, and a lack of
relaxation. When the body perceives a situation as stressful, it can trigger short-term or
long-term reactions. The hypothalamus in the brain plays a crucial role in this process by
activating and sending signals to the pituitary gland, which then stimulates the adrenal gland
to produce cortisol. This hormone helps to stabilize the blood sugar supply and restore the
body to normal function. In addition, the adrenal medulla, which is part of the autonomic
nervous system, is stimulated by the hypothalamus to produce short-term stress responses.
This results in the release of adrenaline, which causes the fight-or-flight response and activates

Sensors 2023, 23, 3565. https://doi.org/10.3390/s23073565 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073565
https://doi.org/10.3390/s23073565
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5007-1796
https://orcid.org/0009-0008-5612-4738
https://orcid.org/0000-0002-6142-0987
https://orcid.org/0000-0002-1436-8864
https://orcid.org/0000-0003-2851-3310
https://doi.org/10.3390/s23073565
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073565?type=check_update&version=1


Sensors 2023, 23, 3565 2 of 16

the sympathetic nervous system. Once the stressor is removed and the parasympathetic
nervous system takes over, the body returns to its normal state [5].

Based on the time-lapse, stress can be divided into three categories and each of them
has a unique set of symptoms, traits, duration, and treatment options. It is distinguished into
acute stress, the most common, characterized by short duration and associated with negative
thoughts, episodic stress, which happens when intense stress is sustained over a long period
before it becomes a habit, and chronic stress, which might be the result of early childhood
experiences and traumatic experiences from the past that have shaped one’s life [6].

Psychometric tools, scales, questionnaires, or surveys were used as part of the con-
ventional method of stress detection. Although they are inexpensive and simple to use,
questionnaires have some drawbacks that make them less useful since they are based on
individual perceptions [7]. Studies have revealed that, in addition to the conventional meth-
ods of detecting stress through questionnaires and behavioral observations, it can also be
determined and measured from physiological, psychological, and neurological responses [8].
Heart rate variability (HRV), galvanic skin response (GSR), respiratory rate, blood oxygen
saturation, cortisol level, blood pressure (BP), and brain signals are indicative parameters
because they are connected to the autonomic nervous system [9]. Smart wearable devices that
can measure signals even in natural settings for assessing cognitive and sensory states have
been made possible by recent advancements in embedded systems and sensors. Presently,
these vital signals are collected using several variegate wearable devices—smart watches,
chest belts, smart t-shirts, and head-mounted devices [10]—allowing ongoing mental health
monitoring to be easier compared to the past. The widespread market adoption of smart
wearables has given people the ability to track, store, and transfer personal information about
their surroundings, physical activity, and health [11].

Stress is a heterogeneous disease that affects adults and young people equally. Due to
the demanding physical and mental efforts required of employees, the workplace has become
a major source of stress in the latest days [12]. It could also be a result of staff not having the
resources they require to do their jobs well or of staff not having their needs met. Stress at
work has been linked to frequent absences, mistakes, and lower productivity [13]. According
to evidence, the EU spends about EUR 617 billion a year on social welfare, health care, and
programs to help people who are stressed out or depressed at work [14]. This demonstrates
how stress at work not only affects the productivity of individuals but also the entire state.
Teenagers frequently experience academic stress, a type of mental distress brought on by
the many expectations that are placed on them. It can be difficult to avoid stress as a factor.
Students experience stress due to a variety of demands, including homework, exams, classes,
projects, friends, and family. Their academic success is directly correlated with these demands.
Students under high stress often experience depression and anxiety [15].

Using the physiological data that was recorded during stressful situations, the proposed
work seeks to automatically identify a person’s state of stress. Such detection can aid in
the monitoring of stress and the prevention of harmful diseases linked to stress. This is
even more important when considering workers. Monitoring employee stress levels is a
crucial component of fostering a healthy and effective work environment. Therefore, this
study aims to analyze signals collected by the Empatica E4 bracelet, using machine-learning
algorithms, based on our protocol for data pre-processing and to individuate the accuracy of
the techniques mentioned above in distinguishing between stress and no-stress situation. Our
protocol was created to simulate a demanding situation that might arise in a workplace where
several tasks must be completed simultaneously. Additionally, we want to see if the quality
of the bracelet’s recorded data is sufficient for a classification problem and can therefore be
used in a real scenario despite the various arm movements and abrupt changes between
activities that can affect significantly the overall monitoring. The following two subsections
describe the physiological signals collected and their meaning while the other one reports
related works in the same fields. In Sections 2 and 3, the procedure used to collect and analyze
data and the obtained results are reported, respectively. Finally, in Sections 4 and 5 a detailed
explanation of the results and the pros and cons of this study are shown.
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1.1. Physiological Signals for Stress Assessment

Strong evidence from research suggests that physiological signals carry information about
human emotions [16]. A fast heartbeat, excessive sweating, and unusual facial expressions
are typical manifestations of emotion, which is an intense mental experience [17]. According
to the results shown in [18], a lower HRV is linked to the feeling of “happiness”, whereas
a higher value is linked to “joy” or “amusement.” In a similar vein, research has also been
done on the function of GSR. It is shown that GSR can distinguish between the emotions of
“fear” and “anger”, “fear” and “sadness”, and “happy” and “sad” [19]. As previously said,
several physiological signals can be used, but for the aim of this study, we will consider only
electrodermal activity (EDA) and photoplethysmogram records (PPG). Specifically:

• PPG: measures the blood volume pulse (BVP) which changes for each interbeat interval
due to alterations in blood volume and blood pressure in response to stress stimuli.
PPG works by emitting light from a source and measuring how much of it is absorbed
by the blood based on the amount of blood in the volume. PPG devices are commonly
used to calculate heart rate (HR), heart rate variability (HRV), and related information.

• EDA: The sympathetic innervation of sweat glands results in electrodermal activity
(EDA), which is a measure of changes in the skin’s electrical conductance. EDA is
detected through the modulation of the conductance of an applied current by sweat
gland activity. Increased sweating enhances the electrical conductivity of the skin due
to the presence of water and other substances in sweat, including minerals, lactic acid,
and urea. EDA is more sensitive to psychological stimuli compared to thermal stimuli,
making it a potential measure of sudomotor activity and an unbiased evaluation
of arousal [20].

1.2. Related Works

Mental stress has long been recognized to have harmful effects on human health. Contin-
uous mental stress, for instance, can lead to physical and mental conditions such as cardiovas-
cular diseases, hypertension, diabetes, cancer, headaches, depression, anxiety, and insomnia.
Early detection of high stress levels is necessary to stop these harmful effects. Several recent
stress-detection strategies have been put forth, typically based on machine-learning (ML)
methods. The work of Kyriakou et al. [21] in 2019 aimed to bridge the gap between laboratory
settings and real-world field studies by introducing a new algorithm to detect moments of
stress (MOS) using wearable physiological sensors. Eleven subjects wore an Empatica E4
device and were subjected to a laboratory experiment, an auditory stimulus was used to
induce stress. Furthermore, to validate the algorithm, a real-world urban experiment was
introduced. An accuracy of 84% was obtained using the proposed algorithm. The study
carried out by Kaczor et al. [22] aimed at the objective measurement of physician stress in
the emergency department using the Empatica E4 smartwatch. EDA, acceleration, and heart
rate signals were acquired from eight participants during clinical shifts (typically 8–10 h).
After that several machine-learning classifiers were used and the best accuracy obtained was
70% to detect stress during the working shift with respect to the baseline condition. In the
study proposed by Dai et al. [23], 32 subjects participated in 2 h of laboratory and 24 h of
field-based experiments. The aim of the study was comparing between objective and sub-
jective stress-detection models. In particular, participants were given a mental mathematics
assignment, which required them to solve a series of complex mathematical problems over a
given period of time. Support Vector Machine, Random Forest, AdaBoost, Gradient Boosting,
and Logistic Regression classifiers were used to detect stressed or non-stressed periods in
both objective and subjective stress models. In the study carried out by Mach et al. [24] in
2022, a laboratory experiment consisting of an arithmetic task which is counting down or up
steadily, and physical activity (sitting vs. stepping) with 52 participants was conducted. This
study aimed to assess mental workload via heart rate measurement and a chest strap with a
1-channel ECG. They found that the mean heart rate increased when participants performed
the arithmetic task compared to the conditions with no arithmetic task while sitting and
stepping. In the study done by Seo et al. [25] in 2022, 24 participants wore a Zephyr chest strap
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equipped with a BioHarness module to acquire ECG and Respiratory signals. Furthermore,
the subjects were sitting in front of a laptop and faced a camcorder screen to register facial
information. The experiment lasted for 45 min and comprised two stages: an initial setting
stage, and an actual experiment stage which is the Stroop task. The actual experiment consists
of Relax, Easy Stroop, Recovery, Hard Stroop, and Recovery, 5 min for each. Afterwards,
signal and image processing was done followed by a Deep Neural Network (DNN) classifier.
The accuracy for two or three levels of stress classification was 73.3%, and 54.4%, respectively.

In a study by Chalabianloo et al. [26] in 2022, 32 subjects were subjected to a laboratory
experiment that consisted of baseline, stress, recovery, and cycling sessions. Stress sessions
were performed using the Stroop task and different physiological signals were recorded
using seven different wearable devices simultaneously. The best accuracies across most
of the devices were obtained using an Extremely Randomized Tree classifier, for example,
88.26% for the BITalino device. Furthermore, to study the effects of multimodality, the EDA
signal was introduced using Empatica E4. After that, the same classifiers mentioned above
were used. The accuracy obtained considering only HR was 83.89% using the Random
Forest classifier, while when considering HR and EDA the accuracy became 90% using the
Extremely Randomized Tree classifier.

In the study done by Suni Lopez et al. [27] a laboratory experiment was conducted to
detect stress in the office workplace, the experiment consisted of interacting with a laptop
where the Stroop task was installed. Twelve subjects participated and were asked to wear
the E4 smartwatch to collect EDA data, and headphones to interact with the environmental
trigger (fire alarm). After signal filtering, aggregation, and discretization, an accuracy of
79.17% was obtained using statistical method classification.

In Table 1, all the mentioned works together with the devices and protocol applied are
summarized.

Table 1. A list of the cited works with the protocol tasks used and the performances of the machine-
learning algorithms. Abbreviation: HR: Heart Rate; ECG: Electrocardiogram; Resp: Respiration;
ST: Skin Temperature; GSR: Galvanic Skin Response; ACC: Acceleration; PPG: Photoplethysmogram;
DNN: Deep Neural Network; RF: Random Forest; DA: Discrimination Analysis; ERT: Extremely
Randomized Tree; SVM: Support Vector Machine; K-NN: K-Nearest Neighbor; NB: Naïve Bayes;
LR: Logistic Regression; DT: Decision Tree. * 7 devices are BITalino (r)evolution board, Firstbeat
Bodyguard2, Polar H10, Zephyr HxM, Empatica E4, Samsung Gear S2, and CoreSense.

Study Device Signals Method Stressor Accuracy

[21] Empatica E4 GSR, ST New Algorithm Audible, real-world urban 84%

[22] Empatica E4 GSR, ACC, HR
DT, LR, NB,

SVM, K-NN, DA Physicians in the emergency department 70%

[23] Fossil Gen4 PPG, ACC SVM, RF Speech, Math, cold, daily life
82.6% (laboratory)
79.8% (daily life)

[24] Samsung Gear S3 HR, ECG Statistical Math, Stepping -

[25] Zephyr ECG, Resp DNN Stroop 73.3%

[26] 7 devices * ECG, HR, GSR ERT, RF Stroop, cycling
83.89% (E4, HR)

90.62% (E4, HR & GSR)

[27] Empatica E4 GSR Statistical Stroop, audible 79.17%

2. Materials and Methods

This work’s primary objective is to analyze data collected by Empatica E4 and to assess
the validity of our model, using machine-learning techniques.

The data have been collected in our laboratory after the candidates have been in-
structed about the protocol, the aim of this study, and signed privacy questionnaires.
A total of 29 subjects were individuated and equipped with Empatica E4. The chosen
environment for this study is Matlab 2022.
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This section is divided into five subsections, namely Empatica E4, Data Acquisition
Protocol, Data Pre-Processing, Features extraction, and machine-learning algorithms, each
dedicated to a specific portion of the work carried out.

2.1. Empatica E4

The study used the Empatica E4 bracelet, a wearable device that collects continuous
and instantaneous physiological data through its four sensors: temperature sensor, ac-
celerometer, EDA sensors, and PPG sensors. The E4 was worn snugly on the wrist to ensure
stability during testing. Data were stored through Bluetooth streaming acquisition and
monitored in real time through the E4 Realtime app on a smartphone. The data were then
uploaded to Empatica’s cloud platform, E4 Connect, for pre-processing.

2.2. Data Acquisition Protocol

In order to evaluate mental stress, a protocol must be defined and appropriate stressors
should be identified. Several categories can be individuated, such as cognitive stressors,
characterized by tasks that require a high level of attention, concentration, and memory,
such as solving complex mathematical problems or memorizing long word lists. Social
stressors can be perceived as threatening or judgmental, such as participating in a job
interview or giving a public speech. Physical stressors are those situations that require
intense physical effort, such as engaging in high-intensity exercise or being exposed to
extreme temperatures. Finally, we can distinguish between emotional stressors, which can
elicit intense and negative emotions and psychological stressors, which require experiencing
a sense of uncertainty or lack of control [28].

On the basis of the different stressors, we searched the literature to recreate a protocol
that combined all these stressors to create more complex and realistic mental stress. We
focused on creating mainly cognitive, social, and physiological stressors since they are the
most likely to be triggered in a working environment and easy to induce cognitive load in
a laboratory situation.

Therefore, we came out with the protocol depicted in Figure 1 , developed based on
the one suggested in [29]. We decided to apply this protocol as a base to develop our own
due to the high accuracy that the just quoted study reached.

Three minutes of rest were recorded after the bracelet was turned on to establish
a baseline. After each task, a 2-minute rest period was carried out. In the first task,
participants had ten minutes to construct a Lego object using only the images printed
on the box and no instructions. The second task is to assemble the same Lego creation
within five minutes, but this time with the aid of the instructions. The third task requires
the participant to assemble another Lego creation made of larger pieces in three minutes
while following instructions and counting backwards from 180 (the total amount of time
available to complete the task) to zero. Each of the aforementioned tasks was developed to
simulate manufacturing activities such as assembly and manual handling and to induce
the mental stress that workers can face while doing a specific job. The fourth test is entirely
mathematical and involves repeatedly subtracting backwards the number 13 from 511.
There is no time limit in this situation. This task is inspired by the Montreal Imaging Stress
Task, created to investigate the effects of psycho-social stress in the human brain [30]. The
fifth and final test requires the subject to give a one-minute oral presentation of themselves
and their resume, since it has been demonstrated that an oral presentation can cause stress
and memory impairments [31].
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Figure 1. Data acquisition protocol carried out for each of the participants.

2.3. Data Pre-Processing

After the data acquisition, we clean our data to extract features and apply any machine-
learning algorithm.

The duration of the signal segment is known to affect HRV and pulse rate variability
(PRV) features [32]. This means that the features will differ depending on the length of the
segment under consideration. This implies that the HRV features are contingent upon the
length of the segment under consideration, In this study, a pre-processing methodology
was employed that initiated the segmentation of the PPG and EDA signals into intervals
of 1-minute duration. Several factors influenced the decision to use a 1-minute interval.
To begin, the data collection protocol for this study included a 1-minute task—the CV
presentation task. Second, a one-minute duration is appropriate for use in wearable health
monitoring devices. Third, to maximize data segments. The segmentation process included
all 29 subjects who took part in this study. For each BVP and EDA signal, a total of 1068 data
segments were extracted. Following that, the segments were labeled according to the tasks
or rest period.

Regarding the PPG signals, different noises and artifacts can affect the signals during
PPG recording, lowering the stress-detection system’s accuracy. The most prevalent of them
is the motion artifact, which has a significant impact on the PPG signal quality. For this
reason, all the segments were filtered using a Chebyshev II order-4 filter with a stopband
attenuation of 20 dB and a passband of 0.5–5 Hz [33]. The crucial step is pinpointing the
peak of the PPG signal and the distance between two consecutive peaks. Therefore, peak
detection was performed using the findpeaks function, with a threshold set to a minimum
peak distance of 0.4 s and a minimum peak height of 0. Afterwards, peak-to-peak matrices
were calculated by subtracting every two consecutive peaks. Following these computations,
only intervals with a time duration of 500 to 1200 ms (corresponding to heart rates of
120 and 50 beats per minute) were taken into consideration, while all abnormal intervals
(time duration less than 500 ms or greater than 1200 ms) were excluded. These limits
were chosen based on the Work of Zubair et al. [34] but we modified the lower limit to
500 ms because it produces 120 Bpm instead of 600 ms which corresponds to 100 Bpm. This
means that if we choose 600 ms, all HR more than 100 Bpm will be eliminated, removing
HR values associated with stress tasks. However, excluding too many abnormal intervals
would reduce the length of the PRV series. PPG segments with abnormal intervals that
made up less than 15% of all intervals were therefore taken into account. The threshold of
15% was selected to ensure that the selected PPG segment still has a time length greater
than the 50 s after removing abnormal intervals [34]. As a result, the total number of PPG
segments was reduced to 843, obtaining 320 segments for the rest condition and 523 for all
the tasks.
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For what concerns EDA pre-processing, upsampling from 4 to 64 Hz was performed to
make both signals at the equal sampling frequency [35]. To remove any artifacts, smoothing
using the Gaussian low pass filter, with a 40-point window and sigma of 400 ms, was carried
out [36,37]. Finally, all the clean segments went through the feature extraction process. In
Figure 2, there is a schematic representation of the PPG and EDA signal processing, while
in Figure 3 are visible the signals before and after the cleaning.

Figure 2. Flowchart for PPG and EDA pre-processing.

A B

Figure 3. Data cleaning for both PPG and EDA records with the corresponding raw and clean signals.
(A) Raw and clean PPG signal. (B) Raw and clean EDA signal.

2.4. Features Extraction and Selection

Meaningful information was extracted from each data segment during the features ex-
traction phase to characterize the various data portions in the time and frequency domains.
Table 2 lists the 27 features that were chosen to quantify our data after being successfully
applied in earlier studies for both PPG and EDA signals. For the BVP, a total number of
16 features were extracted, in particular, the features could be divided into two categories:
first one PRV based on calculated peak-to-peak (PP) matrices and it is worth mentioning
that only consistent features in ultra-short-term matrices were included [32]. The second
one is related to the signal itself such as mean, median, mode, minimum, maximum, stan-
dard deviation, mean, and standard deviation of the first and the second derivative of the
filtered signal [35,36]. To extract this information, an algorithm was developed using several
functions available on Matlab Statistics and Machine-Learning Toolbox. Below are reported
the mathematical formula for the statistic features and the ones computed in the frequency
domain. Equation (1) shows the formula for the mean computation, while Equations (2)
and (3) represents the median and standard deviation, respectively. In Equation (4) the
absolute power in high frequency is reported, where f (λ) is the power spectrum of the PP
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tachogram [38]. Finally, Equation (5) is based on the summation of successive PP intervals
such as a moving average. Its deviation represents the “long-term HRV” [38].

x̄ =
1
n

n

∑
i=1

xi (1)


x(k+1)/2 n odd

xn/2+xn/2+1
2 n even

(2)

SD =

√
∑n

i=1(xi − x̄)2

n − 1
(3)

HF =
∫ 0.40Hz

0.15Hz
f (λ) dλ (4)

SD2 =

√
1
2
· std(PPi+1 + PPi) (5)

For the maximum and minimum values of each signal, the functions min[x] and max[x],
with x as a signal, from the previously mentioned toolbox, were applied.

Table 2. All the features computed with their domain and abbreviation.

Signal Domain Features Abbreviation

PPG Time Mean PPI, standard deviation of PP interval, mean heart rate,
standard deviation of heart rate. Mean_PP, std_PP, M_HR, std_HR

Frequency Absolute power in high frequency [0.15–0.4 Hz]. HF

Non-Linear Heart long-term variability. SD2

Statistical

Mean of the filtered signal, median of the filtered signal,
mode of the filtered signal, minimum of the filtered signal,

maximum of the filtered signal, the standard deviation of the filtered signal,
mean of the first derivative of the filtered signal,

the standard deviation of the first derivative of the filtered signal,
mean of the second derivative of the filtered signal,

the standard deviation of the second derivative of the filtered signal.

Mean_BVP, Median_BVP,
Mode_BVP,
Min_BVP,

Max_BVP, Std_BVP, M_d1,
Std_d1, M_d2, Std_d2,

EDA Statistical Mean, median, mode, maximum, minimum, standard deviation. Mean_EDA, Median_EDA, Mode_EDA, Max_EDA,
Min_EDA, Std_EDA

SCR Time Mean Duration, Mean Amplitude, Mean Raise Time, Number of peaks, Mean. M_D, M_Amp, M_RT, N_PEAKS, M_SCR

The BIO-SP tool was used to extract skin conductance response (SCR) features. SCRs
are commonly found in electrodermal activity signals and can be identified using differen-
tiation and convolution with a 20-point Bartlett window. This method is commonly used in
EDA signal analysis to identify and characterize SCRs, which are important indicators of
sympathetic nervous system activity. All the features available in this tool were extracted,
including the mean rise time, duration, amplitude, number of peaks, and mean of the SCR
signal [37]. In the end, a feature standardization using the Z-score was performed since the
parameter magnitudes were different.

A key idea in modeling is feature selection, which can improve a model’s performance
by eliminating unnecessary features. Feature selection becomes one of the crucial steps
in building our stress-detection model to reduce the complexity and the time needed
for the execution of computations, which have been greatly increased due to the use of
cross-validation. To enhance the effectiveness of stress detection, the most pertinent and
significant features should be chosen. The ranking of feature importance was performed
using two methods: Univariate feature ranking for classification using chi-square tests (chi-
test), in Matlab, and the Pearson’s correlation coefficient with the Waikato Environment
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for Knowledge Analysis (WEKA) [39]. The former one is so-called because it is conducted
on two distributions two determine the level of similarity of their respective variances.
In its null hypothesis, it assumes that the given distributions are independent [40]. The
Chi-square test can be written as

χ2 = ∑
(O − E)2

E
(6)

where χ2 represents the calculated value of the chi-square test, ∑ denotes the sum, O repre-
sents the observed number of events in each category, E represents the expected number
of events in each category, and (O − E)2 represents the squared difference between the
observed and expected number of events in each category. In our case, using the Mat-
lab function fscchi2, which examines whether each predictor variable is independent of
a response variable using individual chi-square tests. A small p-value of the test statistic
indicates that the corresponding predictor variable is dependent on the response variable,
and, therefore, is an important feature. We computed the predictor scores as –log(p), with
p being the p-value. Therefore, a large score value indicates that the corresponding predictor
is important. Then, we computed the mean value of the score and used it as a threshold.

Then, using WEKA, we applied a Pearson correlation coefficient to create rankings for
each feature. The Pearson’s correlation coefficient is a measure of the linear relationship
between two variables, X and Y. It ranges between −1 and +1, where −1 indicates a perfect
negative linear relationship, 0 indicates no linear relationship, and +1 indicates a perfect
positive linear relationship. The formula for the Pearson correlation coefficient is

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2 ∑n
i=1(yi − ȳ)2

(7)

where rxy represents the Pearson correlation coefficient between X and Y, ∑ denotes the sum,
n is the sample size, xi and yi are the ith observations of X and Y, respectively, x̄ and ȳ are the
sample means of X and Y, respectively. In our case, the function CorrelationAttributeEval
was applied to evaluate the worth of an attribute by measuring the correlation between it
and the class. Any attributes with rankings below a cutoff of 0.10 were eliminated [36].

2.5. Classification

A class label related to the presence or absence of stress is returned from the ML
classifiers using the subset of features produced, as well as the total set of features, as
input. Based on the literature review reported in Section 1.2, the most frequently used
and effective binary classifiers for identifying stress have been implemented. In particular,
Random Forest and Logistic Regression, and SVM with cubic kernel on MATLAB.

As its name suggests, the Random Forest is made up of numerous individual decision
trees that work together as an ensemble. Every single tree in the Random Forest spits
out a class prediction, and the classification that receives the most votes becomes the
prediction made by our model. Logistic Regression is a statistical approach that is used
for classification problems and is based on the concept of probability. It is used when
the dependent variable (target) is categorical. Finding a hyperplane in an N-dimensional
space (N is the number of features) that categorizes the data points is the goal of the SVM
algorithm. These three approaches were tested on Classification Learner on Matlab. The
hyperparameters were tuned for SVM and Random Forest. To obtain the best metrics, we
vary the number of splits and learners during various trials for Random Forest. Although
the learners range from 30 to 100, the number of splits varies from 500 to 1000. The number
of splits allows us to specify the maximum number of branch points to control the depth of
our tree while the number of learners is the number of decision trees in the RF: the greater
the value, the greater will be the number of subsets the data will be divided into to train
every decision tree. To achieve the best results for the SVM model, the cubic kernel was
used and several values of the kernel scale from 1 to 10 were applied.
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The 10-fold cross-validation configuration setting was used to test the machine-
learning algorithms for the model evaluation. In this configuration, the new features
dataset was divided into 10 subsamples randomly, with 9 subsamples serving as training
data and 1 subsample serving as validation data. The resulting accuracy percentage is the
average over the 10 iterations using the available subsamples as validation data. The ability
to categorize the presence or absence of stress, as a binary classification task, was assessed
using the classification performance metrics of accuracy (8), precision (9), recall (10), and
F-measure (11):

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Prec =
TP

TP + FP
(9)

Rec =
TP

TP + FN
(10)

F1 =
2 ∗ Prec ∗ Rec

Prec + Rec
=

2 ∗ TP
2 ∗ TP + FP + FN

(11)

3. Results

Empatica E4 data were pre-processed and analyzed to extract features from each
recording. The features chosen for feeding the ML algorithms are then reported for both
methods, in Figure 4. Applying the chi-test method, only 10 features were chosen from
the original 27 ones while using the Pearson correlation coefficient only 15 features fed
the ML algorithms. Through both methods, it can be seen that all HRV features exhibited
values above the selected threshold in Pearson’s correlation method. Additionally, in
the chi-square method, four of the HRV features surpassed the threshold confirming the
validity and stability of the information that they carry. Using different ML algorithms,
this feasibly ideal combination of features, composed of the parameters more responsive to
stress, was tested for correctly discriminating the absence or existence of stress. Moreover,
to validate the feature extraction process, we also fed the algorithms with all 27 features.

For said binary classification, three distinct machine-learning classifiers had been
used, each trained with a 10-fold cross-validation strategy. Thus, every algorithm was
evaluated in terms of accuracy percentage, Sensitivity, precision, and F1. The results are
reported in Table 3. These metrics can be influenced by several factors, such as the size
and quality of the dataset, the features used for the model, the type of stressors, and
the specific algorithm used. Comparing the outcomes of the full set of features and the
selected features, it is apparent that the accuracy, as well as other performance metrics,
decrease for the Logistic Regression. This decline may be attributed to the unavailability
of hyperparameter tuning within the MATLAB toolbox. Conversely, the SVM and RF
exhibit consistent outcomes even after feature reduction, possibly due to the flexibility of
modifying hyperparameters in different situations. In the case of the full set of features,
the SVM was fitted with a cubic kernel, box constraints equal to 1, and a kernel scale of 7.
Meanwhile, the RF was constructed using 1000 splits and 50 learners. However, for the
selected subsets, the parameter settings were different. In particular, when using the Chi-
test and Pearson’s correlation coefficient features to feed the SVM, the same cubic kernel
and box constraints were used, but the kernel scale was adjusted to 3. For the RF, the best
performance was obtained with 500 splits and 100 learners when using the chi-test protocol,
and with 1000 splits and 50 learners when using the Pearson correlation coefficient.

The Random Forest approach is more stable and reliable while working with an
imbalanced dataset, discriminating correctly between stress and no-stress situations. The
Precision and recall are higher in both cases, especially with the chi-test approach, being
consistent also for the label 0, where the other classifiers demonstrate to be more affected by
the unbalancing. However, Logistic Regression and SVM also achieve good results in some
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metrics, indicating that they could be suitable for this type of dataset. These outcomes are
also visible in the confusion matrices in Figure 5.

A B

Figure 4. Ranks listed in order of importance for each feature extracted: (A) Chi-test method.
(B) Pearson’s correlation coefficient.

Figure 5. Confusion matrices for all the three machine-learning techniques and before and after the
features’ selection.

Table 3. Performance metrics before and after applying the Chi-test and Pearson’s correlation
coefficient methods for all the three machine learning techniques.

ML Algorithm
Chi-Test Method Pearson’s Correlation Coefficient All Features

Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1 Accuracy Label Prec Rec F1

Random Forest 75.7% 0 0.71 0.60 0.65 75.4% 0 0.70 0.62 0.66 76.5% 0 0.73 0.61 0.66
1 0.78 0.85 0.81 1 0.78 0.84 0.81 1 0.78 0.86 0.82

SVM 73.9% 0 0.71 0.52 0.60 73.8% 0 0.70 0.54 0.61 74.5% 0 0.75 0.49 0.50
1 0.75 0.87 0.81 1 0.75 0.86 0.80 1 0.74 0.90 0.81

Logistic Regression 72.8% 0 0.68 0.53 0.60 72.7% 0 0.68 0.53 0.59 76.4% 0 0.74 0.59 0.66
1 0.75 0.84 0.79 1 0.75 0.85 0.80 1 0.78 0.87 0.82
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4. Discussion

A new system was proposed to analyze physiological signals measured with a wear-
able device on a test population before and after performing tasks designed to induce
mental stress.

The Pearson coefficient was used for feature selection, and the results showed that
most of the features were related to the PPG signal, while only two were related to the
SCR signal. The top three features were the standard deviation of HR, PP, and long-term
variability (SD2), respectively, with a ranking of over 0.25, indicating the importance of
HRV analysis in detecting stress, consistent with previous research. For the BVP signal,
the standard deviation of the first derivative, the standard deviation of the signal itself,
and the standard deviation of the second derivative were the next three important features,
respectively, with a ranking of over 0.1, suggesting that dispersion is more important than
average values. As for EDA, only the mean of SCR and the mean amplitude of SCR, which
are related to the phasic component of the EDA signal, had a rank higher than the threshold.

In the chi-square approach, among the six HRV features, four were found to be above
the predetermined threshold. Moreover, the standard deviation of PP and the standard
deviation of HR were identified as the two most significant features. Regarding the BVP
signal, similar to the Pearson correlation approach, the standard deviation of the second
derivative, first derivative, and the signal itself were identified as important features.
However, their mean values were not found to be significant. In the case of EDA signal
analysis, it was found that only the number of SCR peaks was important with respect
to the threshold. This observation confirms that the number of peaks (N_Peaks) is the
primary indicator of sympathetic nervous system (SNS) activity, and, thus, related to a
stress condition [41].

Focusing on the classification aspect, in general, our analysis indicates that the classi-
fiers’ accuracy consistently exceeds 70%. This suggests that the pre-processing and original
feature selection were appropriate for the database under consideration.

Tuning the hyperparameters had a positive impact on the results. Notably, the Logistic
Regression approach lacked the capacity for optimization in MATLAB, which was high-
lighted when transitioning from the full set of features to the reduced set. In comparison
to RF and SVM, where reducing the number of features had a minor effect on the results.
The accuracy, along with other metrics of LR, was less promising, particularly for label
0, where precision and recall values were 0.68 and 0.53, respectively. On the other hand,
feature reduction not only reduced computational costs but also stabilized and improved
the results.

Overall, the Random Forest algorithm consistently exhibited superior performance
compared to other classification methods. This could potentially be attributed to the fact
that Random Forest classifiers rely on randomness, which promotes more generalized
modeling. This observation is corroborated by the precision, recall, and F1-measure met-
rics, which demonstrate the algorithm’s effectiveness when contrasted with SVM and
LR matrices.

The findings of the current study are consistent with the existing literature in the
field. Specifically, the results of the feature selection are aligned with the other studies that
have emphasized the importance of the selected features. It is noteworthy that despite the
differences in the devices employed in the previous studies, the HRV-based features have
emerged as the most robust indicator of stress, along with the SCR information [24,36].
The results obtained from the current study indicate that both feature evaluation methods
employed, particularly the chi-test method, possess considerable strength in selecting
stress-related characteristics. The outcomes achieved with the chi-test method align with
the ones obtained by [42]. Even if they applied different classifiers, the results are consistent
with ours, demonstrating that the chi-test method is feasible for mental stress detection.
As for the machine-learning (ML) outcomes, the Random Forest classifier surpasses other
techniques when applied to data acquired using Empatica E4. According to a study
proposed by [43] the RF is a dependable classifier for binary classification, demonstrating
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high accuracy scores and outperforming the SVM one, which is consistent with our findings.
Furthermore, when comparing our results to studies that employ data collected in real-
world settings, the RF method achieves notable accuracy scores, despite experiencing lower
precision values [44]. This implies that RF has a high accuracy for detecting stress-related
data. However, it was found that RF misclassified a considerable number of non-stress-
related data as stress. In a study conducted by Cosoli et al. [36], suggested that the SVM
and LR algorithms are more reliable in classifying and detecting stress events compared
to our results, where both approaches yielded lower levels of accuracy. It is plausible that
such differences in the findings may be attributed to variations in the stimuli employed to
induce stress, as well as the dissimilar pre-processing steps applied to clean the data.

Observing the performance of the classifiers in detail, it becomes apparent that the
classification of the presence of stress (label 1) outperforms the classification of its absence
(label 0). This discrepancy may be primarily attributed to the unequal number of segments,
as the number of segments associated with stress is greater than those associated with the
rest phase (523 vs. 320, respectively). This is because, in the overall protocol, the duration
of the tasks is greater than the total rest period. Additionally, the time allocated for rest
periods may not be sufficient for the participants to achieve a completely stress-free state
during the inter-task rest periods, further complicating the classification task. It is worth
noting that the remaining classifiers exhibited lower values in all of the evaluated metrics
compared to the Random Forest, particularly the LR classifier, where no hyperparameters
have been set for this classifier, although the results are still acceptable.

Despite the fact that the segments of rest and stress conditions were unbalanced, our
results were still able to distinguish between these two conditions with a reasonable degree
of accuracy. However, our findings fell short of those reported in previous literature, and
there is a possibility for improvement for example by balancing the data using different
algorithms as the study carried by [45] suggests. They obtained higher performance and
accuracy after manipulating the data with ADASYN.

One feasible explanation for the suboptimal performance of our system is the presence
of noise associated with the Empatica E4 device, particularly during hand movement tasks.
Another factor to consider is the relatively small sample size used in our study. Increasing
the size and diversity of the participants would help to enhance the generalizability of our
findings and improve the accuracy of our models. A small dataset may not be representative
of the broader population and may be prone to inaccuracies and erroneous conclusions, as
it could be influenced by outliers or anomalous data. Furthermore, the decision to conduct
our study in a laboratory setting may have limited our ability to simulate real-world
working conditions. In the future, additional stimuli could be introduced to overcome this
limitation and more accurately replicate real-world scenarios.

Despite the drawbacks described above, our approach achieved high performance in
the detection the stress situations. This means that our choices for data manipulation and
feature selection are sufficiently strong to deal with an unbalanced dataset. This means
that in a real situation where motion artifacts have higher intensity and unpredictable
stressful situations can arise, stress can be detected and monitored to avoid any psycho-
physical complications.

5. Conclusions

The object of this study was to assess the stress level by the measure of different
physiological signals using a wearable sensor, Empatica E4. To address the stress condition,
we have defined a new acquisition protocol based on the literature reviews. We hired
29 subjects and the acquisitions were performed in a laboratory environment. Moreover,
the machine-learning approaches were developed accordingly with the best-performing
algorithms in this field as well as the features chosen to characterize the model. Despite
the limited baseline for the rest condition, which affected the balancing of the database, we
reached an accuracy of 76.5%, 75.4%, and 75.7%, using all the features and both Pearson and
chi-test approaches, respectively. To validate our model in the future, we suggest increasing
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the population size to include a diverse age range and implementing a new protocol
that ensures a consistent baseline to avoid any misclassification issues. Additionally,
incorporating multi-level stress tasks with different stressors, including real-life scenarios,
could improve the model’s robustness. It would be valuable to compare our results with
feedback from participants, obtained through the use of questionnaires. Moreover, we
recommend considering various wearable devices available on the market to assess the
impact of their characteristics on the results.
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