ﬁ Sensors

Article

Fault Detection on the Edge and Adaptive Communication for
State of Alert in Industrial Internet of Things

Yuri Santo !, Roger Immich 2(D, Bruno L. Dalmazo 3 and André Riker *

check for
updates

Citation: Santo, Y.; Immich, R.;
Dalmazo, B.L.; Riker, A. Fault
Detection on the Edge and Adaptive
Communication for State of Alert in
Industrial Internet of Things. Sensors
2023, 23, 3544. https://doi.org/
10.3390/523073544

Academic Editors: Nancy Alonistioti,
Spyros Panagiotakis and Evangelos
K. Markakis

Received: 31 December 2022
Revised: 25 January 2023
Accepted: 28 January 2023
Published: 28 March 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Exact and Natural Sciences (ICEN), Federal University of Para, Belém 66075-110, Brazil
Metropole Digital Institute (IMD), Federal University of Rio Grande do Norte (UFRN), Natal 59078-970, Brazil
Computer Science Center (C3), Federal University of Rio Grande, Rio Grande 96203-900, Brazil

* Correspondence: ariker@ufpa.br

W N =

Abstract: Industrial production and manufacturing systems require automation, reliability, as well
as low-latency intelligent control. Industrial Internet of Things (IIoT) is an emerging paradigm
that enables precise, low latency, intelligent computing, supported by cutting-edge technology such
as edge computing and machine learning. IIoT provides some of the essential building blocks to
drive manufacturing systems to the next level of productivity, efficiency, and safety. Hardware
failures and faults in IIoT are critical challenges to be faced. These anomalies can cause accidents and
financial loss, affect productivity, and mobilize staff by producing false alarms. In this context, this
article proposes a framework called Detection and Alert State for Industrial Internet of Things Faults
(DASIF). The DASIF framework applies edge computing to execute highly precise and low latency
machine learning models to detect industrial IoT faults and autonomously enforce an adaptive
communication policy, triggering a state of alert in case of fault detection. The state of alert is a
pre-stage countermeasure where the network increases communication reliability by using data
replication combined with multiple-path communication. When the system is under alert, it can
process a fine-grained inspection of the data for efficient decison-making. DASIF performance was
obtained considering a simulation of the IloT network and a real petrochemical dataset.

Keywords: Industrial Internet of Things (IloT); machine learning; edge computing

1. Introduction

Machine learning (ML) has been largely agreed upon as a key building block for
the Industrial Internet of Things (IIoT). ML can support intelligent and quick decisions
needed in IIoT environments [1]. Without fast and precise detection and decision-making,
manufacturing is susceptible to all sorts of delays, which can cause financial loss and may
represent a security threat.

In IIoT systems, the benefits of ML are potentiated by the capabilities of edge comput-
ing. By definition, edge computing has emerged as a paradigm to increase the computa-
tional power of IoT systems, providing extra storage and processing [2]. Edge computing
devices are deployed near IoT devices to reduce the time necessary to complete computa-
tionally demanding tasks.

Hardware failures and faults in IloT are critical challenges to be faced. A vast set
of faults can occur in IIoT devices, including drift, spike, stuck, offset, bias, gain, out-of-
bounds, saturation, and precision degradation [3]. All these anomalies can cause accidents,
halt production, and mobilize staff by producing false alarms.

To mitigate the problems caused by IIoT faults, the next generation of IloT systems
requires: (i) precise and early fault detection; and (ii) autonomic response and reaction. The
first requirement demands constant monitoring of the produced data, and the second, not
least important, consists of autonomously reacting when the fault has been detected. In
this context, modern industrial business models consider that solving a fault in its early
stages prevents collateral damage and results in fewer costs.

Sensors 2023, 23, 3544. https:/ /doi.org/10.3390/s23073544

https:/ /www.mdpi.com/journal /sensors

https://doi.org/10.3390/s23073544
https://doi.org/10.3390/s23073544
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2483-6382
https://orcid.org/0000-0002-6996-7602
https://doi.org/10.3390/s23073544
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073544?type=check_update&version=1

Sensors 2023, 23, 3544

20f13

Many works in the literature propose solutions to meet the requirements of IloT.
Most of them are based on ML classifiers to support precise fault detection. Only some
works seek to minimize the response time during the detection. Additionally, a reduced
number of works provides any autonomic reaction for detected faults. To fill this gap,
this article proposes a framework called Detection and Alert State for Industrial Internet-
of-Things Faults (DASIF). The DASIF framework applies highly precise and low latency
machine learning models to detect IIoT faults and also autonomously enforce a state of
alert in case of detecting the fault. The faults are double classified on the edge computing
devices using a decision tree and Gaussian naive Bayes. The state of alert enforced by
DASIF is the first-stage countermeasure for fine-grained data analysis. Under this state, the
network decreases the communication interval and uses data replication and multiple-path
communication to achieve higher communication reliability. In our previous work [4],
we conducted a study to select the best ML models for the DASIF framework. In [4], we
evaluated six machine learning classifiers measuring accuracy, precision, recall, F1 score,
training time, and response time.

The contributions of this article are the following:

* topropose an ML-based framework running on edge computing for detecting Internet
of Things (IoT) faults in industrial environments;

* to present a Markov chain-based algorithm to inject a set of faults into IIoT datasets;

* to enforce an adaptive communication policy, instituting a state of alert as an auto-
nomic reaction when a fault has been detected.

The rest of this paper is organized as follows. Section 2 presents the related work.
Section 3 presents the proposed framework, and Section 4 introduces the evaluation sce-
nario, settings, and the obtained results. In the end, Section 5 presents the conclusions and
potential directions for future research.

2. Related Work

A vast literature applies machine learning models to support smart decisions in
industrial IoT environments. Most of these works propose solutions for anomaly detection
related to security aspects. A reduced number of works aims to detect anomalies in the
sensed data produced by IoT devices and caused by internal hardware and software
malfunctions or external factors, such as vibration.

To detect faults and errors in IoT devices using machine learning classifiers, Jan et al. [5,6]
propose a diagnosis system to detect sensor fault. The authors consider devices with limited
computation resources, such as memory, processing, and energy. This solution is distributed
and based on a Support Vector Machine (SVM) model, where response time is not the top
priority for the application.

Saeed et al. [7] analyze different classifiers using a dataset with drift fault injection.
The faults were injected using real data from a digital relative temperature /humidity sensor
(DHT22) and an Arduino controller. For detection, a Raspberry Pi is used. The performance
was measured using a large set of machine learning models: SVM, ANN, naive Bayes,
KNN, and decision tree. The authors compare the performance of the machine learning
models in terms of precision, recall, F1 score, and total accuracy.

Javaid et al. [3] aim to detect and diagnose faults based on decision fusion with differ-
ent classification techniques named: Enhanced K-Nearest Neighbor (EKNN), Enhanced
Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and En-
hanced Recurrent Extreme Learning Machine (ERELM). The authors consider the offset,
gain, stuck, and out-of-bounds faults.

Zidi et al. [8] apply machine learning for fault detection in wireless sensor networks. The
solution considers an SVM model for dealing with offset, gain, stuck-at, and out-of-bounds
faults in a real dataset from the University of North Carolina at Greensboro [9].

In a nuclear power plant scenario, Naimi et al. [10] propose fault detection and
diagnosis based on neural networks and a KNN algorithm applied to a pressurized water
reactor. First, the neural network performs detection. Second, the KNN algorithm classifies

Sensors 2023, 23, 3544

30f13

the faults. The KNN performance is also compared to neural networks and SVM. This
work includes bias, drift, actuator offset, and saturation faults.

Khodabaksh et al. [11] consider a method for real-time data validation, gross error
detection, and classification. This work is based on data from petrochemical power plants
of an oil refinery. The injection of bias, drift, and precision degradation failures was based
on statistical studies of sensor data and the observation of changes in mean and variances.
The classification relies on the complex decision tree, neural network, and KNN algorithms.
The performance was measured using precision and recall. The authors made available the
dataset for academic use [12].

So far, all the mentioned works do not consider any countermeasure to be applied
after the faults have been detected. Dofe et al. [13] present a comprehensive perspective on
countermeasures against IoT attacks. Mustafa et al. [14] propose three countermeasures to
preserve privacy when abnormal behavior is detected in assisted living applications.

Summing up, many works explore fault detection through the SVM classifier as can
be observed in Jan et al. [5,6] and Zidi et al. [8]. However, an industrial scenario requires a
sensitive time application to deal with faults, but the SVM demands higher computation
time. Naimi et al. [10] also do not consider the necessary time to apply a two-phase solution.
Additionally, how to react after the fault has been detected is an important aspect, but
countermeasures are often considered only from the security perspective. Therefore, there is
a lack of novel solutions capable of detecting and reacting against possible faulty situations
in IIoT environments.

3. Detection and Alert State for Industrial Internet of Things Faults (DASIF)

The main goal of the proposed framework is to provide fast and precise fault detection
and reaction in industrial internet of things devices. The rest of this section is organized as
follows. Section 3.1 details the industrial scenario and the overview of the proposed solution.
Section 3.2 introduces the machine learning classifiers used in DASIF. Section 3.3 presents
the details of the industrial dataset and how the faults have been injected. Section 3.4
describes the adaptive communication policy that sets a state of alert when a fault has
been detected.

3.1. Overview and Proposed Framework

Figure 1 illustrates an industrial environment with silos, conveyor belts, boilers, pipes,
turbines, energy production, storage boxes, vehicles, robots, and oil barrels. All these
objects and machinery are monitored and actuated by a set of IoT devices, which send and
receive traffic via a wireless network to the system control.

Typically, the IoT network traffic feeds the system control with the pressure in the
pipes, the turbines, rotation, the vehicles, position, the temperature of the boilers, the speed
of the conveyor belt, and many other data.

The system control offloads the IoT data to edge computing since it provides cloud
services near the network devices, supporting high computational power and low delay.
The processing power in the edge is capable of analyzing a massive amount of IoT traffic and
providing multiple data services, including intrusion and fault detection. Edge computing
can successfully apply algorithms to support dynamic resource allocation, e.g., processing
and memory, to meet energy or response time requirements.

In this context, the proposed framework, called Detection and Alert State for Industrial
Internet of Things Faults (DASIF), is a solution designed to detect IoT faults in industrial
environments. As shown in Figure 2, the DASIF framework has a system control in which
IoT traffic is inspected and forwarded to the edge. Additionally, the system control provides
data visualization and issues commands for the automation of the factory.

Sensors 2023, 23, 3544

40f13

.-

Steam ,*
>~ Turbine *

[N
\E?;%'icity @

Production

Computing

‘ loT N-et-w-or-k-C?Jr;ection

o Replicated Traffic :
® Non-Replication Traffic :

Two Tj f
Macmge Eeracr)ning
Sl

Edge

Computing

Tree
ue|ssnen

c
S,
iy
o]
o}
[a)

saAeg anleN

©)

Boiler
T

5)

Lan. 5 L.
Industrial Environment

Steam
Turbine |

-

(

T @D
Ele;icity%

Production

Network
Communication
Polic

Figure 2. Detection and Alert State for Industrial Internet of Things Faults (DASIF) framework.

The IoT devices deployed in an extensive number support monitoring, automation,
and communication. However, these devices are prone to errors and faults, which distort
the measured values. For instance, IoT devices can abruptly stop monitoring the target,
sending invalid pressure values in a pipe or a valve. These errors and faults can cause
severe damage to manufacturing, including accidents, financial loss, and false alarms.

In this framework, edge computing provides fast processing of machine learning
classifiers. Based on the study performed in our previous work [4], DASIF relies on a
two-tier machine learning for precise and fast IoT fault detection. The fault classification is
double-checked using a decision tree and Gaussian naive Bayes.

Another component of this framework is the repository of communication policy. In
this repository, the network communication settings are defined for a set of situations
the industrial system must deal with. In this work, DASIF foresees normal and alert
policies. A detected IoT fault triggers the alert policy. Under an alert policy, the IoT

Sensors 2023, 23, 3544

50f13

network communicates using data replication and with more intense traffic production.
This reaction enables the system to perform fine-grained checks on the error and provide
information for critical decision-making, including triggering an unmanned aerial vehicle
(UAV) to visit the location where the alert is being issued to verify in loco the hardware
conditions and make adjustments to the IoT devices.

To achieve IoT fault detection, DASIF executes five tasks as indicated by the labels in
Figure 2 and are described as follows.

* Label A: The system controller receives and inspects the traffic produced by the
deployed IoT network.

e Label B: The relevant data for fault detection are sent to the edge.

e Label C: The machine learning output containing the fault classification is sent back
to the control system.

* Label D: The system control selects an appropriate communication policy according
to the classification received from the machine learning models.

¢ Label E: The control system enforces the communication policy, issuing messages to
the nodes.

3.2. Machine Learning Classifiers for Fault Detection

DASIF has a machine learning layer that detects the faults of IoT devices. This layer
applies a double classification using a decision tree and Gaussian naive Bayes (GNB).
Decision trees are a top-down, divide-and-conquer approach to supervised classification.
At the beginning of the training phase, all training samples are assigned to the root node.
These training samples are partitioned and assigned to child nodes to increase the purity
of the resulting child nodes. The procedure is repeated at each node until the leaf nodes
have training examples of a single class, i.e., the leaf nodes are pure [15]. A naive Bayesian
classifier is a simple and efficient classifier based on the Bayesian theory. However, it is
well known that NBC is based on the assumption that all attributes are independent of each
other [16]. A Gaussian naive Bayes classification is a case of the naive Bayes method with
an assumption of having a Gaussian distribution of attribute values given the class label.

The single classifier has a limited ability to deal with the problem of a larger amount
of data. Multiple classifier systems can improve the performance of a single classifier,
especially in critical systems such as industrial internet of things. In DASIF, the combination
of these two machine learning models assures that decision-making is based on two distinct
classifiers, increasing diversity in assumptions and training processes. The DASIF final
decision is Fault or Normal. DASIF output is a fault if any of the classifiers produces
a fault classification.

3.3. Dataset Description and Fault Injection

This article uses the IloT dataset from Khodabakhsh et al. [11], which provides real-
world measurements from over 1000 devices deployed at Turkish Petroleum
Refineries Inc. (TUPRAS) power plants. The TUPRAS dataset is a sample of real-world
data measured every minute and is available for academic use at [12].

This petrochemical dataset contains 200,000 flow sensor records (water, superheater,
steam) sampled every 60 s in the TUPRAS power plant for approximately 5 months. These
data are replicated 5 times to form 1 million rows to represent actual sensor loads better.
Each row has records from 3 flow sensors in the power plant dataset and 17 flow sensors in
the petrochemical dataset.

According to [5], faults are defined as deviations from expected behavior in the device
output. The faults are data corruption behavior, which is related to the physical defects of
the devices and their operational conditions.

In this paper, three faults have been considered, namely spike, stuck, and bias. As
shown in Figure 3a, a spike fault is an effect observed as a large-amplitude value occurring
at time intervals in the sensor output. Figure 3b illustrates the bias fault. In this fault, a shift
from the normal value is observed since a constant value is added to the normal output. A

Sensors 2023, 23, 3544 60f 13

stuck fault (see Figure 3c), also called a complete fault, blocks the sensor output at a fixed
value. This fault can be temporary or permanent.

: No Fault— | }
i it Spike - it

(a) Spike fault.

No Fault—
|Bias

(b) Bias fault.

[No Fault— |
Stuck

(c) Stuck fault.
Figure 3. Illustration of faults.

The original TUPRAS dataset does not identify, i.e., label, any faults or errors. However,
machine learning models that use supervised methods require labeled data to identify
errors. Based on a statistical dataset analysis, we have developed Algorithm 1 to inject
faults into the dataset and the appropriate labels for training and testing.

This algorithm is responsible for injecting stuck, bias, and spike faults. In order to
achieve this goal, the ratio between the maximum value (l. 5) and the mean (l. 4) of the
dataset is used. This ratio (l. 6) represents the percentage of max increase to the mean.
Aiming to replicate the fault behavior, the functions presented in the algorithm deal with
different calculations based on the same ratio, replacing some dataset values with fault
values according to the Markov chain. The stuck function performs a decrease in the
sensed value (l. 14) and becomes constant in the subsequent minutes. While the fault
lasts, the bias function executes an increase in the sensed value (1. 29). The spike function
performs increment (1. 44) and decrement (1. 47). These functions return a modified dataset
with faults.

As can be observed, Algorithm 1 relies on Markov chain to determine the distribution
of faults along the dataset time series. A two-state Markov chain has been used for this
algorithm, as illustrated in Figure 4. The N and F denote the normal and fault behavior
states, respectively. The states can be maintained, or the transitions between states can
occur according to a defined probability.

I:)NF

1-P 1-P

N,F F.N

I:)F,N

Figure 4. A two-state Markov chain to inject faults.

Sensors 2023, 23, 3544

7 of 13

Algorithm 1 Fault Injection Algorithm

1: Input: original dataset.
2: Output: dataset with fault injection.

3. Start
4 mean < dataset mean
5: max <— dataset maximum value
6: ratio <~ max / mean
7:
8: function STUCK(dataset, ratio)
9: stuckRate < ratio
10: stuckTemp «+ 0
11: for i=1:dataset size do
12: if index i is in Markov chain then
13: if stuckTemp == 0 then
14: stuckTemp < ith value * (2-stuckRate)
15: ith value of dataset < stuckTemp
16: else
17: ith value of dataset +— stuckTemp
18: end if
19: end if
20: end for
21: return dataset
22: end function
23:
24: function BIAS(dataset, ratio)
25: biasRate < ratio
26: biasTemp «+ 0
27: for i = 1:dataset size do
28: if index i is in Markov chain then
29: biasTemp < ith value * biasRate
30: ith value of dataset +— biasTemp
31: end if
32: end for
33: return dataset
34: end function
35:
36: function SPIKE(dataset, ratio)
37: spikeRate < ratio
38: spikeTemp «+ 0
39: random < 0
40: for i = 1:dataset size do
41: if index i is in Markov chain then
42: random < random integer number between 0 and 1
43: if random == 0 then
44: spikeTemp < ith value * spikeRate
45: ith value of dataset < spikeTemp
46: else
47 spikeTemp < ith value * (2-spikeRate)
48: ith value of dataset < spikeTemp
49: end if
50: end if
51 end for
52 return dataset
53: end function
54: End

3.4. Network Reaction Policy for Detected Faults

DASIF is designed to be autonomic since an IoT network deployed in an industrial

environment requires the management of hundreds or thousands of devices. Being auto-
nomic means to be self-sufficient or self-healing, and self-protective. The main idea is to
provide fast resource management of the system with low or no human intervention.

Sensors 2023, 23, 3544

8of 13

To achieve that, DASIF has two network communication policies, called normal and
alert policies. The normal is applied when no fault has been detected. The alert policy is
enforced after any fault has been detected, triggering a state of alert in the system, which
is an early countermeasure stage. The communication policy sets the configuration for
the communication interval (e.g., 60 s), data replication, data aggregation, multiple path
communication, and channel check rate. These communication settings allow the system
to perform fine-grained data analysis.

In this work, the DASIF alert policy applies a communication interval of 30 s, data
replication, no data aggregation, multiple path communication, and 32 hz as the channel
check rate. The multiple path communication is executed using two instances of the IPv6
Routing Protocol for Low Power and Lossy Networks (RPL) protocol. Data are double-
communicated via these two instances in order to successfully deliver the notifications
even if some node in the path is compromised.

To find two different routes, DASIF forces the RPL instances to select different routes.
The main idea for the route selection in the additional instance is: if the main path has the
same nodes selected by the secondary path, then DASIF chooses the next best nodes for the
secondary path among those devices previously passed in the RPL conditions. The only
exception that allows the node parent in both paths is when the node is the sink node (i.e.,
the path length is 1).

As faults are rare, the normal policy is executed most of the time. This policy sets a
communication able to detect the faults and preserve the resources of the devices, i.e., energy.

4. Performance Evaluation

DASIF has been evaluated in a simulation environment, considering the related
characteristics of an industrial IoT environment. The details of how this evaluation has
been conducted are shown in the following sections. Section 4.1 presents the evaluation
environment and settings. Section 4.2 describes the metrics used to assess the proposed
solution. Section 4.3 presents and discusses the obtained results.

4.1. Evaluation Settings

Regarding the dataset, Table 1 shows the settings used to run the tests. The original
dataset has 44,643 values for 6 data types: water flow, water temperature, water pressure,
steam flow, steam temperature, and steam pressure. The dataset was divided into 70% for
training, 20% for tests, and 10% for validation, and it was injected with 446 (1%) faults.

Table 1. Parameters and settings.

Parameter Value
Original Dataset 44,643 data values; TUPRAS dataset [11]
Data Type Water flow, water temperature, water pressure

Steam flow, steam temperature, steam pressure

Type of Fault Spike, bias, stuck

Injected Faults 446 (1%)

Implementation Python, scikit-learn library

Edge Computing Hardware: i7-8700 3.2 GHz, 12 GB RAM

ToT Network 50 nodes

Sensors 2023, 23, 3544 90f 13

As shown in Matrix (1), the Markov chain states can be maintained, i.e., NN and FF, or
a transition can occur, i.e., NF and FN, according to a probability. Matrices (2)—(4) present
the Markov chain probabilities used in this evaluation for spike, stuck, and bias faults.

Probabilities = I;I;]]I\\]’ I;I:lf] 1
stuck = |00 200 @

spike = S 00 | ©
Bins — [0.3?366 0'8.0734} @

The machine learning models were implemented in Python using the scikit-learn
library [17] running on the Linux operating system. The hardware used for the tests seeks
to reflect edge computing hardware. The following hardware was used for these tests:
i7-8700 3.2 GHz, 12 GB RAM.

The IoT network has been implemented in Contiki OS and tested in the Cooja
simulator [18]. The IoT network has 50 nodes deployed in the area of 100 x 100 m in
a grid topology. The RPL multiple instances have been adapted from the solution proposed
by Junior et al. [19].

4.2. Performance Metrics

The following set of metrics has been defined to measure the performance of the
machine learning models:

* Accuracy: Indicates the number of correct predictions divided by the total number
of predictions.

¢ Precision: Represented by the ratio between the number of correct positive classifica-
tions and the number of total positives.

* Recall: Represents the number of true positives divided by true positives and
false negatives.

* F1 Score: Constitutes a harmonic mean between precision and recall. In this metric,
1.0 means excellent performance.

The following metrics assess the IoT network performance:

* Success of notification delivery: computed as the division between the number of
messages reaching the sink and the total number of sent messages. The duplicated
messages count as one notification since they will be eliminated in case of duplicated
reception in the sink.

* Energy consumption: calculated by the sum of all spent energy of every node during
the entire simulation time. This evaluation used the kinetic battery model imple-
mented by Riker et al. [20].

* Delay: measures how long it takes to send a message from the IoT node, deliver it to
the edge, and detect a fault.

4.3. Obtained Results

Figure 5 presents the spike fault detection performance in terms of accuracy, precision,
recall, and F1 score.

As can be observed, all models achieve higher than 0.90 when all performance metrics
are considered, except for water temperature. A similar performance is observed in Figure 6
for bias fault detection. In general, the performance of fault detection is high. It is important
to notice that DASIF considers both classifiers” outputs in order to detect any fault. This

Sensors 2023, 23, 3544

10 0f 13

means that if any of the classifiers produce a fault classification, DASIF triggers the state of
alert for the system, enforcing the alert communication policy.

Regarding the worst detection performance, i.e., water temperature, the decision tree
obtained, on average, 0.54 considering precision, recall, and F1 score for spike faults. For
the same datatype and fault type, GNB obtained 0.37. Considering the bias fault, the results
for water temperature are 0.49 and 0.38 for the decision tree and GNB, respectively. These
results show that the performance in terms of precision, recall, and F1 score is poor for
water temperature, but accuracy is high since it is more than 0.98 for both classifiers in
spike and bias faults. This occurs because accuracy is a percent value of correct predictions;
it is not recommended for an unbalanced dataset. For instance, in a dataset with 1% faults,
the accuracy would be 99% if the model predicts zero faults.

[TREE mE GNB [TREE @ GNB [TREE @E GNB
14 14 1.4
n n < o~ ~ ~ ~ © -
N © « 9 o o a2 o o o 0 © ©
o o a o
28 8 o0 508 8 n - 28 8 5 §5 8 & 3
© o woN o g 2 b © o o © s o o S o
1.0 L @ 3 S 7 s @ 1.0 L 1.0 e [e]
g °© i S @ o
2 L3 o g « ~ g
& 5 o s
gos 7 gos] mo@ 2 gos
s s in [g . s
€ 0.6 S o6 s @ : © s © 506
-4 & | o ° L 1 m &
°©
0.4 0.4 3 7 0.4
Il
0.2 0.2 0.2
0.0 T 0.0 .y 0.0 "
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
(a) Water flow (b) Water temp. (c) Water pressure
[TREE EEE GNB [TREE EEE GNB [TREE EEE GNB
14 1.4 1.4
2 3 S 3 3 © 4 o
] ~ o ® ©
12 2 2 . a3 o « 12 2 2 o5 g 2 8 = 12 3 9 s 8
S o e n @ 9 3 o o o & o o o S o - s - s £
1.0 | | © g) =3 Y P 1.0 | | o) o 1 o o 1.0 | | | g 1 | 1 ©
g e N S ’ S o @ o 1 | | @ 2 s
2] L | | 2 L 2 N |
E 0.8 | E 0.8 E 0.8 ?
) S s
E 0.6 E 0.6 E, 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 oy 0.0 o 0.0 -
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
(d) Steam flow (e) Steam temp. (f) Steam pressure
Figure 5. Spike fault.
[TREE @8 GNB [TREE @88 GNB [TREE [EEE GNB
1.4 1.4 1.4
® m © o © © ~ o o n
© © a o 2 2 o N w0)
o o o o
28 8 g 2§ 23 2 8§ 2 g8 §5 88 8§
S o © o ® 2 S 2 S o S ©° S o S © s o
1.0 1 | « i b+ ? X 1.0 | | 1.0 I L 1 1 1 | 1 |
g ? ° © o g g
< o 1 1 1 c I ° ~ c
® 0.8 | 208 ‘g in ~ 2 2 0.8
§ § 3 I §
°© s < S
§ 0.6 E 0.6 > § 3 T @ E 0.6
) L o
0.4 0.4 5 | 0.4
Il
0.2 0.2 0.2
0.0 o 0.0 T 0.0 "
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score
(a) Water flow (b) Water temp. (c) Water pressure
[TREE EEE GNB [TREE EEE GNB [TREE EEE GNB
14 1.4 1.4
e o S @ 2 = o & & g 8
g o~ - -3
8 8 g 8 8 8 . 8 8 8% 4 g8 2R 28 8 3 3 .
$ S 85 35 &5 T ¢ 2 & g ¢ 23 T < T s v s &
0 °c | 3 2 5) 5 |) | |
o 10 s R \ s s o 10 S s 9 S o 10 g : 2
E S ‘ E ‘ g g <
E 0.8 L E 0.8 E 0.8 ?
s s s
T 06 T o6 5 06
& & &
0.4 0.4 0.4
0.2 0.2 0.2
0.0 - 0.0 - 0.0 o
Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

(d) Steam flow

Figure 6. Bias fault.

(e) Steam temp.

(f) Steam pressure

Sensors 2023, 23, 3544

110f13

Figure 7 shows a higher performance for stuck faults compared to spike and bias. As the
stuck fault produces a constant, its faulty pattern can easily be identified by the classifiers.

Table 2 presents the delay results. It is worth mentioning that it refers to the time to
communicate and detect a fault. It can be observed that the average delay values are 3.71
and 4.18 for paths 1 and 2, respectively. Path 2 has a higher delay because it tends to select
longer paths. The DASIF algorithm for path selection avoids the same nodes selected for
path 1. This multiple-path communication strategy enables path diversification, which
contributes to higher reliability.

Another aspect in Table 2 is that the time difference between the decision tree and
GNB is less than 0.1 milliseconds. Additionally, machine learning classification running on
edge computing takes about 2 to 4 milliseconds, while communication is responsible for
more than 3.7 to 4.1 s.

1 TREE EEm GNB 1 TREE B3 GNB 1 TREE EEm GNB

Performance

e o

Accuracy Precision

©
o
~
@
S

~ M
© 5 12 o 3
8 S : 3 H
a a 3 @
3 3 2 s
L I

"
3 3
3 2
H 5
s S

?

o

o
Performance
o o

Performance
o o

Recall F1-Score Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

(a) Water flow (b) Water temp. (c) Water pressure

[TREE [GNB [TREE [GNB

Performance
e o =2 =
© o N

o

o n
2 8
3 2
e 3
° <

Accuracy Precision

o~
©
©
o
S

Performance
Performance
o
o

Recall F1-Score : Accuracy Precision Recall F1-Score h Accuracy Precision Recall F1-Score

(d) Steam flow (e) Steam temp. (f) Steam pressure

Figure 7. Stuck fault.

Table 2. Delay (seconds) to communicate and detect the fault.

Stuck Spike Bias

Data Type

TREE GNB TREE GNB TREE GNB
Water flow
Path 1 3.7156 3.7157 3.7159 3.7153 3.7162 3.7154
Path 2 4.1839 4.1840 4.1841 4.1835 4.1844 4.1837
Water temperature
Path 1 3.7155 3.7152 3.7157 3.7154 3.7157 3.7154
Path 2 4.1838 4.1835 4.1840 41837 4.1839 4.1837
Water pressure
Path 1 3.7157 3.7153 3.7162 3.7155 3.7157 3.7153
Path 2 4.1840 4.1836 41844 4.1837 4.1839 4.1836
Steam flow
Path 1 3.7156 3.7153 3.7159 3.7154 3.7160 3.7154
Path 2 4.1839 4.1835 4.1842 4.1837 4.1842 4.1837
Steam temperature
Path 1 3.7156 3.7153 3.7155 3.7155 3.7158 3.7157
Path 2 4.1839 4.1836 4.1838 4.1838 4.1841 4.1839

Steam pressure
Path 1 3.7157 3.7153 3.7156 3.7154 3.7157 3.7156
Path 2 4.1839 4.1836 4.1838 4.1836 4.1840 4.1838

Sensors 2023, 23, 3544

12 0f13

References

Table 3 presents the results of the success of notification delivery and energy. The
success rate is 92.76%, considering all communicated application traffic related to the
50 nodes. Regarding energy, the sum of energy consumed by all nodes is 139.17 microA.

Table 3. Success of notification delivery and energy.

Performance Value
Message Delivery Ratio (%) 92.76
Battery (microA) 139.17

5. Conclusions and Future Work

Internet of Things and machine learning algorithms applied to industrial environments
have caused a revolution in manufacturing systems over the last few years. It is agreed that
Industrial Internet of Things can meet some crucial requirements using machine learning
and adding intelligence to the continuous monitoring and controlling process. In this
context, edge computing is another trend, mainly due to the necessity of achieving low
latency on computational tasks in industrial IoT applications.

However, new challenges emerge when the IoT paradigm is added to industrial
systems. One of the challenges is that manufacturing systems are prone to faults in IoT
devices. These faults represent a risk for the factory since they can result in dangerous
events and stop production. Therefore, it is essential to rely on precise and fast systems to
detect and react to the occurrence of IoT faults.

This article proposes a framework called Detection and Alert State for Industrial
Internet of Things Faults (DASIF). This framework applies machine learning models to
detect IIoT faults and also autonomously enforces a state of alert in case of detection of
faults. The faults are double classified on the edge computing devices using decision tree
and Gaussian naive Bayes. As a reaction, the state of alert enforced by DASIF is the first
stage countermeasure for fine-grained data analysis.

In future work, we intend to use federated learning to create a detection system able
to run distributively, which can be executed on many industrial sites, maintaining data
privacy. Additionally, we will conduct tests in a real environment and design the detection
of a more extensive list of faults.

Furthermore, for a functional federated learning solution with heterogeneous data
from different machines, semantic schemes and interoperability challenges must be tackled.
Some possible approaches are meta-based learning and semantic feature representation.

Author Contributions: Conceptualization, Y.S., B.L.D. and A.R.; methodology, Y.S., BL.D. and AR,
software, Y.S.; validation, Y.S. and A.R,; investigation, Y.S., B.L.D., R.I. and A.R.; writing—original
draft preparation, Y.S. and A.R.; writing—review and editing, Y.S., B.L.D., R.I. and A.R,; supervision,
Y.S., B.L.D. and A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by PROPESP/UFPA (PAPQ).
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

1. Fang, W.; Xue, F; Ding, Y.; Xiong, N.; Leung, V.C. EdgeKE: An on-demand deep learning IoT system for cognitive big data on
industrial edge devices. IEEE Trans. Ind. Inform. 2020, 17, 6144-6152. [CrossRef]

2. Fazio, M,; Ranjan, R.; Girolami, M.; Taheri,].; Dustdar, S.; Villari, M. A note on the convergence of IoT, edge, and cloud computing
in smart cities. IEEE Cloud Comput. 2018, 5, 22-24. [CrossRef]

http://doi.org/10.1109/TII.2020.3044930
http://dx.doi.org/10.1109/MCC.2018.053711663

Sensors 2023, 23, 3544 13 of 13

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

Javaid, A.; Javaid, N.; Wadud, Z.; Saba, T.; Sheta, O.E.; Saleem, M.Q.; Alzahrani, M.E. Machine learning algorithms and fault
detection for improved belief function based decision fusion in wireless sensor networks. Sensors 2019, 19, 1334. [CrossRef]
[PubMed]

Santo, Y.; Dalmazo, B.L.; Immich, R.; Riker, A. On the Performance of Machine Learning at the Network Edge to Detect Industrial
IoT Faults. In Proceedings of the 2022 IEEE 21st International Symposium on Network Computing and Applications (NCA),
Boston, MA, USA, 14-16 December 2022; Volume 21, pp. 291-295.

Jan, S.U.; Lee, Y.D.; Koo, LS. A distributed sensor-fault detection and diagnosis framework using machine learning. Inf. Sci. 2021,
547,777-796. [CrossRef]

Jan, S.U.; Lee, Y.D.; Shin, J.; Koo, I. Sensor fault classification based on support vector machine and statistical time-domain
features. IEEE Access 2017, 5, 8682—-8690. [CrossRef]

Saeed, U,; Jan, S.U.; Lee, Y.D.; Koo, I. Machine learning-based real-time sensor drift fault detection using Raspberry PI. In
Proceedings of the 2020 International Conference on Electronics, Information, and Communication (ICEIC), Barcelona, Spain,
19-22 January 2020; pp. 1-7.

Zidi, S.; Moulahi, T.; Alaya, B. Fault detection in wireless sensor networks through SVM classifier. IEEE Sens. |. 2017, 18, 340-347.
[CrossRef]

Suthaharan, S.; Alzahrani, M.; Rajasegarar, S.; Leckie, C.; Palaniswami, M. Labelled data collection for anomaly detection in
wireless sensor networks. In Proceedings of the 2010 Sixth International Conference on Intelligent Sensors, Sensor Networks and
Information Processing, Brisbane, QLD, Australia, 7-10 December 2010; pp. 269-274.

Naimi, A.; Deng, J.; Shimjith, S.; Arul, A.J. Fault Detection and Isolation of a Pressurized Water Reactor Based on Neural Network
and K-Nearest Neighbor. IEEE Access 2022, 10, 17113-17121. [CrossRef]

Khodabakhsh, A.; Ari, L; Bakir, M.; Ercan, A.O. Multivariate sensor data analysis for oil refineries and multi-mode identification
of system behavior in real-time. IEEE Access 2018, 6, 64389—-64405. [CrossRef]

Tupras Refineries Dataset. Available online: https:/ /www.openml.org/d /41170 (accessed on 1 October 2022).

Dofe, J.; Nguyen, A.; Nguyen, A. Unified Countermeasures against Physical Attacks in Internet of Things-A survey. In
Proceedings of the 2021 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS), Jaipur, India,
18-22 December 2021; pp. 194-199.

Mustafa, M.A.; Konios, A.; Garcia-Constantino, M. IoT-Based Activities of Daily Living for Abnormal Behavior Detection: Privacy
Issues and Potential Countermeasures. IEEE Internet Things Mag. 2021, 4, 90-95. [CrossRef]

Li, Y,; Dong, M.; Kothari, R. Classifiability-based omnivariate decision trees. IEEE Trans. Neural Netw. 2005, 16, 1547-1560.
[CrossRef] [PubMed]

Yang, G.; Gu, X. Fault diagnosis of complex chemical processes based on enhanced naive Bayesian method. IEEE Trans. Instrum.
Meas. 2019, 69, 4649-4658. [CrossRef]

Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R,;
Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Osterlind, E. A sensor network simulator for the Contiki OS. SICS Res. Rep. 2006.

Junior, S.; Riker, A.; Silvestre, B.; Moreira, W.; Oliveira, A., Jr.; Borges, V. DYNASTI—Dynamic Multiple RPL Instances for
Multiple IoT Applications in Smart City. Sensors 2020, 20, 3130. [CrossRef]

Riker, A.; Curado, M.; Monteiro, E. Neutral operation of the minimum energy node in energy-harvesting environments.
In Proceedings of the 2017 IEEE Symposium on Computers and Communications (ISCC), Heraklion, Greece, 3-6 July 2017;
pp. 477-482.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s19061334
http://www.ncbi.nlm.nih.gov/pubmed/30884880
http://dx.doi.org/10.1016/j.ins.2020.08.068
http://dx.doi.org/10.1109/ACCESS.2017.2705644
http://dx.doi.org/10.1109/JSEN.2017.2771226
http://dx.doi.org/10.1109/ACCESS.2022.3149772
http://dx.doi.org/10.1109/ACCESS.2018.2877097
https://www.openml.org/d/41170
http://dx.doi.org/10.1109/IOTM.0001.2000169
http://dx.doi.org/10.1109/TNN.2005.852864
http://www.ncbi.nlm.nih.gov/pubmed/16342495
http://dx.doi.org/10.1109/TIM.2019.2954151
http://dx.doi.org/10.3390/s20113130

	Introduction
	Related Work
	Detection and Alert State for Industrial Internet of Things Faults (DASIF)
	Overview and Proposed Framework
	Machine Learning Classifiers for Fault Detection
	Dataset Description and Fault Injection
	Network Reaction Policy for Detected Faults

	Performance Evaluation
	Evaluation Settings
	Performance Metrics
	Obtained Results

	Conclusions and Future Work
	References

