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Abstract: The widespread use of the internet and the exponential growth in small hardware di-
versity enable the development of Internet of things (IoT)-based localization systems. We review
machine-learning-based approaches for IoT localization systems in this paper. Because of their high
prediction accuracy, machine learning methods are now being used to solve localization problems.
The paper’s main goal is to provide a review of how learning algorithms are used to solve IoT
localization problems, as well as to address current challenges. We examine the existing literature for
published papers released between 2020 and 2022. These studies are classified according to several
criteria, including their learning algorithm, chosen environment, specific covered IoT protocol, and
measurement technique. We also discuss the potential applications of learning algorithms in IoT
localization, as well as future trends.
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1. Introduction

The term Internet of things (IoT) is used to indicate a network of physical objects,
including machinery, furniture, and construction materials, equipped with sensors, soft-
ware, and connectivity to gather and exchange data [1]. The Internet of things is important
because it allows individuals and companies to better comprehend and exert control over
their environment, enhancing efficiency, safety, and convenience. The Fourth Industrial
Revolution (Industry 4.0) [2] is the term used to describe the present trend of automation
and data interchange in manufacturing technology, including the use of the IoT. By utilizing
cutting-edge technologies such as artificial intelligence, machine learning, and the Internet
of things, Industry 4.0 is crucial because it enables organizations to boost productivity,
reduce costs, and improve goods and services. In general, the integration of the IoT and
Industry 4.0 is promoting the growth of a society that is more interconnected, intelligent,
and productive [3,4].

Localization is the process of pinpointing the precise location of an IoT device. The prob-
lem is known as IoT network localization if the goal is to localize all the devices. The utiliza-
tion of numerous technologies, including GPS, wireless communication signals, and sensor
data, can be used to do this [5]. In the context of IoT localization, machine learning can
be used to analyze data from many sources [3] to enhance the precision and dependability
of position predictions. For instance, trends in data gathered from IoT devices could be
examined by machine learning algorithms in order to identify elements that influence the
precision of the localization. This may involve the strength of the wireless signal, the presence
of objects that obstruct or skew the signals, or the existence of other interference sources.
By learning to recognize and account for these characteristics, machine learning algorithms
can increase the precision of the localization.

Many IoT localization systems use learning algorithms, which allow the system to
adapt and improve its performance over time. IoT localization can be categorized in several
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ways, such as based on measurement methods, range-based localization, and range-free
localization, which can be carried out in both indoor and outdoor settings. Range-based
IoT localization refers to methods that leverage an IoT device’s distance from one or
more reference points to pinpoint its location [6]. They could be specialized equipment
deployed particularly for localization, or they could be other devices fixed in recognized
locations such as cell towers or WiFi routers. Range-based IoT localization methods
include triangulation, trilateration, and multilateration. Techniques for locating an IoT
device without using distance measurements are referred to as range-free IoT localization.
Instead, these methods rely on other kinds of data, such as the intensity of the wireless
signal, the existence of certain landmarks or other objects, or patterns in the data from the
device [7].

The ideal IoT localization method relies on the particular needs of the application. Both
range-based and range-free strategies have benefits and drawbacks. Although range-based
methods are typically more precise, they could be limited by the lack of reference locations
or the precision of distance measurements. Range-free methods may be less precise, but in
some circumstances, they are more flexible and simpler to use.

Indoor IoT localization is the process of locating an IoT device inside a structure or
another enclosed place. Because the gadget could not have access to GPS or other external
signals for localization, this can be a challenging process. Instead, indoor localization
systems usually rely on other kinds of information, like the intensity of the wireless signal,
the existence of particular landmarks or other objects, or patterns in the data that the
device collects. Outdoor IoT localization is the procedure used to pinpoint an IoT device’s
position in an outdoor setting. Because the gadget can commonly use GPS or other exterior
signals for localization, this is typically simpler than indoor localization. On the other hand,
obstructions or other sources of interference may pose problems for outdoor localization
systems, affecting the precision of the position estimates [8,9].

In IoT localization, a variety of wireless radiofrequency techniques could be used.
Wireless technologies are critical in an IoT ecosystem because they enable device-to-device
communication and data transfer. WiFi, for example, communicates between devices using
radio waves, and signal strength can be measured using the received signal strength indica-
tor (RSSI) and channel state information (CSI), which can be used for indoor localization.
Bluetooth Low Energy (BLE) is a low-power wireless technology that is used for short-range
communication between devices and is also used in IoT localization via beacons. RFID
uses radio waves to transfer data between a reader and a tag attached to an object, allowing
it to be identified and located. Ultrawideband (UWB) technology transmits data over a
wide bandwidth using high-frequency radio pulses, providing fast and accurate location
information. Ultrasonic technology, which uses high-frequency sound waves to measure
distance and detect objects, is also widely used in IoT localization applications. Some of
the most common technologies referred in the covered publications are as follows:

• The received signal strength (RSS) is a measurement of the strength of a wireless signal
at a specific location. It is commonly used in IoT localization systems to determine
the distance between a device and a reference point, such as a WiFi router or cell
tower. By measuring the RSS at multiple reference points, the device’s location can be
triangulated. The RSS is typically expressed in decibels relative to one milliwatt. It is a
measurement of the strength of a wireless signal at a specific location that can be used
to determine the distance between the device and the reference point. The stronger
the signal, the shorter the distance. The relationship between the RSS and distance,
on the other hand, is not always straightforward, as it can be influenced by a variety of
factors such as the presence of obstacles, interference from other signals, and antenna
characteristics [10,11].

• The channel state information (CSI) is a measure of the characteristics of a wireless
signal, such as its phase and amplitude at different frequencies. It is frequently used in
WiFi localization systems to improve the accuracy of location estimates. The CSI can
be used to collect data about the environment in which the signal is being transmitted,
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such as the presence of reflections or specific objects. The CSI is typically expressed
in complex numbers that represent the phase and amplitude of the signal at each
frequency. The distance between the device and the reference point, the presence of
obstacles or other sources of interference, and the antenna characteristics of the device
can all influence the signal’s phase and amplitude [12].

• Bluetooth Low Energy (BLE) is a wireless communication technology popular in IoT
devices. Because of its low power consumption and short range, it is well-suited for
use in location-based services. BLE can be used in both range-based and range-free
localization systems, depending on how it is implemented [13].

• Other radiofrequency techniques used in IoT localization include radiofrequency
identification (RFID) and ultrawideband (UWB). RFID employs passive tags that are
attached to objects and read by a reader, whereas UWB employs radio pulses that are
extremely brief in duration and can be used for high-precision localization [14].

There are numerous machine learning algorithms that can be used in IoT localization,
some of the common algorithms are presented in the following:

• k-Nearest neighbors (KNN): A simple but effective machine learning algorithm that
can be used for both classification and regression. In the context of IoT localization,
KNN could be used to predict the location of an IoT device based on the locations of
other nearby devices.

• Decision trees: A machine learning algorithm that produces a treelike model of
decisions and their potential outcomes. It can forecast an IoT device’s location based
on the values of various features, such as the wireless signal strength or the presence
of specific landmarks.

• Support vector machine (SVM): SVMs are powerful machine learning algorithms that
can be used for classification, regression, and a variety of other tasks. In the context of
IoT localization, SVMs could be used to predict the location of an IoT device based on
patterns in data collected from it.

• Neural networks are a type of machine learning algorithm that is inspired by the
structure and function of the human brain. Neural networks can perform a variety
of tasks, including classification, regression, and pattern recognition. In the context
of IoT localization, neural networks could be used to predict the location of an IoT
device based on patterns in data collected from it.

• Deep learning (DL): DL is a type of machine learning that makes use of deep neural
networks with multiple layers of processing. It is capable of detecting complex
patterns in data and predicting outcomes based on those patterns. In the context of IoT
localization, deep learning could be used to predict the location of an IoT device based
on patterns in data collected from it. Deep learning is a subset of machine learning that
makes use of deep neural networks with multiple processing layers. Deep learning
can be used in IoT localization to analyze data from various sources, such as GPS,
wireless communication signals, and sensor data, in order to improve the accuracy
and reliability of location estimates. The ability of deep learning to handle large
and complex datasets is a significant advantage for IoT localization. Deep learning
algorithms can learn to see patterns and relationships in data that humans cannot,
allowing them to make more accurate predictions. Deep learning algorithms can also
learn and improve their performance as they are exposed to more data.

• Reinforcement learning is a subset of machine learning in which an agent learns how
to interact with its surroundings in order to maximize a reward signal. Reinforcement
learning could be used in the context of IoT localization to optimize the behavior of an
IoT device in order to improve the accuracy of its location estimates.

Figure 1 depicts a high-level overview of the IoT localization classification.
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Figure 1. A high-level overview of the IoT localization classification.

1.1. Our Methodology

In this paper, we conducted a search of the Scopus database for publications that
included learning, IoT, and were related to localization. Following the completion of the
search and collection of papers, the database results were filtered based on title and abstract,
followed by a full-text examination of the selected papers. Our primary goal was to cover
all related papers that addressed machine learning methods in IoT localization. We covered
studies published between 2020 and 2022. Our Scopus database searches included (“IoT”
or “Internet of Things”) and (“Localization”) and (“Learning”). We used the Scopus query,
“TITLE-ABS-KEY (iot OR ( internet AND of AND things ) AND localization AND learning )”
for the search and the VOSviewer application for visualization [15]. The general keyword
analysis of all related keywords is shown in Figure 2, which depicts the keywords used
by the authors. The related keywords are organized into clusters, each given a different
color. In the visualization, the distance between two clusters approximates the relatedness
of those keywords.
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Figure 2. The keyword diagram on the Scopus database search results. This diagram depicts the
related keywords used by authors in their papers. In Scopus, we used the “TITLE-ABS-KEY (iot OR
(internet AND of AND things) AND localization AND learning)” query, as well as a prepossessing to
ensure that similar keywords formed only one cluster.
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In the present survey paper we did not employ specific methods to assess the risk of
bias in the included studies, as our primary objective was to present a descriptive overview
of the available literature sourced from the Scopus database. In this paper, we used a
narrative synthesis by presenting the summary of the included studies. We also used the
tabular summary to group the studies based on similarities in their methodologies, learning
algorithms, and measurement techniques.

1.2. Existing Surveys

Asaad and Maghdid wrote one of the most recent and comprehensive surveys in the
literature [9]. The authors classified outdoor and indoor localization based on wireless
techniques, sensors, environments, objects, and metrics in their paper. The paper spanned
the years 2019 to 2021.

Moradbeikie et al. investigated GNSS-free outdoor localization for the IoT with
publications published between 2018 and August 2021 in another paper [16]. The authors
addressed cloud-, fog-, and edge-AI-based architectures in the paper, with a focus on
GNSS-free IoT localization methods. They addressed some limited deep learning or deep
neural network (DNN) methods used to improve localization accuracy.

Kordi and colleagues examined wireless emerging IoT indoor localization [17]. They
classified the papers based on their localization techniques and discussed some of the
learning-based methods used to optimize wireless techniques. The review was published at
a conference and covered a small number of publications published between 2016 and 2019.

Rathin Chandra Shit et al. examined prior-year publications on IoT localization and
presented a taxonomy of localization methods [5]. The self-determining methods and
training-dependent methods were included in the taxonomy. Fingerprinting, a stochastic
model process, and a machine learning approach comprised the training models.

Li and colleagues investigated location-enabled IoT and addressed positioning tech-
niques, error sources, and error mitigation [18]. The paper focused on LPWAN technologies
such as LTE-M, Sigma, NB-IoT, LoRaWan, Weightless, UNB, and PRMA.

Atitallah et al. investigated the use of deep learning and big data analytics to aid in the
development of smart cities [19]. They addressed learning-based localization in passing, as
they addressed two publications in the literature published in 2017 and 2018.

Machine learning in WiFi-based indoor positioning was reviewed by Bellavista-Parent,
Torres-Sospedra, and Pérez-Navarro [20]. The authors conducted a literature review and
categorized existing methods based on machine learning techniques such as deep reinforce-
ment learning (DRL), extreme learning machine (ELM), convolutional neural networks
(CNNs), deep neural networks (DNNs), backpropagation neural networks (BPNNs), cap-
sule neural networks (CapsNets), stacked denoising autoencoders (SDAs), variational
autoencoder (VAEs), and deep belief networks (DQNs). The survey also covered other
methods such as support vector machines (SVMs) and Bayesian methods. The authors
covered papers published between 2016 and 2021.

Non-RF techniques for unobtrusive indoor positioning were discussed by Alam,
Faulkner, and Parr [21]. The location-based services were addressed using visible light,
infrared, vibration, pressure, and an electric field. The studies covered the years 2010
to 2020.

Khan et al. presented a review of location-aware IoT schemes [22]. The papers were
classified by the authors based on their applications in an indoor or outdoor environ-
ment, smartphone usage, security, energy efficiency, target recovery, and target prediction
capabilities. The authors covered publications that were published prior to 2021.

Farahsari and colleagues examined indoor positioning systems for IoT-based applica-
tions [23]. The reviewed studies were classified by their scale (local or global), environment
(indoor or outdoor), and initial user (tracking or navigation). Time-based, signal-based,
and direction-based algorithms were among those examined in the survey. The authors
also discussed communication technologies, such as short-range, long-range, and signal-
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type communication. The survey included studies published prior to 2022 that addressed
applications, vendors, and services but did not include any machine learning algorithms.

Mahmood et al. presented a review of machine learning algorithm applications for
future IoT toward the 6G era [24]. The survey focused on the evaluation of communication
networks (3G to 6G) and categorized the studies covered based on the algorithm type,
which included heuristic, supervised, unsupervised, deep learning, reinforcement learning,
deep reinforcement learning, and federated learning. They also addressed future open
research directions in channel modeling, resource and data management, energy efficiency,
security, and privacy based on 6G communication.

Deep learning methods for fingerprint-based indoor positioning were reviewed by
Alhomayani and Mahoor [25]. The authors only looked at deep learning methods in a
specific type of localization and only looked at studies published before 2020.

Table 1 shows a summary of the existing surveys. There is no specific survey focusing
on machine learning techniques and applications in IoT-based localization, as shown in
this table.

Table 1. A summary of existing surveys, organized by type of localization, year range, focus,
and machine learning techniques covered.

Reference Type of Localization Year Range Focus Machine Learning Techniques

Asaad and Maghdid
[9] Outdoor and indoor 2019–2021

Classification based on
wireless techniques, sensors,

environments, objects,
and metrics

-

Moradbeikie et al.
[16]

GNSS-free outdoor
localization for the IoT 2018–August

2021

Cloud, fog, and
edge-AI-based
architectures

Mentions some
deep learning in

a limited number of
related works

Kordi et al.
[17]

Wireless emerging
IoT indoor localization 2016–2019 Classification based

on localization techniques

Very limited number of
learning-based

methods (papers)
are covered

Rathin Chandra Shit et al.
[5] IoT localization Before 2018

Taxonomy of
localization methods

(self-determining,
training-dependent)

Focuses on localization
(not learning); Covers

limited papers on
fingerprinting,

stochastic model process,
machine learning approaches

Li et al.
[18] Location-enabled IoT Before 2020

Positioning techniques,
error sources,

error mitigation

Focus on error source
and error mitigation,

limited learning-based
methods are introduced

Atitallah et al.
[19]

Deep learning and
big data analytics for

smart cities
2017–2018 Learning-based

localization in passing

Addresses only
two learning-based

publications

Bellavista-Parent,
Torres-Sospedra,

and Pérez-Navarro
[20]

WiFi-based indoor
positioning 2016–2021

Focuses only on
WiFi-indoor
localization

Categorization based on
machine learning techniques

(DRL, ELM, CNN, DNN,
BPNN, CapsNet, SDA, VAE,

DQN, SVM, Bayesian methods)

Alam, Faulkner, and Parr
[21]

Non-RF techniques for
unobtrusive indoor

positioning
2010–2020

Location-based services
using visible light, infrared,

vibration, pressure, and
an electric field

-

Khan et al.
[22] Location-aware IoT Before 2021

Classification based on
applications, smartphone usage,

security, energy efficiency,
target recovery,

target prediction capabilities

-

Farahsari et al.
[23]

Indoor positioning
systems for IoT-based

applications
Before 2022

Classification based on
scale, environment,

and initial user,
communication technologies

(short-range,
long-range, signal-type)

-
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Table 1. Cont.

Reference Type of Localization Year Range Focus Machine Learning Techniques

Mahmood et al.
[24]

Machine learning
algorithm applications

for future IoT
Before 2022

Evaluation of future communication
networks (3G to 6G),

algorithm type (heuristic, supervised,
unsupervised, deep learning,

reinforcement learning,
deep reinforcement learning,

federated learning)

Focuses only on communication
networks (3G to 6G)

based on machine learning
algorithms

Alhomayani and Mahoor
[25]

Fingerprint-based
indoor positioning Before 2020 Fingerprint-based

indoor positioning
Only deep learning

methods are covered

Our Survey
Indoor, outdoor,

fingerprint,
LoRaWan,

2020 to the end
of 2022

Localization techniques
with machine learning support

All the machine
learning techniques

in the literature

1.3. Contributions

Currently, there are only a few surveys that address machine learning and artificial in-
telligence algorithms for localization. There are no publications from late 2021 or 2022 in the
related surveys, and there is no specific survey focusing on machine learning applications
in IoT-based localization. This prompted us to conduct this investigation.

We focus on machine learning algorithms in IoT localization in this paper. We begin
by reviewing the relevant literature. These studies are classified based on some extracted
features. We discuss some of the current and future applications of IoT localization,
followed by the use of learning algorithms to improve their accuracy and reliability. We
address some of the issues that arise when using machine learning to localize IoT devices.

In summary, the following are the paper’s contributions:

• By focusing on machine learning algorithms for IoT localization, we fill a gap in
existing surveys. We cover publications released between 2020 and 2022.

• We categorize the current literature based on measurement techniques, specific IoT
protocols, whether they are range-based or range-free, and the machine learning
algorithm that they use.

• We examine the current and potential applications of machine-learning-based IoT
localization.

• We discuss the challenges and future trends of machine-learning-based IoT localization.

The remainder of this paper is organized as follows: Section 2 reviews the literature
and discusses related works. Section 3 presents the applications of learning algorithms in
IoT localization, and the current challenges of learning-based IoT localization are presented
in Section 4. The lesson learned, evaluation setup, and future trends are presented in
Section 5, and finally, Section 6 concludes the paper.

2. Literature Review

We provide a review of the selected publications in this section. We refer to related
works based on their publication date. We begin with those published in 2020, then move
on to those published in 2021 and 2022. Table 2 summarizes the reviewed literature.

Janssen, Berkvens, and Weyn examined the low-power, wide-area networking (Lo-
RaWAN) benchmarking when RSS-based localization algorithms were used. LoRaWAN is
a protocol built on top of the LoRa radio modulation technique that connects devices to
the Internet and network gateways wirelessly. The authors compared the accuracy and
computational performance of RSS fingerprint-based and range-based location estimation
algorithms using a publicly available outdoor LoRaWAN dataset. Their evaluations showed
that a trade-off between accuracy and implementation cost was required. The fingerprint-
based methods were more accurate, but they required model training, whereas the range-
based algorithm could be deployed instantly on any network coverage. They evaluated
linear regression, SVM, KNN, and random forest algorithms for fingerprint localization,
and the Min-Max and E-Min-Max algorithms for range-based localization [26,27].
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Krupanek and Bogacz used artificial neural networks (ANNs) to investigate the local-
ization of IoT nodes. They proposed a two-stage algorithm to improve the localization of
RSS-based accuracy. They used RSSI coefficient samples to run the localization algorithm.
Their algorithm took into account some sensors with known coordinates, referred to as
anchor nodes. To perform the neural network’s learning process, they formed a matrix of
RSSI coefficients. The unknown positions of the nodes were fed into the neural network
inputs. The authors employed Levenberg–Marquardt supervised learning, Bayesian regu-
larization, and backpropagation. They evaluated various ANN structures that were tested
with varying numbers of hidden layers and nodes. The authors demonstrated that the main
advantage of their ANN-based method was that it did not require prior knowledge of the
environment or noise distribution. RSSI measurements are typically highly unstable and
are affected by environmental noise as well as the possibility of moving sensor nodes [28].

An et al. proposed a deep tracking platform for the Internet of things. Their proposed
platform was middleware-free and supported NB-IoT, LoRa, RFID, Sigfox, and Zigbee.
They proposed a deep tracking framework and used convolutional neural networks (CNNs)
to improve tracking accuracy and stability [29].

Bhatti et al. used the RSS to investigate outlier detection for localization in indoor
environments. They used the iForest method for unsupervised learning and SVM, KNN,
and random forest for supervised learning. In fact, the authors used ensemble learning,
which means they combined the methods mentioned above into one for better results. They
assessed the proposed method’s performance on publicly available datasets [30].

Sun et al. investigated device-free indoor ZigBee localization and proposed a deep
learning convolutional neural network (CNN) model [31]. Yang and Wu used deep neural
networks and wireless radio links in the IoT to build a network based on the ZigBee
protocol that could be used for single target localization in another study of device-free
localization [32].

Wang et al. proposed a three-step framework for robust localization in N-Los envi-
ronments. They used a hierarchical clustering method to divide the network into several
subclusters with a small number of nodes, followed by outlier detection and low-rank
matrix completion algorithms to complete the Euclidean distance matrix (EDM), and mul-
tidimensional scaling (MDS) to calculate the relative coordinates. Finally, the relative
coordinates of all subclusters were transformed for network localization [33].

Deep learning techniques for IoT localization were implemented in 5G networks by
Boudani et al. The authors proposed DELTA, a deep-learning-based cooperative architec-
ture built on a 3D multilayered fingerprint radio map based on the RSS. The authors first
estimated a 2D location, and the output was recursively used to predict a mobile station’s
3D location [34].

D’Aloia et al. investigated BLE fingerprinting indoor localization using RSS signals.
They used KNN and ANN to localize a dataset collected by five anchors in a building [35].

WAN and colleagues investigated machine learning applications for IoT-based ve-
hicular localization. Their system architecture was made up of multiple IoT devices with
an arbitrary array configurations and a network of smart-city vehicles. They considered
noncircular signals and used the DOA estimation method to extend the vehicle number
estimation method to mixed signals. They employed unsupervised learning [36].

Ghorpade, Zennaro, and Chaudhari concentrated on range-based elderly localization
in indoor environments using IoT. They proposed a hybrid optimized fuzzy threshold
ELM (HOFTELM) algorithm by combining extreme learning machine (ELM), fuzzy sys-
tem, and modified swarm intelligence. They also employed particle-swarm gray-wolf
optimization to determine the motion of the sensor node [37].

Dou et al. investigated RSS-based multifloor fingerprint localization. They modeled
the problem as a Markov decision process (MDP) and used deep reinforcement learning to
solve it. In particular, the authors employed Q-Learning, which detects the location of a
target by successively bisecting the search space to a small cube. This has the potential to
reduce the search space and computational complexity [38].
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Jia et al. proposed an RSS-based deep neural network for indoor fingerprint localiza-
tion [39]. The authors of [40] proposed an outdoor localization scheme for LoRaWANs
using semisupervised transfer learning. They used the concept of segmentation to gener-
ate a large quantity of virtual labeled data. The labeled–unlabeled data relationship was
fine-tuned on a regular basis. The accuracy improved as the number of virtual labeled data
increased. The main signal features used by the authors were RSSI, SNR, and timestamps.

Kim et al. investigated IoT network localization and proposed a low-rank matrix
completion method based on deep learning. They recovered the desired matrix by utilizing
the properties of a Euclidean distance matrix, such as its low-rank, symmetric, zero diagonal,
and positive nondiagonal entries. To recover the matrix in IoT environments, they expressed
it as a function of sensor coordinates and used a deep neural network [41].

Varma and Anand proposed a random-forest-based learning algorithm that focused
on improving indoor localization accuracy as an IoT service with a focus on smart buildings.
They took into account the area with 13 iBeacons that generated RSSI values [42].

Thakur and Han investigated indoor localization using Bluetooth Low Energy. They
detected a user’s location by utilizing multimodal components of user interactions. They
also examined some learning methods, such as a random forest, artificial neural network,
decision tree, support vector machine, k-NN, gradient boosted trees, deep learning, and lin-
ear regression, in order to address the challenge of determining the best machine learning
approach for indoor Localization [43].

Tiwary and colleagues investigated deep-learning-based fingerprint localization. They
addressed the heterogeneity and temporal variation in RSS values in IoT networks and
proposed r-vectors as a device-invariant signature of a specific location [44].

Jain et al. investigated low-cost and low-energy solutions for IoT localization. They
considered Bluetooth Low Energy (BLE) technology for indoor localization and employed
an RSSI-based fingerprinting technique. They used a random forest as a learning technique
and compared its accuracy to that of KNN, SVM, and decision trees [45].

Spyridis et al. investigated mobile IoT device tracking in 6G using a group of UAVs
outfitted with RSSI sensors. They used a deep learning model based on a graph convolu-
tional network (GCN) architecture to cluster the UAV network at regular intervals. They
presumed that the location of the UAVs was known ahead of time (anchor). The number
of clusters at any given time was determined by a heuristic method (based on their dis-
tance from the source emitting radiofrequency signals), and partitions were determined by
optimizing an RSSI loss function [46].

Zhang and Saad investigated the location of IoT devices in millimeter-wave networks.
They proposed using the multipath channel state information (CSI) received by different
base stations to estimate 3D localization using a convolutional autoencoder model. They
combined unsupervised and supervised learning methods. They began by capturing the
relative location of target devices and creating an autoencoder-based channel chart (unsu-
pervised). The charting model was extended to a semisupervised framework, in which
positioning accuracy improved by using the labeled CSI dataset with associated location
information [47].

Ferreras and Talampas used the RSS to localize Lora-based fingerprinting. To improve
the localization performance, they proposed using the signal strength difference (SSD),
gateway information, and time difference of arrival (TDoA). They employed random forest
(RF) and multilayer perceptron (MLP) machine learning algorithms [48].

Raghav et al. investigated the big-data-related IoT and proposed a localization scheme
with an optimization approach by developing an enriched swarm intelligence algorithm
based on an artificial bee colony that employed the extended Kalman filter (EKF) data
blend technique for improving localization in the IoT for smart cities [49].

Shurrab et al. present an active sensor selection mechanism for target localization,
in conjunction with a data-driven Q-learning approach (reinforcement learning). They
proposed a dynamic approach to active node selection in which the trained RL agent was
deployed in the first phase to select an appropriate grid. In the second phase, a selection
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mechanism was used to select the best nodes for that grid based on their attributes, such as
location, cost, residual energy, and node confidence, with the goal of locating an unknown
source [50].

For the social IoT, Zhou et al. proposed a fuzzy rough set theory and the ridge-
regression extreme learning machine (RRELM) localization approach. Instead of the RSS,
they first built a location fingerprint database that stored the minimum hop counts between
the reference node (RN) and the anchor node (AN). They employed fuzzy rough set theory
to calculate the significant degree of each AN and to eliminate insignificant ANs [51].

Anjum et al. investigated low-power wide-area networks (LPWANs) in the IoT indus-
trial and research communities in relation to RSSI-based fingerprinting localization. They
developed an accurate RSSI-to-distance mapping using deep learning techniques, followed
by an analytically optimal model as the underlying ranging function for trilateration-based
deterministic positioning [52].

Manasreh et al. proposed a method for optimizing the localization of an indoor
Bluetooth Low Energy positioning system with a low beacon density. Their proposed
method used genetic fuzzy systems (GFSs) by combining machine learning concepts. They
employed the proposed methods to localize smartphones by utilizing RSSI values from
13 beacons [53].

Aqeel et al. investigated the effects of LoRaWAN and communication channels on
node localization, as well as RSSI-based node localization in a sandstorm environment.
They used machine learning algorithms, such as support vector regression and gaussian
process regression, to generate a unique signature for each location. They fed RSSI features
into machine learning models as input location fingerprints [54].

Panduman et al. presented Smart Environmental Monitoring and Analytical in Real-
Time (SEMAR), an IoT server platform. The SEMAR platform made use of an API to service
various IoT applications, including localization [55].

Chen et al. investigated the significance of localization in the IoT as well as the impact
of WiFi propagation characteristics that were sensitive to the human body. These charac-
teristics were used to create location fingerprints. To deal with the dynamic environment,
they proposed Fidora, a WiFi-based localization system based on domain adaptation with a
cluster assumption. According to the authors, Fidora localized different users using labeled
data from only a few people and localized the same user in different environments without
labeling any new data [56].

Wu et al. proposed a system architecture for spatial–temporal traceability that made
use of IoT and digital-twin technologies. They used a long-short-term-memory-network-
enabled genetic indoor-tracking algorithm (GITA) for BLE localization, with ultrawideband
technology used for sample labeling during the training stage. To deal with signal multipath
fading and streamline the learning process, they employed a feature selection method based
on the RSSI [57].

The authors investigated voice-activated AI technology and proposed a deep-neural-
network-based real-time sound source localization (SSL) model for low-power IoT devices.
The authors used multichannel acoustic data to parallelize convolutional neural network
layers in the form of multiple streams in order to capture unique delay patterns in the low-,
mid-, and high-frequency ranges and estimate the fine and coarse location of voices [58].

Ngamakeur et al. proposed a deep CNN-LSTM architecture for PIR-based indoor
location estimation using deep learning. The CNN network extracted features from the
PIR analog output, and the LSTM network learned temporal dependencies between the
extracted features in their proposed method [59].

Based on IoT localization, Chen and Weng proposed a time-dependent visiting trip
planning (TVTP) framework to find the fastest moving paths. They employed a crowd-
density prediction model based on deep learning and a time-dependent visiting trip plan-
ning algorithm. To reduce prediction errors, they employed densely connected convolu-
tional networks [60].
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Jia et al. investigated the requirements of real-time IoT applications and proposed a
multiagent reinforcement-learning-based distributed localization scheme (MARL). They
began by recasting the localization as a stochastic game in which the goal was to maximize
the sum of the negative localization errors. Each nonanchor node was then represented
as an intelligent agent, with an action space that corresponded to potential locations.
They employed the Q-learning framework to determine the best policy and maximize the
long-term expected reward [61].

Yan et al. investigated range-free localization and proposed the LSAE algorithm,
which used known network information, such as hop counts and the distances between
anchor nodes, to train the stacked autoencoder (SAE) model [62].

Gang et al. investigated the relationship between underwater communication IoT-
based UWSNs and the united nations’ Sustainable Development Goals (SDGs) [63].

Table 2 contains a summary of related studies. As shown in Table 2, the majority of
related studies concentrate on range-based localization that employs the RSS for indoor
localization. Furthermore, new algorithms, such as the generative adversarial networks
(GAN) [64], are barely addressed in the literature.

As shown in Table 2, the majority of the current literature focuses on indoor localiza-
tion, which employs the RSSI to calculate range.

Factor graphs are a type of machine learning technique that graphically represents
probabilistic models commonly used in machine learning applications such as parameter
estimation, data compression, and feature selection. In the field of IoT localization, factor
graphs have been used to model the relationships between various sources of information,
such as time of arrival (TOA) and angle of arrival (AOA) measurements, in order to
estimate the position of IoT devices. By graphically modeling these relationships, factor
graphs provide a way to efficiently capture the uncertainty and dependencies in the
data, resulting in improved localization performance. In the context of IoT localization,
a number of works have made significant contributions to the field of probabilistic graphical
models. The authors of [65] investigated indoor localization using factor graphs. They
combined ranging and fingerprinting to achieve an appealing level of accuracy. In order
to improve accuracy, their proposed method increased the computational complexity
while decreasing deployment costs. They assessed the effectiveness of their proposed
framework for hybrid UWB and WiFi localization. Another study proposed a unified
factor-graph-based framework for passive localization [66]. The authors took into account
ToA measurements and dealt with uncertainties such as link failure or unknown receiver
location. Xiong et al. [67] presented a statistical iterative model based on factor graphs to
replace the l2 loss with lp under an impulsive noise for ToA-based localization. The authors
of [68] looked at simultaneous localization and mapping (SLAM) for self-driving cars and
proposed a Kalman filter (factor-graph-based solution) to improve the localization accuracy.

Cooperative localization is a powerful technique for IoT localization in wireless net-
works. This technique involves multiple devices working together to estimate their relative
positions. In cooperative localization, devices share information with one another, such as
AOA measurements, to improve the accuracy of their position estimates. This is especially
useful in wireless networks where a single device may have limited information about its
surroundings, and thus may not be able to accurately determine its position. By combin-
ing information from multiple devices, cooperative localization can achieve much more
accurate position estimates compared to individual devices working in isolation. Recent
advances in cooperative localization, such as the use of parametric Bayesian methods, have
shown great potential in providing convergence-guaranteed solutions in massive networks.
The authors can refer to [69–71] for more information on this promising technique for IoT
localization. Machine learning algorithms can provide sophisticated data analysis and
modeling capabilities that can be used to improve a cooperative localization algorithm’s
performance. Machine learning algorithms can be used to identify and mitigate the ef-
fects of various sources of error and interference in IoT networks, such as radiofrequency
interference and multipath fading.
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Table 2. Summary of the related studies reviewed in this paper [2020 to 2022]. “-” means that the
feature is not clearly addressed in the paper, for instance, when it is not mentioned that it has specific
application in indoor or outdoor environments.

No. Ref. Publication
Year

Range-Based
or

Range-Free

Indoor
or

Outdoor

Measurement
Tech.

Machine Learning
Tech.

IoT
Tech. Description

1 [26] 2020 Range-based Outdoor RSS
Linear regression

SVM, KNN,
random forest

LoRaWAN
Benchmark

for
measurements

2 [28] 2020 Range-based Indoor RSS
ANN, Levenberg–Marquardt,

Bayesian regularization,
backpropagation

-

3 [29] 2020 - - - CNN

NB-IoT,
LoRa,

RFID, SigFox,
ZigBee

Middleware-free
platform for IoT

tracking

4 [30] 2020 Range-based Indoor RSS SVM, KNN,
random forest - Outlier

detection

5 [31] 2020 Range-based Indoor RSS Deep learning CNN ZigBee -

6 [32] 2020 Range-based Indoor RSS Deep neural networks ZigBee Single-target
localization

7 [33] 2020 Range-based - - Multidimensional
scaling (MDS) -

Outlier
detection

for
non-line-of-sight

localization

8 [34] 2020 Range-based Indoor RSS Deep learning 5G 3D
Localization

9 [35] 2020 Range-based Indoor RSS ANN, KNN BLE Fingerprint
localization

10 [36] 2021 - Outdoor DoA Unsupervised
NC-MUSIC - Vehicular

network

11 [37] 2021 Range-based Indoor RSS
Extreme learning,

fuzzy, swarm intelligence
-

Hybrid
tracking

algorithm

12 [38] 2021 Range-based Indoor RSS Deep reinforcement
learning (Q-learning) -

Markov
decision
process

13 [39] 2021 Range-based Indoor RSS Deep neural
network - Fingerprint

localization

14 [40] 2021 Range-based Outdoor RSS Semisupervised
transfer learning LoRaWAN

RSS besides
signal-to-noise

ratio and
timestamps

15 [41] 2021 Range-based - - Deep learning -
Low-rank

matrix
formation

16 [42] 2021 Range-based Indoor RSS Random forest - Smart
building

17 [43] 2021 Range-based Indoor RSS

Random forest, ANN,
decision tree, SVM,

KNN, deep learning,
linear regression

BLE -

18 [44] 2021 Range-based Indoor RSS Deep learning - Fingerprint
localization

19 [45] 2021 Range-based Indoor RSS
Random forest,

KNN, SVM,
decision tree

BLE Fingerprint
localization

20 [46] 2021 Range-based Outdoor RSS Deep learning 6G UAVs

21 [47] 2021 Range-based Indoor CSI Autoencoder - Millimeter-
wave

22 [48] 2021 Range-based Outdoor RSS Random forest,
multilayer perceptron LoRa

Using signal
strength

difference
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Table 2. Cont.

No. Ref. Publication
Year

Range-Based
or

Range-Free

Indoor
or

Outdoor

Measurement
Tech.

Machine Learning
Tech.

IoT
Tech. Description

23 [49] 2022 Range-based Indoor CSI Swarm intelligence,
extended Kalman filter - Big data,

Smart Cities

24 [50] 2022 - Outdoor - Reinforcement learning
(Q-learning) - Grid Network

25 [51] 2022 Range-free - Hopping Ridge-regression
extreme learning - -

26 [52] 2022 Range-based Outdoor RSS Deep learning LPWAN Fingerprint
localization

27 [53] 2022 Range-based Indoor RSS Genetic fuzzy
systems BLE -

28 [54] 2022 Range-based Outdoor RSS

Support vector
regression,

gaussian process
regression

LoRaWAN Fingerprint
localization

29 [56] 2022 Range-based Indoor RSS/CSI Clustering using Fidora - Transfer learning
method

30 [57] 2022 Range-based Indoor RSS LSTM BLE, UWB Tracking

31 [58] 2022 - Indoor Sound Deep neural
network, CNN - -

32 [59] 2022 - Indoor PIR CNN-LSTM - Using analog
signals

33 [60] 2022 Range-based Outdoor -

Crowd density,
deep learning,

time-independent
visiting trip,

CNN

- -

34 [61] 2022 Range-based Indoor RSS Multiagent
reinforcement learning - Distributed

localization

35 [62] 2022 Range-free - Hopping Autoencoders - -

Figure 3 further categorizes the literature based on the learning algorithms used.
As shown in the graph, deep learning and traditional methods such as regression, SVM,
and KNN have attracted more researchers, whereas other learning algorithms such as
generative networks are not adequately addressed in the literature.

IOT Localization
based on

Learning Algorithms

Convolutional Neural Networks (CNN)
An, 2020

Ngamakeur, 2022

Generative Networks (Autoencoder and GAN)
IndoorCSIZhang, 2021

Range-Free
hopping

Yan, 2022

Other Algorithms

Transfer Learning
OutdoorRSSChen, 2021

RSS/CSIChen, 2022

ANN, Bayesian
Outdoor

IndoorRSSKrupanek, 2020

Swarm Intelligence, Kalman FilterIndoorCSIRaghav, 2022

Extreme Learning, Fuzzy algorithms

IndoorRSS
Ghorpade, 2021

Anjum, 2022
Range-Free
Hopping

Zhou, 2022

Multidimensional
Scaling (MDS)

Wang, 2020

Conventional Algorithms (Regression, SVM, KNN, Random Forest)

Outdoor RSS

Janseen, 2020

Ferraras, 2021

Aqeel, 2022

Indoor RSS

Bhatti, 2020

D'Aloia, 2020

Varma, 2021

Jain, 2021

Deep Learning (DL)

Indoor

RSS

Sun, 2020

Yang, 2020

Boudani, 2020

Jia, 2021

Kim, 2021

Thakur, 2021

Tiwary, 2021

Sound Ko, 2022

Outdoor

RSS
Spyridis, 2021

Anjum, 2022

Chen, 2022

Reinforcement Learning (RL)
Indoor RSS

Dou, 2021

Jia, 2022

Outdoor Shurrab, 2022

Long short-term memory (LSTM) Indoor RSS Wu, 2022

Figure 3. Classification of the reviewed literature, with emphasis on the learning algorithms used
[28,29,31–34,37–41,43,44,46,47,49–52,56–62].

3. Applications of Learning in IoT Localization

This section discusses the use of machine learning (ML) algorithms in IoT localization.
There are some well-known IoT localization applications. Asset tracking is one of the most
common applications of IoT localization. For example, a company may use IoT devices
to track the movement and location of its vehicle fleet or commodity inventory [72]. This
can help the company improve the effectiveness of its field service operations as well as
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streamline its supply chain and logistics procedures. Another industry that benefits from
IoT localization is public safety [73]. Emergency responders, for example, can use IoT
devices to track and locate first responders in real time to better coordinate their efforts and
ensure everyone’s safety [74]. The localization of IoT devices is also applicable in smart city
and smart home settings [75]. A smart home system, for example, could use IoT localization
to monitor occupants’ movements throughout the house and make necessary adjustments
to lighting, temperature, and other settings. The movement of residents and visitors can
also be tracked using IoT localization, allowing a smart city to maximize resource utilization
and improve the overall quality of life for its residents.

Learning algorithms can be used in several ways to improve the accuracy and reliabil-
ity of IoT localization systems. Some of these applications are summarized as follows:

• Calibration: Learning algorithms can be used to calibrate sensors and other IoT device
components, ensuring that they function correctly and provide accurate data. This
can help to improve the overall accuracy of the location estimates [76].

• Noise reduction: Machine learning algorithms can be used to remove noise and other
sources of error from data from IoT devices. This can aid in improving the accuracy of
location estimates by reducing the impact of errors and other factors that can distort
the data. Machine learning algorithms can be used to identify the most relevant
features in data collected from IoT devices, thereby improving location estimation
accuracy by focusing on the most important factors [18].

• Model selection: machine learning algorithms can be used to identify the best model
or combination of models for a given application, improving location estimation
accuracy by selecting the best model that fits the data.

• Improving accuracy: large quantities of data can be analyzed by machine learning
algorithms to provide more accurate estimates of device location.

• Automating the localization process: machine learning has the potential to automate
the process of determining device location, removing the need for manual input.

• Adapting to changes in the environment: to provide more accurate location esti-
mates, machine learning algorithms can adapt to changes in the environment, such as
new obstacles or changes in signal strength.

4. Challenges of Learning-Based IoT Localization

Several challenges must be overcome before learning algorithms for IoT localization
can be used effectively. One challenge is the need for a large quantity of high-quality data
to train the algorithms. Another issue is the computational complexity of deep learning
algorithms, which can necessitate a significant investment in training and implementation.
Finally, there are concerns about the interpretability of deep learning models because it may
be difficult to understand how they arrived at their predictions. An IoT device, for example,
could be trained to move in a specific way to improve the quality of the data it collects (for
instance, by following a given path or turning in a specific direction). Data collection that
yields precise location estimates may result in rewards for the device, whereas inaccurate
estimates may result in penalties. The device would gradually learn how to change its
behavior in order to maximize its rewards. One potential issue with using reinforcement
learning for IoT localization is the need for a well-defined incentive signal that accurately
reflects the location prediction accuracy. Furthermore, it may be necessary to carefully
balance the demands of gathering high-quality data and protecting device resources (such
as battery life).

• Data quality: The quality of data collected from IoT devices heavily influences the
accuracy and dependability of location estimates. If the data are noisy, incomplete,
or corrupted, the learning algorithms may struggle to locate the devices accurately.

• Computational complexity: Deep learning algorithms, for example, can require sig-
nificant computational resources to train and deploy. Because IoT devices may have
limited processing power and storage capacity, this can be difficult.
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• Limited data: In some cases, the data collected by IoT devices may be limited in
quantity or quality, making it difficult to train accurate learning models. This is
especially challenging in applications where devices are deployed in unusual or rare
environments, or where data are highly variable.

• Concerns about privacy: The use of learning algorithms in IoT applications can raise
concerns about the privacy of device data. The need for accurate location estimates
must be carefully balanced in some cases with the need to protect users’ privacy.

• Security risks: Because learning algorithms are vulnerable to hacking and other
forms of tampering, their use in IoT applications can pose security risks. Appropriate
security measures must be implemented to protect the data and the integrity of the
learning algorithms.

• Model selection: Choosing the best machine learning algorithm for a particular
localization task can be difficult. Different algorithms have different strengths and
weaknesses, making it difficult to select the best one for the job.

• Model interpretability: Deep learning neural networks, for example, are notoriously
difficult to interpret. This can make it difficult to understand why a particular predic-
tion was made and to improve the model.

There are numerous challenges, but there are also numerous solutions. To improve the
quality of the training data, techniques such as data cleaning and normalization can be used.
These methods are commonly known as preprocessing techniques. For example, model
compression can be used to reduce the computational resources needed to run machine
learning algorithms. Different machine learning algorithms can be compared and evaluated
using metrics such as accuracy and the computational resources required to choose the
best machine learning algorithm for a specific task. To improve interpretability, techniques
such as feature importance analysis and model visualization can be used. Transfer learning
techniques can also be used to leverage pretrained models on large datasets, allowing
knowledge to be transferred to smaller datasets. Federated learning can also be used to
train models while maintaining data privacy because the data are kept on the IoT devices
and only model parameters are exchanged. Furthermore, data augmentation techniques
such as random cropping, rotation, or translation can be used to generate synthetic data to
address the limited quantity of data. Unsupervised learning techniques such as clustering
can be used in some cases to identify patterns in data where labels are not available. Edge
computing can also be used to reduce the quantity of data that must be transmitted to
the cloud, saving network bandwidth and reducing the computational burden on the
cloud. Encryption and secure communication protocols can be used to protect device data
and learning algorithms, addressing privacy and security concerns. Machine learning
techniques that preserve privacy, such as differential privacy, can be used to provide a
mathematically rigorous way of ensuring the privacy of device data. To summarize, we
can overcome these challenges and develop accurate and reliable machine learning models
for IoT localization by carefully considering the limitations of machine learning and IoT
devices and leveraging preprocessing techniques, transfer learning, federated learning,
data augmentation, unsupervised learning, and privacy-preserving techniques.

We also recognize that the evidence has limitations that must be taken into account
when interpreting the findings. In light of the fact that our review lacked a formal method
for assessing bias, the risk of bias across the included studies is a concern.

5. Lesson Learned and Future Trends
5.1. Lesson Learned

Reviewing the current literature reveals that, while there are numerous studies on
Learning-based IoT localization, there are still many unresolved issues. For example,
the majority of current research focuses on range-based localization, which employs basic
learning algorithms such as KNN, SVM, decision tree, and random forest. A few are
concerned with autoencoders and reinforcement learning. The authors developed a model
for fingerprint localization in both indoor and outdoor environments. Range-based models,
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particularly those built on the RSS, are sensitive to environmental changes. One solution
is to employ transfer learning techniques such as few-shot learning. Another important
aspect that was also addressed in the challenges of learning-based IoT localization is the
lack of data or data of poor quality. One method addressed in the literature by “outlier
detection” focused on locating the sources of erroneous data that increased localization
errors. Learning algorithms could be used as promising solutions to this problem. It should
also be noted that some practical constraints, such as battery life, are frequently overlooked
when addressing IoT localization.

Given these limitations, readers are advised to exercise caution when interpreting
the findings and consider future research that addresses these shortcomings, such as
employing a formal risk of bias assessment or conducting more rigorous, standardized
studies to improve the quality of evidence. We state that this survey paper is not registered
with any registry.

5.2. Future Trends

Making better decisions and streamlining processes is made possible by the use of
learning algorithms in IoT localization, which can improve the accuracy and dependability
of location estimations. It is expected that the use of learning and machine learning in IoT
localization will expand and change in the coming years. The following are some potential
future trends:

• Machine learning algorithms are likely to become more integrated into the hardware
and software components of IoT devices, allowing them to process and analyze data
in real time and adapt to changing conditions.

• Real-time location tracking: machine learning algorithms will continue to improve the
speed and accuracy of real-time location tracking, allowing devices to be tracked in
real time with low latency.

• Context-aware localization: to provide more accurate location estimates, machine
learning algorithms will consider contextual information such as the device’s sur-
roundings and environment.

• More sophisticated learning algorithms: as machine learning techniques advance,
more sophisticated algorithms capable of handling larger and more complex datasets
will most likely be developed, resulting in more accurate location estimates.

• Increased use of machine learning in edge computing: Edge computing, which in-
volves processing data at the network’s edge rather than in the cloud, is becoming
more important in IoT applications. In the coming years, machine learning algorithms
that can run efficiently on edge devices will be in high demand.

• Machine learning applications are expanding into new areas. Machine learning tech-
niques are likely to be applied to a broader range of IoT applications as they advance,
including transportation, healthcare, and environmental monitoring.

6. Conclusions

This paper provided a thorough overview of the application of machine learning
algorithms in IoT localization systems. We reviewed the existing literature released between
2020 and 2022 to understand how learning algorithms were used to solve IoT localization
problems, as well as the current challenges associated with these systems. According to
the findings of this review, machine learning algorithms are increasingly being used to
improve the accuracy and reliability of IoT localization systems, with applications ranging
from real-time location tracking to context-aware localization. However, there are some
drawbacks to using machine learning algorithms in IoT localization, such as data quality
and quantity, computational resources, and model selection. Various techniques, such
as data preprocessing, model compression, and model interpretability, can be used to
overcome these challenges. According to the paper, machine learning algorithms have
the potential to revolutionize the field of IoT localization, and the future of this field
appears bright.



Sensors 2023, 23, 3551 17 of 20

Author Contributions: Conceptualization, R.S., G.M. and F.G.; methodology, R.S., E.S., G.M. and F.G.;
validation, R.S. and G.M.; original draft preparation, R.S., G.M. and E.S.; review and editing, R.S. and
F.G.; supervision, F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly supported by the grant under the project “Soluzioni efficienti di
Logistica Industriale per la Distribuzione Organizzata (SOLIDO)” - CUP C22C21000990008.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNN Deep neural network
DL Deep learning
IoT Internet of things
LSTM Long-short term memory
SVM Support vector machines
BLE Bluetooth Low Energy
MLP Multilayer perceptron
KNN k-Nearest neighbors
ANN Artificial neural networks
UWB Ultrawideband
RFID Radiofrequency identification
CNN Convolutional neural network
MDS Multidimensional scaling
EDM Euclidean distance matrix
ELM Extreme learning machine
MDP Markov decision process
AE Autoencoder
SSD Signal strength difference
TDoA Time difference of arrival
EKF Extended Kalman filter
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