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Abstract: Non-intrusive Load Monitoring (NILM) is a critical technology that enables detailed
analysis of household energy consumption without requiring individual metering of every appliance,
and has the capability to provide valuable insights into energy usage behavior, facilitate energy
conservation, and optimize load management. Currently, deep learning models have been widely
adopted as state-of-the-art approaches for NILM. In this study, we introduce DiffNILM, a novel
energy disaggregation framework that utilizes diffusion probabilistic models to distinguish power
consumption patterns of individual appliances from aggregated power. Starting from a random
Gaussian noise, the target waveform is iteratively reconstructed via a sampler conditioned on the
total active power and encoded temporal features. The proposed method is evaluated on two public
datasets, REDD and UKDALE. The results demonstrated that DiffNILM outperforms baseline models
on several key metrics on both datasets and shows a remarkable ability to effectively recreate complex
load signatures. The study highlights the potential of diffusion models to advance the field of NILM
and presents a promising approach for future energy disaggregation research.

Keywords: NILM; non-intrusive load monitoring; diffusion models; deep learning

1. Introduction

In recent years, the demand for fine-grained power data has increased, leading to
a growing interest in the energy disaggregation technique for obtaining information on
appliance-level power consumption. A commonly cited application of this technique is to
generate detailed electricity bills, which encourage energy conservation among residents.
Additionally, electric power companies can utilize disaggregated power consumption data
to calculate Demand Side Response (DSR) resources and evaluate DSR capability. An intu-
itive way to obtain such data is through Intrusive Load Monitoring (ILM), which involves
the direct installation of sensors on target appliances. While ILM yields accurate results,
it is generally considered unfeasible for large-scale deployment due to its high cost. On the
other hand, Non-Intrusive Load Monitoring (NILM) has gained better application prospects
from an economic standpoint. NILM can be viewed as a software sensor that identifies the
operating states of individual appliances and estimates their power consumption using
only power or current data recorded by the mains meter; thereby, reducing the overall cost.

The practical implementation of NILM has been facilitated by the development of
big data technology in the energy industry. Advanced Metering Facilities (AMIs) provide
real-time load monitoring data, and modern Artificial Intelligence (AI) algorithms can
effectively process massive amounts of data.

In our study, energy disaggregaion is framed as a generation task and a highly promis-
ing deep generative model, the diffusion model [1], is employed to reconstruct target power
profiles. In the last two years, diffusion models have been gaining significant popularity
and have nearly replaced Generative Adversarial Network (GAN) and other generative
models due to their ease of training, improved tractability, and flexibility. Diffusion models
have demonstrated exceptional performance in various fields, including image genera-
tion [2], image segmentation [3], audio synthesis [4] and point cloud reconstruction [5],
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etc. However, to the best of our knowledge, no published research has investigated the
use of diffusion models for NILM. Therefore, this paper proposes DiffNILM, a diffusion
probabilistic model for energy disaggregation. The main contributions of our work are
as follows:

• DiffNILM is the first NILM framework adopting the diffusion model. Specifically,
We engineer the conditional diffusion model to address the NILM task, where the
total active power and embedded time tags are fed to the model as conditional input,
and the appliance power waveform is generated step-by-step from Gaussian noise.

• We propose an encoding method for multi-scale temporal features that takes into
account the regularity of power consumption behaviors.

• We implement and evaluate the proposed method on two public datasets, REDD and
UKDALE. Empirical results demonstrate that DiffNILM outperforms previous models,
as evidenced by both classification metrics and regression metrics.

2. Related Works

The overall framework of NILM was pioneered by Professor Hart in the 1980s, as doc-
umented in [6]. This approach was based on the notion that electric appliances exhibit
unique features during state transition, which formed the basis for the event-based load
monitoring method. However, Hart’s original approach only extracted steady-state fea-
tures, which proved inadequate for appliances with multiple states and relatively low
power consumption. To improve Hart’s algorithm, researchers discovered that repeat-
able transient profiles could be observed with high sampling rates, which allowed for the
recognition of appliances’ transient signatures [7]. Various signal processing techniques,
including Fourier Transform [8], Wavelet Transform [9], and Hilbert Transformation [10],
were attempted to process transient power, current, and voltage signals.

To improve the identification accuracy, multiple electrical parameters were combined
as input. The most prevailing method is the V-I trajectory, which maps current and voltage
signals as a 2D image. Both steady-state and transient data can be utilized to generate V-I
trajectories. For instance, Wang et al. [11] extracted the V–I trajectory based on steady-state
data and developed an approach to quantify ten trajectory features. The research work
in [12] utilized instantaneous voltage and current waveforms and proposed an algorithm
that demonstrated high precision and strong robustness.

NILM based on traditional machine learning methods is mainly realized by the Hidden
Markov Model (HMM) [13–15], Conditional Random Field (CRF) [16], and Support Vector
Machine (SVM) [17]. These algorithms are supported by explicable mathematical principles,
but their performances are often constrained by stringent assumptions (the characterization
of load state transitions may not align with the actual operational features of various
appliances), leading to limited accuracy and generalization abilities. Efforts have also been
made to tackle the issue by framing it as a Combinatorial Optimization (CO) problem [18],
but this method has proven to be computationally intractable, since it relies on enumeration.

With the significant progress of Deep Learning (DL), DL-based solutions have brought
fresh insights to the practical advancement of artificial intelligence, which have been
extensively adopted in various fields, including Computer Vision, Natural Language
Processing, Signal Processing, etc. The application of DL-based techniques to energy
disaggregation started with Kelly and Knottenbelt’s pioneering work in 2015 [19], where
they introduced three deep neural network architectures to NILM, surpassing CO and
diverse HMM-based algorithms in terms of both accuracy and generalization capability.
Since then, DL-based methods have gradually dominated NILM research.

Recurrent Neural Networks (RNNs) are a type of deep learning architecture partic-
ularly well-suited for handling sequential data [20]. However, the vanishing gradient
problem has posed a major challenge in the field. To address this issue, Long Short-Term
Memory (LSTM) networks [21] have been commonly used in NILM. Convolutional Neural
Networks (CNNs) have proven to be highly effective for image tasks and excel in sequential
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data analysis as well [22]. Zhang et al. [23] compared Seq2Point and Seq2Seq learning
approaches using CNN-based mappings for training.

The models mentioned above have also been optimized to enhance computational
efficiency since real-time load disaggregation is crucial for certain use cases, such as DSR
and fault detection [24,25]. While accurate approaches have been proposed, there are also
light-weight approaches to enable online computation, including a super-state hidden
Markov model and a new variant of the Viterbi algorithm in an HMM-based framework
for computationally efficient exact inference [26], as well as methods based on Gated
Recurrent Unit (GRU), which reduce memory usage and computational complexity [27,28].
In addition, an experimental platform has been developed to realize real-time computation
with a calculation time limit of one second [29].

In the past few years, Attention Mechanism has gained widespread popularity in
handling sequential data processing tasks. The fundamental idea is to direct focus onto the
most essential segment in the input sequence by assigning the highest weights to the most
relevant parts. Capitalizing on the advantages of Attention Mechanism, Google introduced
the Transformer architecture in 2017 [30], which allows parallel computation, as opposed to
RNNs, and demonstrates a significantly superior capability to capture sequential features
compared to CNNs. Building upon Transformer, the research work in [31,32] designed an
architecture, based on Bidirectional Encoder Representations, from Transformers (BERT)
for NILM, and proposed comprehensive loss functions that incorporate both regression
and classification metrics.

NILM can also be regarded as a generation task aimed at creating synthetic waveforms
for individual appliances, so the implementation of deep generative models, which are
capable of modeling the underlying distribution of the power data, has been explored.
A deep latent generative model for NILM, based on the Variational Recurrent Neural
Network (VRNN), has been proposed, which performs sequence-to-many-sequence predic-
tion [33]. The strong generational ability of the Variational Autoencoder (VAE) improves
the formation of complex load profiles [34]. Conditional Generative Adversarial Network
(cGAN) was used to avoid manually designing loss functions [35]. The work in [36] uni-
fied auto-encoder and GAN to realize the source separation of nonlinear power signals.
Drawing inspiration from the favorable outcomes attained by several non-autoregressive
generative models, the proposed study endeavors to employ the diffusion model, a more
advanced approach, to the task of NILM.

3. Denoising Diffusion Probabilistic Models

With inspiration from non-equilibrium thermodynamics, the basic idea of DDPMs
is to destroy the original data by gradually adding Gaussian noise, and then to learn to
reconstruct the data through an inference process. The noising and denoising Markov
chains are defined as the forward process and reverse process, respectively.

The step-by-step destruction and reconstruction of a power waveform in a diffusion
model is illustrated in Figure 1. Random noise is successively added to x0, a segment of
clean power waveform of the target appliance, until the discernible features are completely
lost. In reverse, we start from a random Gaussian noise xT and progressively remove extra
noise to generate the target distribution. The original data x0 and whitened latent variables
x1, x2, . . . , xT share the same dimensionality.
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Figure 1. Illustration of the forward process and the reverse process in a NILM task. The pink arrows
point out the process of forward diffusion, where a clean power pattern is gradually destroyed.
The green arrows indicate the process of denoising inference, where the target waveform is recovered.

3.1. The Forward Process

Diffusion models can be seen as latent variable models which create mappings to
a hidden feature space, and this process is controlled by a predefined linear schedule
β1:T = [β1, β2, . . . , βT ]. According to the defining characteristic of the Markov chain,
the distribution of xt at any arbitrary time step depends solely on its previous state xt−1, so
we add Gaussian noise to a xt by means of the following formula:

xt =
√

atxt−1 +
√

1− αtεt (1)

where αt = 1− βt and εt ∼ N (0, I). The iterative formula of the forward process is given as:

q(xt | xt−1) = N
(

xt;
√

1− βtxt−1, βt I
)

(2)

In order to spare us from having to do step-by-step iteration, we derived the closed-
form expression to directly calculate xt by x0 using a reparameterization trick:

q(xt | x0) = N
(
xt;
√

ᾱtx0, (1− ᾱt)I
)

(3)

where ᾱt = ∏t
i=1 αi.

In many applications of the diffusion process, the parameters β1:T are often assigned
small values following an increasing pattern. For instance, in [1], β1:T is defined as a linear
function with values ranging from 10−4 to 0.02 over 1000 time steps. As T grows sufficiently
large, ᾱt converges to zero, and the resulting distribution of the latent variable xT approaches
a standard normal distribution. The diffusion process ceases when the final distribution
becomes sufficiently disordered to be considered an isotropic Gaussian distribution.

3.2. The Reverse Process

The reverse process is where the desired output data is generated by tracing the
Markov chain backward. Starting from xT , if the distribution of any xt−1 can be derived
from the prior term xt, the original distribution x0 can be recovered from pure Gaussian
noise. Unfortunately, the reverse transfer distribution q(xt−1 | xt) is not inferrable by simple
mathematical derivation, so we used a deep learning model with parameter θ to estimate
this reverse distribution, as depicted in Figure 2.

Figure 2. Illustration of transfer distributions between two diffusion steps. With the unsolvable
q(xt−1 | xt), we approximate this reverse distribution with a parameterized model pθ .
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Conditioned on x0, the reverse conditional probability can be derived on the basis of
the Bayes Rule:

q(xt−1 | xt, x0) = q(xt | xt−1, x0)
q(xt−1 | x0)

q(xt | x0)

∝ exp

(
−1

2

(
(xt −

√
αtxt−1)

2

βt
+

(
xt−1 −

√
αt−1x0

)2

1− ᾱt−1
− (xt −

√
αtx0)

2

1− ᾱt

))

= exp
(
−1

2

((
αt

βt
+

1
1− ᾱt−1

)
x2

t−1 −
(

2
√

αt

βt
xt +

2
√

αt

1− ᾱt
x0

)
xt−1 + C

)) (4)

where C is a term not involving xt−1. According to the probability density function of the
normal distribution, the mean and variance of Equation (4) can be expressed as:{

β̃t =
1−ᾱt−1

1−ᾱt
· βt

µ̃t(xt, x0) =
√

αt(1−ᾱt−1)
1−ᾱt

xt +
√

ᾱt−1βt
1−ᾱt

x0
(5)

Then, we transform Equation (1) into the form of x0 = 1√
āt

(
xt −
√

1− āt ε̄t
)

to replace
the unknown x0 in Equation (5), and derive the target mean that only depends on xt:

µ̃t(xt) =
1√
αt

(
xt −

βt√
1− ᾱt

εt

)
(6)

The above derivations reveal that the variance β̃t relies solely on the noise schedule
and, thus, can be pre-computed. The parameter to be approximated (εt) exists in µ̃t, so we
use a neural network to estimate the noise and, consequently, the mean.

3.3. Training a Diffusion Model

Diffusion models adopt the modeling method of noise prediction, where the neural
networks take xt and time step t as input to estimate the noise εθ(xt, t). The goal of the
training process is to narrow the gap between the actual noise and the predicted one by
optimizing the negative log-likelihood using the variational lower bound . The loss term is
parameterized as:

Lt(θ) = Ex0,t,ε

[
1

2‖Σθ(xt, t)‖2
2

‖µ̃t − µθ(xt, t)‖2
2

]

= Ex0,t,ε

[
β2

t

2αt(1− ᾱt)‖Σθ‖2
2

∥∥∥ε− εθ

(√
ātx0 +

√
1− ātε, t

)∥∥∥2
] (7)

A few simplifications lead to more stable training:

Lsimple (θ) = Ex0,t,ε

[∥∥∥ε− εθ

(√
ᾱtx0 +

√
1− ᾱtε, t

)∥∥∥2
]

(8)

4. Design
4.1. Conditional Diffusion Model as Appliance-Level Data Generator

One of the salient features of NILM, as a generation task, is that, instead of randomly
generating power sequences that follow a certain distribution, the generation of each
segment of appliance power waveform is conditioned on a segment of aggregated power
waveform with the same length. However, the vanilla diffusion model was originally
designed for unconditional image generation, which necessitates adaptive modifications to
tailor it to the requirements of the NILM task.

Conditional diffusion models have been well-studied in other sequence modeling
tasks. For instance, in machine translation the model conditions on the source sentences,
and in speech synthesis the model conditions on the mel-spectrogram. The general goal
of such algorithms is to model the probability density of pθ(x0 | xd), where xd contains
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conditioning features relevant to x0. For diffusion models, the conditional distribution can
be written as:

pθ(x0 | xd) :=
∫

pθ(x0:N | xd)dx1:N (9)

The proposed model takes two conditional inputs: the total power and the encoded
temporal features. Traditional NILM algorithms only detect the states of appliances based
on the aggregated power sequence, disregarding the regularity and periodicity in the
energy consumption patterns of users (for instance, dishwashers are generally used after
dinner, and refrigerators operate more frequently during summer). In this study, we present
an encoding technique that integrates multi-scale temporal information as supplementary
knowledge for energy disaggregation, with reference to the global timestamp representation
introduced in [37]. As illustrated in Figure 3, we extract three features from each time tag:
hour of day, day of week and month of year, and then linearly encode these three features
into values within the interval of [−0.5, 0.5], respectively.

Figure 3. Illustration of temporal data encoding.

Moreover, the continuous noise level is adopted in this paper, as opposed to discrete
noise level, where we sample t ∼ Uniform({1, 2, . . . , T}) and reach for the corresponding
αt in the predefined linear schedule. The proposed diffusion model conditions on the
continuous noise level

√
ᾱ instead of time step t and

√
ᾱ is randomly chosen between two

adjacent discrete noise levels:
√

ᾱ ∼ Uniform
(√

ᾱt,
√

ᾱt−1
)

(10)

For our task, as depicted in Figure 4, the neural network takes three inputs: the
noisy appliance-level power data xt, the corresponding noise level

√
ā, the conditional

aggregated power data xaggre and embedded time tags xtime, and outputs the approximated
noise εθ

(
xt,
√

ā, xaggre, xtime
)
.

Figure 4. Conditional diffusion model for NILM task. The neural network takes diffused data xᾱ,
noise level

√
ᾱ and conditional data xaggre and xtimes as inputs to estimate the corresponding noise εθ .
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4.2. Network Architecture

This section details the implementation of a neural network for noise prediction,
with an architecture inspired by NU-Wave [38] and DiffWave [4], which are two diffusion-
based neural vocoders.

As revealed in Figure 5, 1D convolutional layers were used to increase the number
of channels of the input sequences xᾱ, xaggre and xtime to C, and the Sigmoid Linear Unit
(SiLU) activation was adopted:

SiLu(x) = x ∗ Sigmoid(x) (11)

Similar to the positional embedding method, proposed in Transformer [30], the sinu-
soidal encoding formula is applied to embed the noise level

√
ᾱ:

Embed(
√

ᾱ) =

[
sin
(

10−
[0:63]

16 × 50, 000×
√

ᾱ

)
, cos

(
10−

[0:63]
16 × 50, 000×

√
ᾱ

)]
(12)

Figure 5. The neural network architecture for noise prediction.

Then we use two shared SiLu-activated Fully Connected (FC) layers and one residual-
layer-specific FC layer to project the encoded noise level to a C-dimensional vector, and add
it to the convoluted xᾱ as a bias term.

The main body of the model consists of N conformably-structured layers connected
in residual manner to enable the direct delivery of input information to the final layers.
In each residual layer, we used Bi-directional Dilated Convolution (Bi-DilConv) to deal with
the inputs for an exponential growth in the receptive field, and in the i-th residual layer,
the spacing between the kernel points was set to 2i mod n. Gated Units (GU) are applied
to activate the summation of the processed noisy signals and conditional signals. Then,
the convoluted vector is split in two and passed on as residual output and skip output,
respectively. Finally, we sum all the skip connections and use two convolutional layers to
gain the noise vector εθ in the same shape as xᾱ and xaggre.
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4.3. Training and Sampling Procedures

The training and sampling procedures of the diffusion model are shown in
Algorithms 1 and 2. In the training procedure, after extracting data from the dataset,
we sample an iteration index t and obtain a corresponding continuous noise level

√
ᾱ to

determine the extent of whitening applied to the original waveform. As mentioned in
Section 3.3, the deep learning model updates its parameters with the purpose of mini-
mizing the distance between the sampled noise ε and the predicted noise εθ . Instead of
using common loss functions, such as MSE and L1 norm, we found that log-norm improves
convergence speed and leads to improved empirical outcomes:

log
∥∥∥ε− εθ

(
xᾱ,
√

ᾱ, xd

)∥∥∥
1

(13)

In the sampling algorithm, we adopted a fast sampling method where much fewer
inference steps are used. Instead of traversing the reverse process step by step with
t = T, T− 1, . . . , 1, we define an inference schedule with only Tin f er noise levels (Tin f er << T).
The test results demonstrated that the fast sampling trick greatly accelerated the inference
procedure without degrading generational quality. In each inference step, we calculate the
predicted variance β̃t and mean µθ

(
xᾱ,
√

ᾱ, xd
)

to estimate the previous term.

Algorithm 1: Training.
1: repeat
2: x0 ∼ q(x0)
3: t ∼ Uniform({1, 2, . . . , T})
4:

√
ᾱ ∼ Uniform

(√
ᾱt,
√

ᾱt−1
)

5: ε ∼ N (0, I)
6: Take gradient descent step on ∇θ log

∥∥ε− εθ

(
xᾱ,
√

ᾱ, xd
)∥∥

1
7: until converged

Algorithm 2: Sampling.

1: xT ∼ N (0, I)
2: for t = Tin f er, Tin f er − 1, . . . , 1 do
3: z ∼ N (0, I)

4: β̃t =
√

1−ᾱt−1
1−ᾱt

βt

5: µθ

(
xᾱ,
√

ᾱ, xd
)
= 1√

αt

(
xt − βt√

1−ᾱt
εθ

(
xᾱ,
√

ᾱ, xd
))

6: xt−1 = µθ(xt, t) + β̃tz
7: end for
8: returnx0

5. Experiments

We carried out an experiment to test the proposed model. The workflow, as illustrated
in Figure 6, involved pre-processing data, splitting the dataset, training a neural network
using the training set, and evaluating its performance on the testing set.

Figure 6. The workflow of the experiment conducted.
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5.1. Dataset

This study employed low-frequency active power data from the REDD and UKDALE
datasets to train and test the proposed model. REDD is the most widely-used dataset in the
domain of NILM, comprising the mains and submeter power data of six residential homes
in the United States, recorded over a period of approximately four months. The UKDALE
dataset, on the other hand, was published by Imperial College London, in 2014, and contains
power consumption information from House 1 collected for up to three years, while the
data for the other four houses were recorded for several months.

We pre-processed the original power data according to the following procedure:

Step 1: Merge the data of split-phase mains meter. Two-phase power supply is commonly-
used in North American households, so, for REDD, we calculated the sum of each mains
meter to obtain the actual aggregated power data.
Step 2: Resample the power data at a fixed interval of 6 s.
Step 3: Fill data gaps shorter than 3 min by forward-filling, and fill those longer than 3 min
with zeros.
Step 4: Attach status labels to the datasets. An appliance is classified as being in an ‘on’
state at a particular time point and assigned a status label of 1, provided that its power
consumption falls within the acceptable ‘on’ power range and its operation time exceeds
the minimum duration specified in Table 1. Otherwise, a status label of 0 is assigned.
Step 5: Standardize the power data according to Formula (14) to enhance the accuracy of
the model and convergence speed.

x∗ =
x− µ

σ
(14)

Table 1. Basic parameter settings of appliances.

Appliance Reasonable ‘on’ Power Range (W) Minimum Duration of Operation (s)

Microwave 200∼1800 12
Washer 40∼3500 1800

Dish washer 50∼1200 1800
Refrigerator 50∼400 60

Following the pre-processing of the power data, overlapping sliding windows were
utilized to extract sequences of processable length.

5.2. Evaluation Metrics

The selection of suitable metrics is important in appraising the algorithm’s perfor-
mance. As NILM can be formulated as either a binary classification problem (to detect the
on/off states of the target appliance) or a regression problem (to estimate the numeric value
of power consumption), the evaluation incorporated both classification and regression
metrics to ensure a comprehensive assessment.

5.2.1. Classification Metrics

We used classification metrics in Equation (16) to evaluate the ability of the algorithm
to identify the on/off states, where TP, FP and FN, respectively, represent the number
of TP (True Positive), FP (False Positive) and TN (True Negative) results, and P and N,
respectively, represent the number of points where the appliance is switched on and off in
ground truth.
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accuracy =
TP + TN

P + N

recall =
TP

TP + FN

precision =
TP

TP + FP

F-score = (1 + β2)× precision× recall
β2 × precision + recall

F1-score = 2× precision× recall
precision + recall

(15)

While accuracy is an intuitive classification metric, its applicability is restricted in
datasets that are unbalanced, where the ‘on’ states of appliances constitute a small fraction
of the entire sequence. In such cases, the F-score index serves as an effective approach to
address the imbalance issue. The F-score comprehensively incorporates both precision and
recall, and varying weights can be assigned to them by adjusting the β value, thereby en-
abling an evaluation of the quality of NILM algorithms under diverse application scenarios.
Given that precision and recall are usually deemed equally important, the value of β was
set to 1, and F-score was calculated as the harmonic average of the two, termed as F1-score.

5.2.2. Regression Metrics

To evaluate the performance of the model to reconstruct the power profiles of the
target appliance, two commonly-used regression metrics, Mean Absolute Error (MAE) and
Mean Relative Error(MRE), were adopted:

MAE =
1
T

T

∑
t=1
|x̂t − xt|

MRE =
1
T

T

∑
t=1

x̂t − xt

max(x̂t, xt)

(16)

where x̂t and xt, respectively, represent the appliance’s estimated and actual power at time
t, and T is the total number of points in the sequence.

5.3. Implementation Details

The NILM project was conducted on a 64-bit computer equipped with Intel(R) CoreTM
i7-12700 CPU@ 3.61GHz, 32GB memory, and NVIDIA GeForce RTX 3080Ti. The Pytorch
framework was employed to train and test the diffusion model.

During the training phase, the model was trained until convergence at a learning rate
of 3× 10−5. To accelerate gradient descent, the Adam optimizer was utilized, where the
hyperparameters β1 and β2 were set to 0.5 and 0.999, respectively.

The hyperparameters of the diffusion model are shown in Table 2.

Table 2. Hyperparameters of the model.

Symbol Description Value

L Length of the input and output power sequences 480
T Maximum diffusion step 1000

β1:T Noise schedule Linear
(
1× 10−6, 0.006, 1000

)
Tin f er Inference step 8

β1:Tin f er Inference noise schedule 1× 10−6, 2× 10−6, 1× 10−5, 1× 10−4, 1× 10−3, 1× 10−2, 1× 10−1, 9× 10−1

N Number of residual layers 30
C Number of residual channels 128
n Length of the dilation cycle 10
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5.4. Results

DiffNILM was evaluated against four state-of-the-art NILM models, including the
bi-directional LSTM [21], CNN [23], BERT4NILM [31] and cGAN [35]. The objectiv-
ity of the comparative experiments was ensured by adopting the same data processing
method, and all the baseline models were trained to convergence. The performance indi-
cators of the five disaggregation models on REDD and UKDALE datasets are shown in
Tables 3 and 4. Output sample curves generated by DiffNILM, BERT4NILM, and cGAN
models are displayed in Figures 7 and 8, where two relatively underperforming methods
were excluded to avoid clutter.

For starters, we examined the performance of DiffNILM on microwaves and kettles,
which are characterized by infrequent usage and relatively short running periods. The re-
sults from the tables indicate that the proposed algorithm outperformed other methods
on several indicators, particularly the MAE and MRE. The output signals further reveal
that the model effectively captured most of the activations and the predicted power values
aligned well with the ground truth values. However, a few exceptional cases were iden-
tified where the power signatures were not exactly typical, notably in the first activation
of the microwave, depicted in Figure 8, which exhibited a longer turn-on time than other
instances, and was subject to relatively strong interference from background noise.

Table 3. Model performances on REDD.

Appliance Model Accuracy ↑ F1-Score ↑ MAE ↓ MRE ↓

Bi-LSTM 0.989 0.604 17.39 0.058
CNN 0.986 0.378 18.59 0.060

Microwave BERT4NILM 0.989 0.476 17.58 0.057
cGAN 0.989 0.415 18.15 0.058

DiffNILM 0.989 0.430 17.13 0.057

Bi-LSTM 0.989 0.125 35.73 0.020
CNN 0.970 0.274 36.12 0.042

Washer BERT4NILM 0.991 0.559 34.96 0.022
cGAN 0.990 0.478 29.67 0.025

DiffNILM 0.988 0.569 26.44 0.019

Bi-LSTM 0.956 0.421 25.25 0.056
CNN 0.953 0.298 25.29 0.053

Dish washer BERT4NILM 0.969 0.523 20.49 0.039
cGAN 0.951 0.295 24.80 0.055

DiffNILM 0.971 0.593 18.16 0.037

Bi-LSTM 0.789 0.709 44.82 0.841
CNN 0.796 0.689 35.69 0.822

Refrigerator BERT4NILM 0.841 0.756 32.35 0.806
cGAN 0.811 0.732 33.83 0.820

DiffNILM 0.868 0.794 33.58 0.808

Bi-LSTM 0.931 0.465 30.80 0.244
CNN 0.926 0.410 28.92 0.244

Average BERT4NILM 0.948 0.579 26.35 0.231
cGAN 0.935 0.498 26.70 0.240

DiffNILM 0.954 0.597 23.70 0.230
↑ indicates that a higher value of the metric is better, while ↓ indicates that a lower value of the metric is better.
The bold item in each column represents the optimal index for that particular metric in all the models.
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Table 4. Model performances on UKDALE.

Appliance Model Accuracy ↑ F1-Score ↑ MAE ↓ MRE ↓

Bi-LSTM 0.995 0.060 6.55 0.014
CNN 0.995 0.341 6.36 0.014

Microwave BERT4NILM 0.995 0.014 6.57 0.014
cGAN 0.996 0.474 5.98 0.012

DiffNILM 0.996 0.501 4.54 0.012

Bi-LSTM 0.938 0.150 15.66 0.067
CNN 0.913 0.173 11.90 0.094

Washer BERT4NILM 0.966 0.325 6.98 0.040
cGAN 0.959 0.376 10.84 0.062

DiffNILM 0.986 0.390 5.74 0.058

Bi-LSTM 0.976 0.605 36.36 0.033
CNN 0.947 0.560 25.45 0.069

Dish washer BERT4NILM 0.966 0.667 16.18 0.049
cGAN 0.961 0.646 13.89 0.042

DiffNILM 0.980 0.662 19.58 0.030

Bi-LSTM 0.573 0.174 43.74 0.956
CNN 0.772 0.718 29.29 0.758

Refrigerator BERT4NILM 0.813 0.766 25.47 0.732
cGAN 0.818 0.801 25.11 0.730

DiffNILM 0.857 0.816 22.82 0.699

Bi-LSTM 0.994 0.531 21.26 0.007
CNN 0.997 0.850 9.64 0.003

Kettle BERT4NILM 0.998 0.907 6.82 0.002
cGAN 0.998 0.911 7.09 0.002

DiffNILM 0.999 0.918 4.59 0.002

Bi-LSTM 0.875 0.229 21.80 0.261
CNN 0.919 0.521 14.28 0.261

Average BERT4NILM 0.943 0.503 11.47 0.194
cGAN 0.946 0.642 14.58 0.170

DiffNILM 0.964 0.657 11.45 0.164
↑ indicates that a higher value of the metric is better, while ↓ indicates that a lower value of the metric is better.
The bold item in each column represents the optimal index for that particular metric in all the models.

Washers and dishwashers are a type of household appliances that exhibit infrequent
use but extended operation per use. The consumption patterns are intricate, due to the
frequent start-and-stop events and mode switching during operation. In the REDD dataset,
Washers maintained a constant power level during the ‘on’ mode and the waveforms were
effectively rebuilt by DiffNILM, despite the slightly elevated power values. Washers in
the UK have operating patterns that are distinct from their US counterparts, with evident
power oscillations, which the proposed algorithm effectively reconstructed. Dishwashers
present more complex operational characteristics with multiple modes, such as pre-rinse,
steam wash and dry, which require a more advanced model generation capacity. Al-
though DiffNILM’s output in low power consumption mode was not entirely consistent
with the ground truth signal, it exhibited good overall power estimation performance.

The refrigerator operates based on automatic temperature regulation requirements,
with frequent start and stop events and prominent periodicity. Based on the evaluation
metrics and sample waveforms, DiffNILM exhibited satisfactory performance in disaggre-
gating the refrigerator load. The algorithm could accurately detect each activation event,
and the power prediction accuracy was only compromised when there was significant
background power interference.
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Figure 7. Sample outputs of microwave, Washer, dishwasher and refrigerator on REDD.

Figure 8. Sample outputs of microwave, kettle, Washer, dishwasher and refrigerator on UKDALE.
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Through horizontal comparison of the results on the two datasets, it is interesting to
notice that the metrics of the two generative models exhibited more enhanced performance
on UKDALE than REDD. A plausible reason for this outcome is that deep generative
models typically necessitate larger amounts of training data. Specifically, the smaller REDD
dataset might fail to meet the data requirements of cGAN and DiffNILM, which, in turn,
would hinder their performances on this dataset. In contrast, the larger UKDALE dataset
facilitated better performance, reflected in the significant improvement of the metrics of the
generative models.

Overall, the proposed algorithm outperformed the baseline models on most metrics
and yielded better results than the previous methods concerning the mean values of the four
metrics on both datasets. Meanwhile, DiffNILM demonstrated a satisfactory fitting effect
on the consumption signals of various electrical appliances, and was capable of handling
complex load patterns. Nonetheless, due to the unique nature of ’diffusion’, the predicted
power curve was not always smooth. Additionally, in cases where the background power
was complex, the disaggregated curve might experience distortion following the total
power, although the impact remained within an acceptable range.

6. Conclusions

In this paper, we introduce DiffNILM, a novel framework for energy disaggregation
that utilizes the diffusion probabilistic model. The key innovation of our approach is the
conditional diffusion model which takes both the total active power and embedded time
tags as inputs and generates the appliance power waveforms. Additionally, we propose
an encoding method for multi-scale temporal features which captures the periodicity of
power consumption behaviors. The proposed method was applied and assessed on two
open-access datasets, REDD and UKDALE. Averaging across all appliances, DiffNILM
displayed an improvement in all four metrics on both datasets. The results also highlight
the potential of the proposed DiffNILM algorithm in reconstructing complex load patterns,
despite the fact that DiffNILM exhibits certain issues, such as generating power waveforms
that are not sufficiently smooth and may experience distortion.

Meanwhile, we would like to clarify that the algorithm was developed with accuracy
as the primary objective, and we did not explicitly consider the computational burden
of the proposed implementation. Going forward, we are committed to developing a
light-weight version of the algorithm that balances both accuracy and computational
efficiency. This will enable the approach to be deployed in real-world settings with limited
computational resources.

Furthermore, when analyzing the results, the significance of dataset size in achieving
optimal performance was noted. However, acquiring large-scale appliance-level data
through field sampling in numerous households can be a formidable task. In forthcoming
research, we aim to explore a method of synthesizing appliance power signatures as
a means of augmenting the existing NILM datasets, which can also be realized with
diffusion models.
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