
Citation: Nguyen, N.T.;

Gangavarapu, P.T.; Kompe, N.F.;

Schildbach, G.; Ernst, F. Navigation

with Polytopes: A Toolbox for

Optimal Path Planning with Polytope

Maps and B-spline Curves. Sensors

2023, 23, 3532. https://doi.org/

10.3390/s23073532

Academic Editors: Stephen Monk

and David Cheneler

Received: 19 February 2023

Revised: 12 March 2023

Accepted: 23 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Navigation with Polytopes: A Toolbox for Optimal Path
Planning with Polytope Maps and B-spline Curves
Ngoc Thinh Nguyen 1,* , Pranav Tej Gangavarapu 1, Niklas Fin Kompe 1, Georg Schildbach 2 and Floris Ernst 1

1 Institute for Robotics and Cognitive Systems, University of Lübeck, 23562 Lübeck, Germany
2 Institute for Electrical Engineering in Medicine, University of Lübeck, 23562 Lübeck, Germany
* Correspondence: nguyen@rob.uni-luebeck.de

Abstract: To deal with the problem of optimal path planning in 2D space, this paper introduces a
new toolbox named “Navigation with Polytopes” and explains the algorithms behind it. The toolbox
allows one to create a polytopic map from a standard grid map, search for an optimal corridor, and
plan a safe B-spline reference path used for mobile robot navigation. Specifically, the B-spline path
is converted into its equivalent Bézier representation via a novel calculation method in order to
reduce the conservativeness of the constrained path planning problem. The conversion can handle
the differences between the curve intervals and allows for efficient computation. Furthermore, two
different constraint formulations used for enforcing a B-spline path to stay within the sequence of
connected polytopes are proposed, one with a guaranteed solution. The toolbox was extensively
validated through simulations and experiments.

Keywords: path planner; B-spline; Bézier; polytopes; optimization; navigation with polytopes toolbox

1. Introduction

Motion planning is an important component of the technology stack for enabling
the autonomous navigation of unmanned vehicles [1]. It involves the computation of an
admissible path or trajectory from the current position/configuration of the robot to a target
area/point on a given map with obstacles. The difficulty of a motion planning task depends
on the particular setup and problem formulation. It may involve complications such as
kinodynamic constraints, uncertainties, and dynamic obstacles. Almost all approaches
currently used in robotics involve a spatial discretization of the given map, called a grid map
or occupancy grid. Important planning methods comprise graph search algorithms, such as
Dijkstra, A*, and variants thereof, and sampling-based methods such as rapidly exploring
random trees (RRT) [2–4]. These have been successfully applied in various works, such
as for the development of a hybrid path planning algorithm and a bio-inspired control
for an omni-directional mobile robot [5], or the control of a nonholonomic vehicle in tight
environments [6]. They have an important drawback, however, in that the complexity of
the planning problem increases rapidly with the dimensions of the map as well as the
resolution of the grid map. Moreover, the grid map is an artificial construct that may
complicate the path planning problem, e.g., over large empty areas or for kinodynamic
constraints, and lead to unsafe or conservative results.

For this reason, this paper touts the idea of continuous motion planning and makes
several contributions toward turning it into a competitive alternative. Several algorithms
are proposed for efficient continuous motion planning, including the generation of a polytope
map and a spline-based planner. They are described in detail in this paper and a ready-to-use
implementation is provided as a Python-based toolbox, called Navigation with Polytopes.

In previous work, continuous motion planners using spline-based interpolations have
been combined with the standard discrete frameworks [7–9]. In [7], the movement of
a system between two exact discrete moments was studied, which relaxed some of the

Sensors 2023, 23, 3532. https://doi.org/10.3390/s23073532 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073532
https://doi.org/10.3390/s23073532
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4923-6941
https://orcid.org/0000-0002-0474-6673
https://doi.org/10.3390/s23073532
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073532?type=check_update&version=2


Sensors 2023, 23, 3532 2 of 23

stringent requirements for optimal controller design in drones. In [8,9], a standard grid
map, obtained with existing mapping tools such as gmapping [10], was transformed into a
polytope map, in which the feasible area was decomposed into a finite number of (convex)
polytopes, called feasible polytopes. The polytope map allows the computation of B-spline
paths that completely stay inside the feasible area and, hence, the free space of the grid map.
B-splines have been chosen for their local convexity: Each interval is bounded by the convex
hull of the local control points [8,11,12]. This leads to the simple rule that the B-spline control
boundary, i.e., the convex hull of the B-spline control point, must be fully contained inside
the feasible area of the polytope map [13–15]. The rule has been applied widely in the
literature to solve different types of motion planning problems. For example, in [16], the
authors generalize the methods for motion planning with B-spline curves for constrained
flatness systems. Reference [17] proposed a path planner using a B-spline curve with an
obstacle avoidance property for heavy mining vehicles while [18] introduced the solution
for the same problem but for Maritime autonomous surface ships. In [19], the authors
further ensured the constraints on the B-spline path’s curvature for autonomous cars.

The approach of using B-spline parametrization, however, is conservative, as illus-
trated in Figure 1, which has been obtained with the Navigation with Polytopes toolbox
(https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes, accessed on 19
February 2023). Here, the green area depicts the control boundary for the second-degree
B-spline curve in red, with a portion of it highlighted in yellow. Even though the entire
curve does not leave the feasible area, the control boundary is not fully contained in the
feasible area. In other words, this path, despite being safe, cannot be represented with a
feasible B-spline. Generally speaking, the control boundaries for B-spline control points are
relatively large compared to the area covered by the curve itself.

B-spline reference path Interval of the curve B-spline control boundary
Bézier control boundary B-spline control points Bézier control points

Figure 1. B-spline path planned within a polytope map with the Navigation with Polytopes
(https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes, accessed on 19 February
2023) toolbox.

This conservatism can be reduced based on prior work in the computer-aided design
(CAD) community regarding the conversion between B-splines and equivalent Bézier
curves [20,21]. As shown in Figure 1 with the magenta triangle, the control boundary of the
corresponding Bézier curve is fully contained inside the feasible region of the polytopic map.
In fact, for the same curve, the control boundary of the Bézier curve (magenta triangle)

https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes


Sensors 2023, 23, 3532 3 of 23

is only one-quarter the size of the original B-spline control boundary (green triangle).
Thus, the usage of equivalent Bézier control points allows the design of the geometrical
constraints for the computed curve to be more flexible.

A new constraint formulation for a B-spline path to stay within the feasible region of
the polytope map was derived in [8]. However, the calculation of the B-spline-to-Bézier
conversion parameters is not easy and is usually inefficient to compute via recursive
functions, due to the original recursive formulation of the B-spline curve. For example,
in [20], the authors can only derive a calculation of the conversion parameters within some
middle intervals of a B-spline curve when having a sufficiently large number of control
points while neglecting the rest (for more details, see Remark 1).

Sharing the line of research with the existing works [8,9] and serving as their extensions,
this paper concentrates on applying two efficient tools: the polytope map of the surrounding
environment and the equivalent Bézier format of a B-spline curve to solve the path planning
problem for mobile robots. In particular, the following novelties are presented compared to
the current state of the literature:

1. A complete procedure to construct the polytope map from a standard occupancy grid
map and seek an appropriate corridor (sequence of connected polytopes), leading to
the destination.

2. A new algorithm to calculate the B-spline-to-Bézier conversion matrix of a uniform
B-spline curve: It takes into account the differences between each interval of the whole
curve and the dependencies on the total number of control points as well as the degree
of the curve.

3. New path planning constraints for a B-spline path to stay inside a sequence of
connected polytopes in 2D. The equivalent Bézier representation is introduced in
two variants:

(a) Constraints that use the minimal number of control points [8];
(b) Constraints that guarantee the existence of a valid path by providing an alge-

braic solution [9].

4. Navigation with Polytopes (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_
with_polytopes, accessed on 19 February 2023) toolbox: It comes as a complete
Python package and serves as a framework for direct and quick implementation
of existing polytope-based navigation control techniques on a realistic grid map of
the environment with ROS (robot operating system) compatibility (c.f. Figure 1). It
provides the following features:

(a) Construction of a polytope map from a standard grid map with consideration
of the robot’s dimension and possible noises.

(b) Search for a sequence of connected polytopes (i.e., a polytopic corridor) con-
necting two given points with minimal distance.

(c) Optimal B-spline path planning algorithm using the B-spline-to-Bézier conver-
sion with multiple choices of algorithms [8,9].

(d) Library for calculating and storing the B-spline-to-Bézier conversion matrix.

The remainder of the paper is organized as follows. The path planning problem and
relevant details are formulated in Section 2. Next, Section 3 introduces the process of
constructing a polytope map from a grid map. Section 4 introduces the notions of B-splines
and its equivalent Bézier representation as well as the calculation of the B-spline-to-Bézier
conversion matrix. Different path-planning constraint formulations are detailed in Section 5.
Then, Section 6 introduces the Navigation with Polytopes toolbox. The results of the validation
process using simulations and experiments are presented in Section 7 and further discussed
in Section 8. Finally, Section 9 presents the conclusions and remarks on future work.

2. Problem Description

This paper addresses the problem of planning a 2D optimal reference path for a
mobile robot to navigate between two points given the standard occupancy grid map of the

https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes


Sensors 2023, 23, 3532 4 of 23

surrounding environment. More specifically, the principal tool in our work is the polytope
map, which describes the safety region with non-overlapping convex polytopes. It was
created from the grid map via a decomposition algorithm. Within the polytope map, an
appropriate sequence of connected polytopes connecting the two end-points was selected
by using a graph-search algorithm. The sequence is denoted as follows:

S , S1 ∪ S2 ∪ · · · ∪ Sq, (1)

where {S1, . . . , Sq} is an ordered list of q ≥ 2 connected polytopes. Any pair of two
consecutively connected polytopes (Si, Si+1) share a common edge denoted by Ei:

Ei = Si ∩ Si+1. (2)

It is also assumed that the starting and ending poses (Ps, Pf ) belong to the first and
last polytopes, respectively:

Ps ∈ S1, Pf ∈ Sq. (3)

This allows for safe travel from Ps to Pf by staying inside the set S . Given the sequence
polytopes, a smooth geometric path p(t) (with t being the curve variable, which can
represent the path length, pseudo-time increment, etc.) was generated:

p(t) : [ts, t f ]→ R2, (4)

which is required to satisfy the end-point constraints as well as the safety condition

p(ts) = Ps, p(t f ) = Pf , (5)

p(t) ∈ S , ∀t ∈ [ts, t f ]. (6)

In this work, the geometrical properties of B-spline curves are exploited (i.e., endpoint
interpolation and local convexity) in order to generate a reference B-spline path satisfying
the aforementioned constraints (5) and (6). Furthermore, the equivalent Bézier represen-
tation of a B-spline curve was used to reduce the conservativeness of the path planning
problem. The whole planning process will be detailed sequentially throughout the rest of
the paper, while the next section begins with the construction of the polytope map from a
grid map.

3. Polytope Map

This section focuses on modeling the free space environment by describing it as a
continuous polytope map. Contrary to the discrete-based occupancy grid representation,
the polytope map is a continuous representation of the environment. It is defined as a
list of connected 2D convex polytopes within the free space of an environment. A general
convention of each polytope involves a list of ordered vertices.

3.1. Construction of Polytope Map from an Occupancy Grid Map

This section presents an algorithm for the conversion of a standard grid map into a
polytope map. The grid map can either be a binary map or a ternary representation, which
is a common map used in ROS for standard navigation purposes. For example, Figure 2a
shows an occupancy grid map of a simulation environment provided by ROBOTIS for the
TurtleBot3 mobile robot [22]. The map is obtained by using the ROS package gmapping [10].



Sensors 2023, 23, 3532 5 of 23

(a) (b) (c)

(d) (e) (f)
Figure 2. Illustration of the procedure for creating a polytope map from a standard grid map.
(a) Occupancy grid map; (b) free space boundary extraction; (c) obstacle boundaries extraction;
(d) free region with holes; (e) partition of free region into connected polytopes; (f) polytope map
versus occupancy grid map.

Below, one can find the Python process, which is used to construct the polytope map
from a standard occupancy grid map (with a corresponding illustration on the aforemen-
tioned grid map of TurtleBot3):

1. Extract the outer boundary of the complete map using the function findContours with
the option RETR_EXTERNAL of the OpenCV toolbox (https://opencv.org/, accessed
on 19 February 2023) as shown in Figure 2b.

2. Extract the boundaries for all of the obstacles by using the same function findContours
with the option RETR_LIST as shown in Figure 2c.

3. Simplify the contours obtained using the RDP (Ramer–Douglas–Peucker) algorithm
(https://github.com/biran0079/crdp, accessed on 19 February 2023) with two param-
eters εrdp,o for the outer boundary and εrdp,i for inner obstacles [23].

4. Shrink the outer boundary and enlarge the obstacles by a safety offset op by using
the Gdspy toolbox (https://github.com/heitzmann/gdspy, accessed on 19 February
2023) and apply the Boolean operation to remove obstacles from the outer boundary
polytope, as shown in Figure 2d.

5. Partition the obstacle-free polytope (possibly with holes) into connected polytopes
by using Mark Bayazit’s algorithm (https://github.com/wsilva32/poly_decomp.py,
accessed on 19 February 2023), as shown in Figure 2e.

The result of the entire procedure is the polytope map shown in Figure 2f , where it is
overlaid with the original grid map. It can be seen that the free space in the environment
has shrunk far from the occupied cells (i.e., obstacles) and is divided into smaller and
connected polytopes. In comparison with the usage of the configuration space map in
safe navigation [2], the proposed approach is slightly simpler, i.e., it simply applies an
offset with the safety distance op to all objects within the map. In contrast to this, the
configuration space method requires calculating the Minkowski sums of the robot’s shape
and the objects.

3.2. Finding of Appropriate Sequence of Polytopes for Navigation

After obtaining a polytope map, the next step is to find a sequence of connected
polytopes (i.e., defined as an ordered list of a finite number of polytopes), which forms a
corridor connecting the given initial point to the final goal. Among the sequences, two
consecutive polytopes share a common edge (c.f. Figures 3 and 4). In order to find that
sequence, the first step is to represent the polytope map as a graph, as shown in Figure 3, in

https://opencv.org/
https://github.com/biran0079/crdp
https://github.com/heitzmann/gdspy
https://github.com/wsilva32/poly_decomp.py


Sensors 2023, 23, 3532 6 of 23

which each polytope is a node. Two nodes are considered “connected to each other” when
they share a common edge (e.g., the red edge between polytopes A and B). The connection
also evaluates the distance between the two polytopes by using the Euclidean distance
between their center points. Then a graph search can be performed in order to obtain the
shortest sequence connecting two polytopes, which contain the start and end poses. The
complete process of finding such a sequence is as follows:

1. Each pair of polytopes is examined to find out if they share a common edge. If yes,
then they are recognized as a connected pair.

2. From the information, an adjacency graph is created (c.f Figure 3b), which presents all
polytopes as nodes and their connections to other polytopes.

3. Then a weighted graph is created from the adjacency graph by adding the distances
between the center points of any pairs of connected polytopes.

4. Next, there is a search for the starting and ending polytopes by checking which
polytopes contain the points (Ps, Pf ).

5. A graph search algorithm can then be implemented on the weighted graph to obtain
the sequence of polytopes S , S1 ∪ S2 ∪ · · · ∪ Sq with minimal travel distance.

A

B
C D

E

FG H

I

JKL

(a)

A

B

C

D

E

F

G

H

I

J

KL

(b)
Figure 3. Illustration of a polytope map of an environment with four obstacles (black) and its graph
representation. (a) Sample polytope map; (b) graph representation of the polytope map.

3.3. Transition Zone and Extended Polytope

As an intermediate step toward the full navigation task between (Ps, Pf ), consider
the problem of computing a path between two connected polytopes of the sequence S (6).
In order to avoid collisions with obstacles, a so-called transition zone is introduced, which
is a subset of the second polytope and whose union with the first polytope is convex (cf.
Figure 4). Thus, a robot can travel safely from the first polytope to the second one by
adding a transit at the transition zone.

E1

E2

S1 S2 S3 T1 T2 S1 S2 S3 S2,3

Figure 4. Illustration of connected polytopes, transition zones, and extended polytopes, according to
Definitions 1 and 2.



Sensors 2023, 23, 3532 7 of 23

Definition 1 (Transition zone [8,9]). The transition zone Ti is defined for two connected polytopes
Si and Si+1 from (2) as

Ti = Si+1 ∩ (Si|Ei), (7)

in which Ei is the common edge as defined in (2) and the operation (Si|Ei) gives the (possibly un-
bounded) polytope formed by the half-space representation of Si without the constraint corresponding
to the edge Ei.

Definition 2 (Extended polytope [8,9]). Si,i+1 is defined as the extension of the polytope Si
toward the polytope Si+1:

Si,i+1 = Si ∪ Ti, (8)

with Ti the transition zone defined as in (7).

For consistency, the last extended polytope is also the last polytope, i.e., Sq,q+1 , Sq.
Any extended polytope Si,i+1 as defined in (8) is convex and the transition zone can also be
achieved from the corresponding extended polytopes:

Ti = Si,i+1 ∩ Si+1 = Si,i+1 ∩ Si+1,i+2. (9)

This section presents the search for the sequence of connected polytopes leading to the
goal. The next section introduces an interesting path parametrization, which is called the B-
spline curve, whose geometrical properties allow us to control its shape via intuitive tuning
of the curve parameters and, hence, easily constrain the path to stay within a predefined
sequence of connected polytopes.

4. B-spline and Equivalent Bézier Curves

This section presents the notions of B-spline curves and their equivalent Bézier rep-
resentations. The focus is on their definitions, transformations, and further geometrical
properties, while more details on both types of curves could be found in the literature
[11,12,15,18,20,21]. The same notations as in some of the previous work [8,9] is used
intentionally, for easy reference.

4.1. Definition of B-spline Curves

A clamped uniform B-spline curve z(t) : [ts, t f ] → Rm of degree d is defined with n
control points Pi ∈ Rm (i ∈ {1, . . . , n}, n ≥ d + 1) as

z(t) =
n

∑
i=1

PiBi,d,ξ(t) = PBd,ξ(t), t ∈ [ts, t f ], (10)

with P , [P1 · · · Pn] ∈ Rm×n gathering the control points that control the shape of
the curve and needs to be defined in the path planning problem. The vector Bd,ξ(t) ,
[B1,d,ξ(t) . . . Bn,d,ξ(t)]> : R → Rn contains the B-spline basis functions of the degree d,
whose recursive definition is given by [15,16,24]

Bi,0,ξ(t) =

{
1, for τi ≤ t ≤ τi+1,
0, otherwise ,

∀i ∈ {1, . . . , n + d}, (11)

Bi,d,ξ(t) =
t− τi

τi+d − τi
Bi,d−1,ξ(t) +

τi+d+1 − t
τi+d+1 − τi+1

Bi+1,d−1,ξ(t), ∀d ≥ 1. (12)

Here, the time instances τj are clamped and uniformly distributed in a knot vector ξ:



Sensors 2023, 23, 3532 8 of 23

ξ = {τ1 ≤ τ2 ≤ · · · ≤ τn+d+1}, (13)

τj =


ts, 1 ≤ j ≤ d,
ts + (j− d− 1)∆, d + 1 ≤ j ≤ n + 1,
t f , n + 2 ≤ j ≤ n + d + 1,

(14)

with ∆ = (t f − ts)/(n − d). The clamped and uniform B-spline curve z(t) from (10) has
exactly (n− d) consecutive intervals equally distributed within [ts, t f ]. The partial curve
within the jth interval (j ∈ {1, . . . , n− d}) is given by

z(j, t) , z(t), t ∈ [ts + (j− 1)∆, ts + j∆). (15)

The B-spline curve z(t) as defined in (10)–(14) possesses the following properties:

(P1) The jth interval z(j, t) of the curve as in (15) only depends on its (d + 1) neighbor
control points. More specifically, z(j, t) stays within their convex hull:

z(j, t) =
j+d

∑
i=j

PiBi,d,ξ(t) ∈ Conv{Pj}, (16)

with Pj , [Pj · · · Pj+d] containing (d + 1) consecutive control points from (10).
(P2) The first and last control points P1 and Pn from (10) are also the starting and ending

points of the curve z(t):
z(ts) = P1, z(t f ) = Pn. (17)

(P3) Derivatives of B-spline basis functions can be expressed as a linear combination of
B-spline basis functions:

∂Bd,ξ(t)
∂t

= Md,d−1Ld,d−1Bd,ξ(t), (18)

with Bd,ξ as in (10). The two matrices Md,d−1 ∈ Rn×(n−1) and Ld,d−1 ∈ R(n−1)×n are
given in Theorems 4.1–4.3 of reference [16].

Various works in the literature have employed the aforementioned properties to
adapt the B-spline framework to the problems of path/trajectory planning with obstacle
avoidance and waypoint constraints. For example, in [11,14], the authors use B-splines
to generate trajectories for a quadcopter system with waypoint constraints. In [13,15,18],
B-spline is introduced as a general framework for obstacle and collision avoidance for more
aerial vehicles. However, the local B-spline control boundary of each interval Conv{Pj} as
in (16) is relatively large in comparison with the curve interval z(j, t) itself (c.f. Figure 1)
[8,20], which causes unnecessary extra conservativeness to the motion planning problems.
This problem is solved in the next section with the introduction of the equivalent Bézier
representation of the B-spline curve, which provides us with a tighter local control boundary
for each section of the curve.

4.2. Local Equivalent Bézier Representation

As proven in various works from the CAD (computer-aided design) community [20,21],
any interval of a B-spline curve, as defined in (10), e.g., z(j, t) from (15), is also a Bézier
curve of the same degree:

z(j, t) =
d+1

∑
i=1

P(j−1)d+iBi,d,ξ j
(t). (19)



Sensors 2023, 23, 3532 9 of 23

Here, Pk is the Bézier control point (k ∈ {(j− 1)d + 1, . . . , jd + 1}). The formulation
uses the same basis function Bi,d,ξ j

as defined in (11) and (12), but with a new knot vector

ξ j constructed by repeating the start and end of the interval

ξ j = {ts + (j− 1)∆, . . . , ts + (j− 1)∆︸ ︷︷ ︸
d+1 knots

, ts + j∆, . . . , ts + j∆︸ ︷︷ ︸
d+1 knots

}, (20)

with (ts + (j − 1)∆, ts + j∆) as in (15). The Bézier control points Pk (k ∈ {(j − 1)d +
1, . . . , jd + 1}) as used in (19) can be calculated from the (d + 1) original B-spline control
points {Pj, . . . , Pj+d} by using the following matrix transformation:

Pj = Pj A(d, n, j). (21)

Here, Pj , [P(j−1)d+1 · · · Pjd+1] and Pj , [Pj · · · Pj+d] consist of (d + 1) Bézier and B-
spline control points, respectively. The B-spline-to-Bézier conversion matrix
A(d, n, j) ∈ R(d+1)×(d+1) is recursively defined in [20], while a new calculation method for
the matrix is proposed in the next section. More interestingly, every Bézier control point is
a convex combination of the B-spline control points [20]. This means that every column
in the matrix A(d, n, j) adds up to 1. Since the total number of intervals is fixed at (n− d)
from (15), it is possible to calculate A(d, n, j) for all j ∈ [1, . . . , n− d], then reformulate the
transformation between the Bézier and B-spline control points as follows:

P = PA(d, n), (22)

with P , [P1 · · · Pn] consisting of all the Bézier control points and P as in (10). The total
number of Bézier control points needed to express the whole B-spline curve of degree d is

n = (n− d)d + 1, (23)

where n is the number of B-spline control points from (10).
As a Bézier curve is also a B-spline curve, the same properties of a local convex hull

container (16) and endpoint interpolation (17) are applied to any interval of the curve. This
helps to extend the geometrical properties (16)–(17) of the B-spline curve z(t) by applying
(16) and (17) to each jth interval z(j, t) as in (19) of the curve for all j ∈ {1, . . . , n− d}:
(P1*) The jth interval z(j, t) stays within the convex hull of its (d + 1) Bézier control points,

z(j, t) ∈ Conv{Pj} ⊂ Conv{Pj}, (24)

with Pj, Pj being the B-spline and equivalent Bézier control points from (21). The
convexity property (24) is significantly tighter than the standard one in (16), as proven
in [21] and illustrated hereinafter.

(P2*) The B-spline curve z(t) passes through (n− d + 1) waypoints, which can be deter-
mined by using only the B-spline control points (including the first and last control
points as two endpoints):

z(ts + (j− 1)∆) = P(j−1)d+1, (25)

for all j ∈ {1, . . . , n − d + 1}. The Bézier control points P(j−1)d+1 are actually ex-
pressed in terms of the B-spline control points (22). The proof is straightforward
as (P(j−1)d+1, P(j−1)d+1) are the two Bézier control points, which start and end the
jth interval, respectively. Hence, they belong to the curve according to the property
P2 (17).



Sensors 2023, 23, 3532 10 of 23

The next section introduces the new algorithm used for calculating the local transfor-
mation matrix A(d, n, j) from (21) for the jth interval and the complete matrix A(d, n) as in
(22) for the whole B-spline curve.

4.3. Calculation of B-spline-to-Bézier Conversion Matrix

The core idea of the proposed algorithms is to consider the matrix A(d, n, j) as a
variable to solve for in (21). For the predefined jth interval of a B-spline curve (i.e., of the
degree d and having n control points), a sufficient number of sets consisting of randomly
generated B-spline control points is collected together with their equivalent Bézier control
points. Then, A(d, n, j) is solved by using the linear Equation (21). The process is repeated
for all j ∈ {1, . . . , n − d}, except for some special circumstances (i.e., the repetition of
values of some middle matrices as discussed in Section 4.3.3); the results are gathered
into the complete transformation matrix A(d, n), as in (22). Note that the B-spline curve
is formulated in an m-dimensional space in (10), but only 1D control points are needed to
calculate the matrices. Therefore, this section is restricted to 1D points P , [P1 · · · Pn] ∈
R1×n and 1D function z(t) as in (10).

4.3.1. Equivalent Bézier Control Points of One Interval

It is possible to solve the equivalent Bézier control points Pj of the jth interval of the
B-spline curve z(t) from (10) given the specific values of the B-spline control points P and
the degree d. The idea is to uniformly sample the jth time interval [ts + (j− 1)∆, ts + j∆)
into (d + 1) instants: {(1)tj, . . . ,(d+1) tj} (e.g., by using linespace) and solve the following
linear equation for Pj:

Bd,jPj =


z
(
(1)tj

)
...

z
(
(d+1)tj

)
, (26)

with the square matrix Bd,j ∈ R(d+1)×(d+1) defined as:

Bd,j =


B1,d,ξ j

(
(1)tj

)
. . . Bd+1,d,ξ j

(
(1)tj

)
...

. . .
...

B1,d,ξ j

(
(d+1)tj

)
. . . Bd+1,d,ξ j

(
(d+1)tj

)
.

4.3.2. Conversion Matrix of One Interval

Next, (d + 1) sets of n control points are randomly selected and denoted as (1)P, . . . ,(d+1) P.
We further define (1)Pj, . . . ,(d+1) Pj as the control points of the jth interval taken from
(1)P, . . . ,(d+1) P, respectively. Since the conversion matrix A(d, n, j) remains the same for
different values of the control points (i.e., but not for different numbers of control points),
the following equation holds true:

(1)Pj
...

(d+1)Pj

A(d, n, j) =


(1)Pj

...
(d+1)Pj

, (27)

in which (i)Pj is calculated by using (26). Solving (27) provides the conversion matrix
A(d, n, j) for the jth interval.

Remark 1. In [20], the conversion matrices are calculated by using a recursive definition and
not by directly solving as proposed in (27). Furthermore, the calculation in [20] treats the matrix
A(d, n, j) the same for all the intervals and for all control point numbers (i.e., A(d, n, j) is simplified
to A(d) in [20]), which is not true. The order of j, with respect to the total number of intervals



Sensors 2023, 23, 3532 11 of 23

(n− d), plays an important role in the calculation; hence, the matrix needs to be considered as
A(d, n, j) as in our work. For more details, the algorithm given in [20] calculates the value of
A(d, n, j) only for j ∈ {d, . . . , n − 2d + 1} and n ≥ 3d − 1. It is just a subset of our general
consideration of (n− d) intervals, i.e., j ∈ {1, . . . , n− d} and n ≥ d + 1, which are due to the
natural definition of a B-spline curve (10).

4.3.3. Conversion Matrix of the Whole Curve

Theoretically, one can repeat solving (27) for all j ∈ {1, . . . , n − d} with the same
sets of control points (1)P, . . . ,(d+1) P in order to obtain (n − d) conversion matrices
A(d, n, j) ∈ R(d+1)×(d+1) for (n− d) intervals. However, according to the analysis in [20],
the values of the conversion matrix A(d, n, j) remain the same for j ∈ {d, . . . , n− 2d + 1}
when n ≥ 3d− 1 (i.e., the domain in which the algorithm given in [20] is validated). There-
fore, if our algorithm runs into these distinguished cases, it does not repeat the computation
but makes use of the previously stored values.

These matrices are then stacked into the complete matrix A(d, n) ∈ Rn×n with n
number of equivalent Bézier control points (23). The ending point of an interval is also
the starting point of the next one and these points should not be repeated in the complete
conversion matrix. The reader is referred to Figure 3 in reference [20] for an illustrative
example of how to stack these matrices.

4.3.4. Evaluation of the B-spline-to-Bézier Conversion Algorithm

Figure 5 shows the calculation time (in milliseconds) of our proposed algorithm
(implemented in Python on a normal personal computer). The complete conversion matrix
A(d, n) from (22) is computed with the curve degrees d ∈ {2, 3, 4} and with the number of
control points n up to 50. It can be observed that a higher degree requires more computation
time. More interestingly, when increasing the number of control points n, the computation
time grows at the beginning but then seems to be steady. The reason is due to the special
case of n ≥ 3d − 1 in which the algorithm can make use of the repeated value of the
conversion matrix without a recalculation, as mentioned in Section 4.3.3. Even though the
calculation time is only up to a maximum of {20, 10, 4} milliseconds for the {4, 3, 2}-degree
cases, respectively, in practice, it is recommended to calculate these conversion matrices
beforehand for a predicted range of n (e.g., up to hundreds) and a specific value of degree d,
and then store them for online usage with real-time applications. During the online process,
the calculation of A(d, n) is only performed when a new value is needed, and the result
can be stored in a bank for future usage.

5 10 15 20 25 30 35 40 45 50

2

8

18
20

Number of control points (n)

C
om

p
u
ta
ti
on

ti
m
e
(m

s)

degree d=4
degree d=3
degree d=2

Figure 5. Computation time of the B-spline-to-Bézier conversion algorithm with respect to the
number of control points and the curve’s degree.

4.4. Application of B-spline-to-Bézier Conversion on 2D Path Planning

This section presents an application of the B-spline-to-Bézier conversion on 2D path
planning for mobile robots in simulation. A case study of path planning in a polytopic
corridor with waypoint constraints is further discussed, in which the advantages of using
the B-spline-to-Bézier conversion are clearly demonstrated.



Sensors 2023, 23, 3532 12 of 23

Figure 6 presents the path planning result with the B-spline-to-Bézier conversion
method proposed in Section 4.3. The reference B-spline path (plotted in a solid green line)
is required to stay entirely within the polytopic corridor and pass through three waypoints
W = {(0, 3), (2, 3), (0.5, 2)}, which are intentionally chosen to be inside the corridor.

The first step is to convert the B-spline control points (10) to the equivalent Bézier
points (22) and then apply Variant 1 introduced in Section 5.1 for placing the Bézier points,
such that the curve stays inside the connected polytopes. It includes the ending point
constraints, i.e., the first and last control points equal to the first and last waypoints,
respectively. Finally, the extended property P2* (25) is applied to constrain the 9th Bézier
control point to be the middle waypoint (2, 3).

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

W1

W2

W3

B-spline boundary Conv{P 4} Bézier boundary Conv{P 4}
B-spline control points Bézier control points

B-spline path z(t) 4th interval z(4, t)

B-spline control points P 4 Bézier control points P 4

Way-points W

Figure 6. Path planning results in a polytopic corridor using fourth-order B-spline curves and a
comparison between B-spline versus Bézier boundaries.

In Figure 6, the B-spline control points are plotted with square marks while the
equivalent Bézier control points are plotted with circle marks. The fourth interval and
its B-spline control points are highlighted in blue, which shows that the B-spline control
boundary is relatively large in comparison with the curve itself and violates the safety
constraint. On the other hand, the Bézier control boundary of this interval (plotted with
red circle marks and filled with pink) is significantly smaller and completely stays inside
the corridor. The 9th Bézier control point (marked with a red flag) is placed exactly at
(2, 3), which enforces the path to pass through this waypoint and, hence, satisfies all of
the requirements.

The next section introduces the constraint formulations that make use of the equivalent
Bézier representation for solving the path planning problem in a sequence of polytopes.
The benefits of using the Bézier format over the original B-spline formulation are also
highlighted via two variants of constraints.

5. B-spline Path Planning Algorithms in a Sequence of Connected Polytopes

This section presents our approaches for optimally placing the control points {P1, . . . , Pn},
such that the B-spline curve z(t), as defined in (10), satisfies all of the requirements of our
path generation problem (4)–(6) and has a minimal length. For a quick summary, the curve
needs to start at a point Ps, end at another point Pf , and completely stay inside the safe
region S :

z(ts) = Ps, z(t f ) = Pf , z(t) ∈ S , (28)



Sensors 2023, 23, 3532 13 of 23

with S = S1 ∪ S2 ∪ · · · ∪ Sq (q ≥ 2) from (6) and {Ps, Pf } the start and end poses from (17).
Hereinafter, two different formulations of constraints are introduced in order to tackle the
aforementioned problems, one using a minimal number of control points and the other
requiring more control points but guaranteeing the existence of a solution.

5.1. Variant 1: Constraint Formulation with a Minimal Number of Control Points

Proposition 1. The requirements (28) are satisfied if the following conditions are guaranteed:

(C1) Number of control points:
n = q + d. (29)

(C2) Start and end points:
P1 = Ps, Pq+d = Pf . (30)

(C3) All the Bézier control points in one interval belong to one extended polytope (8):

Pk ∈ Sj,j+1, ∀ Pk ∈ Pj and ∀ j ∈ {1, . . . , q}, (31)

with Pj consisting of (d + 1) Bézier control points given in terms of (d + 1) B-spline control
points Pj as in (21); Sj,j+1 is the extended polytope as in (8).

Proof. At first, the starting and ending constraints from (28) are satisfied by condition C2
(37) due to the endpoint interpolation property (17) of the B-spline curves.

Next, by using n = d + q control points as in (29), the curve z(t) from (10) has q
intervals. Within each interval j, j ∈ {1, . . . , q}, the following equation holds:

z(j, t) ∈ Conv{Pj} ⊆ Sj,j+1, (32)

in which the convexity property is given in (24) and the latter is due to the fact that all
(d + 1) points in Pj stay inside Sj,j+1 as constrained by (31). The result in (32) leads to:

z(t) ∈
q⋃

j=1

Sj,j+1 ≡ S , t ∈ [ts, t f ]. (33)

This completes the proof.

Remark 2. Using the Bézier representation (19) allows us to formulate the constraint (31), such
that it is possible to enforce “each interval z(j, t) to be inside each extended polytope” as proven in
(32). This cannot be done if the original B-spline convexity property (16) is employed instead. The
reason is that two consecutive B-spline boundaries share d common points (e.g., Pj = [Pj · · · Pj+d]
and Pj+1 = [Pj+1 · · · Pj+d+1] from (16)). This leads to the fact that if the B-spline control points
are employed in condition C3 (31), i.e., Pk ∈ Sj,j+1, ∀Pk ∈ Pj, ∀j ∈ {1, . . . , q}, then, the following
necessary condition is required:

j+d⋂
i=j

Si,i+1 6= ∅, ∀j ∈ {1, . . . , q}, (34)

which is clearly not guaranteed for the extended polytopes defined in (8).
On the other hand, there is only one common point for the Bézier representation (24) (e.g., Pj

and Pj+1 share one common point Pjd+1). Therefore, the necessary condition for the solution of (31)
to exist is already satisfied, i.e.,

Sj,j+1 ∩ Sj+1,j+2 6= ∅, ∀j ∈ {1, . . . , q− 1}, (35)

with Sj,j+1 ∩ Sj+1,j+2 = Tj as defined in (7) and (8).



Sensors 2023, 23, 3532 14 of 23

This approach exploits the property of the equivalent Bézier representation, which
allows formulating the control points for each interval independently, as in (26). Therefore,
it is possible to impose the constraint of “each interval within each extended polytope”,
which appears to be the choice with the minimum number of control points in our analysis.
However, the existence of the solution for the set of constraints (29)–(31) is not always
guaranteed. This issue, unfortunately, may cause bugs and become stuck during online
deployment. Therefore, we introduce another approach that requires more control points
(i.e., more decision variables and heavier computation) but provides a guaranteed solution.

5.2. Variant 2: Constraint Formulation with Guaranteed Solution

Proposition 2. The requirements (28) are satisfied if the B-spline control points of z(t) are chosen
according to the following conditions:

(C1) Number of B-spline control points:

n = d(q− 1) + 2, (36)

which allows the curve to have d(q− 2) + 2 intervals as given in (15).
(C2) Start and end points:

P1 = Ps, Pn = Pf . (37)

with n as in (36).
(C3) First and last intervals stay in the first and last (i.e., Sq,q+1 ≡ Sq) extended polytopes (8),

respectively:
P1 ∈ S1,2, Pd(q−1)+2 ∈ Sq,q+1, (38)

(C4) and every other extended polytope contains d consecutive intervals:

Pj ∈ Sk,k+1,∀j ∈ {d(k− 2) + 2, . . . , d(k− 1) + 1},
∀k ∈ {2, . . . , q− 1}, (39)

with Pj consisting of (d + 1) Bézier control points (which control the jth interval) given in
terms of (d + 1) B-spline control points Pj as in (21) and Sk,k+1 as the extended polytope in
(8).

Proof. The proof is similar to the one in Proposition 1, except for the existence of a feasible
solution. Therefore, only its sketch is presented hereinafter:

(1) Condition C2 (37) helps to ensure the start and end points of the path.
(2) Condition C1 provides a sufficient number of intervals of the curve for the existence

of a feasible solution. All of the intervals are then constrained to stay within the
safe region S by two conditions C3–C4 because each Bézier control boundary (i.e.,
the convex hull of the corresponding (d + 1) Bézier control points (24)) is inside one
extended polytope.

(3) Solutions for the complete problem (36)–(39) always exist. One can be found by
placing the d(q− 1) + 2 original B-spline control points according to two conditions:

(i) The first and last points chosen according to (37).
(ii) Having d points in every transition zone Tk:

{P(k−1)d+2, . . . , Pkd+1} ∈ Tk, ∀k ∈ {1, . . . , q− 1}, (40)

which is feasible since the transition Tk is not empty for all k ∈ {1, . . . , q− 1} as defined
in (7). The next step is to prove that condition (40) ensures the satisfaction of the two
conditions C3–C4 (38)–(39) on the Bézier control points.

For C3, regarding the first interval of the curve, it is true that P1 = Ps ∈ S1,2 from (37)
and {P2, . . . , Pd+1} ∈ T1 ⊆ S1,2 which ensure P1 ∈ S1,2 as Conv{P1} ⊂ Conv{P1} from



Sensors 2023, 23, 3532 15 of 23

(21). A similar argument is applied to the last interval of the curve; together, they lead to
the satisfaction of (37).

Regarding C4, every extended polytope Sk,k+1 with k ∈ {2, . . . , q − 1} contains 2d
B-spline control points:

{P(k−2)d+2, . . . , Pkd+1} ∈ Sk,k+1, (41)

which is due to (40) and the fact that both Tk ⊂ Sk,k+1 and Tk+1 ⊂ Sk,k+1 (7)–(9). Then, for
d consecutive intervals (k− 2)d + 2, . . . , (k− 1)d + 1, their Bézier control points satisfy:

with Pi, Pi as in (21). Note that we have Conv{Pi} ⊂ Sk,k+1 since Pi ∈ Sk,k+1,
∀i ∈ [(k − 2)d + 2, . . . , (k − 1)d + 1] due to (41). Finally, the condition (39) is ensured
and the resulting B-spline path satisfies all of the requirements (28). This also completes
the proof.

Remark 3. In comparison with our approach of using a “minimal number of control points" as in
(29)–(31), Proposition 2 adds d intervals to a middle polytope instead of using only one interval as
in (31). It allows controlling the curve’s shape within each polytope completely and independently
and, thus, always guarantee the existence of the solution. Furthermore, the feasible solution (40) is
built upon the B-spline format. It is obviously only a subset of the Bézier constraints (39), while
both of them can ensure the path planning requirements (28). As a result, we actually gain more
feasibility and flexibility when switching to the equivalent Bézier format.

5.3. Path Generation Problem with Minimal Length

This section presents the complete optimization problem used to solve the B-spline
reference path satisfying the constraints (28) and minimizing the curve’s length. The
property P3 in (18) of the B-spline curve z(t) from (10) is exploited in order to formulate
the length cost into a quadratic function of the control points Pi ∈ R2, i ∈ {1, . . . , n} (with
n, the number of control points, chosen as in (29) or (36)). By denoting P , [P1 · · · Pn] from
(10), the optimization problem is given by:

P∗ = arg min
P

∫ t f

ts
‖ż(t)‖2dt, (42)

subject to constraints (29)–(31) or (36)–(39) depending on the variants.
The property (18) of the B-spline curve leads to:

ż(t) = PMd,d−1Ld,d−1Bd,ξ(t) =
n

∑
i=1

QiBi,d,ξ(t), (43)

with Qi ∈ R2 being the ith column of Q = PMd,d−1Ld,d−1 ∈ R2×2q. Therefore, the optimiza-
tion problem (42) is reformulated into:

P∗ = arg min
P

n

∑
i=1

n

∑
j=1

Q>i Qj

∫ t f

ts
Bi,d,ξ(t)Bj,d,ξ(t)dt, (44)

subject to constraints (29)–(31) or (36)–(39) depending on the variants.
which clearly has a quadratic cost function since the integral terms are independent of the
decision variables P = [P1 · · · Pn].

Finally, the reference path p(t) as required in (4)–(6) is taken as:

p(t) = P∗Bd,ξ(t), (45)

in which the optimal control points P∗ are obtained from solving the optimization problem
(44) and the B-spline basis functions Bd,ξ as used in (10) is defined with [ts, t f ] = [0, 1].

The theoretical background of our path planning algorithms using B-spline parametriza-
tion is complete. The next section will introduce the public repository containing the
implementation of the whole path planning process and its usage guidelines.



Sensors 2023, 23, 3532 16 of 23

6. Navigation with Polytopes Toolbox

The algorithms discussed throughout this paper were implemented in Python, pub-
lished and maintained as the Navigation with Polytopes (https://gitlab.rob.uni-luebeck.
de/robPublic/navigation_with_polytopes, accessed on 19 February 2023) toolbox. The
toolbox can be used either as stand-alone scripts for research purposes or as a global path
planner that is compatible with ROS (robot operating system) navigation tools. It provides
a framework for the construction of a polytope map from a standard occupancy grid map,
searching for an appropriate sequence of polytopes and planning a minimal-length path
with different options on the B-spline or Bézier characterizations.

6.1. Introduction to the Toolbox

The repository of the toolbox (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_
with_polytopes, accessed on 19 February 2023) is organized in the following structure:

• navigation_with_polytopes—toolbox with source code.
• navigation_with_polytope_ros—integration of the toolbox into ROS.
• Examples–sample python scripts for the illustration of the toolbox.

It provides three main features:

• Constructs a polytope map from a grid map.
• Finds an appropriate sequence of polytopes.
• Plans a B-spline path with different algorithms.

The outcomes of each task can be seen in Figure 7 for a given grid map. Within the
scope of this paper, more details on the feature of planning the reference B-spline path
using the equivalent Bézier representation are presented hereinafter. The toolbox provides
the function bspline_path_planner_polytope_map, which receives five parameters: the starting
and ending points, the polytope map, the degree d of the curve, and the method. Three
options for method have been implemented as follows:

(1) bezier_min calls the Variant 1 algorithm given in Section 5.1, which uses the proposed
B-spline-to-Bézier conversion method with a minimal number of control points [8];

(2) bezier_guarantee (default option) uses the Variant 2 algorithm given in Section 5.2 with
a guaranteed solution [9];

(3) bspline_guarantee returns the algebraic solution (40) of Proposition 2. The whole
calculation is done with the original B-spline format and with a guaranteed solution.

The function returns both the path defined as a list of points, and the B-spline control
points P for constructing the analytical formulation z(t) (10) of the path if needed. The
optimal path planning problem is implemented in Pyomo [25], Python 3, and with the
solver IPOPT [26]. For ease of use, two interfaces are provided: stand-alone scripts for quick
tests and easy modifications as well as a global planner package in ROS for practical usages.

Ps

Pf

(a)

Ps

Pf

(b)

Ps

Pf

(c)

Figure 7. Main tasks of the Navigation with Polytopes toolbox. (a) Polytope map from a grid map;
(b) finding a sequence of polytopes; (c) planning a B-spline reference path.

https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes


Sensors 2023, 23, 3532 17 of 23

6.2. ROS Integration

As part of the toolbox, a ROS1 package that may be used as a global path planner is
also provided for convenience and integration into current projects. Two ROS nodes can be
found in the ROS package navigation with polytopes:

• poly_map_construct—creates a polytope map from a given grid map by using the
procedure outlined in Section 3.1.

• bspline_path_planner_node—given the current pose and goal, the node performs the
whole path planning process. In addition to performing the tasks as the first node,
it searches for the ideal sequence of polytopes and publishes the B-spline path as
mentioned in Section 4.

The bspline_path_planner_node takes several parameters for the creation of a polytope
map-like robot footprint (offset op), RDP inner and outer epsilons, path planner parameters,
such as the B-spline degree, method, etc., and parameters, such as the map frame, base
frame of the robot, etc. The package provides a sample launch file, which contains all of the
necessary parameters for the node. The results of the toolbox’s ROS integration are illus-
trated in Figure 8. The ROS package is validated using a sample environment from Gazebo,
as shown in Figure 8a, and the results of the path planning algorithms from the toolbox
are visualized in Rviz, as shown in Figure 8b. The polytopes (plotted in blue) are visual-
ized in Rviz using the jsk_ visualization (https://github.com/jsk-ros-pkg/jsk_visualization,
accessed on 19 February 2023) package. Both ROS nodes mentioned above will publish
the polytope map and sequence as a msg type jsk_ recognition_ msgs/PolygonArray for visu-
alization purposes in Rviz. Usage instruction and structure information (subscribed and
published topics of nodes) are available in the repository.

(a) Gazebo simulation world. (b) Path planning result in Rviz.

Figure 8. Toolbox’s result on a grid map obtained from a Gazebo simulation.

7. Validation Results

The validation results of the Navigation with Polytopes toolbox are illustrated in this
section. It firstly presents an exploration strategy for mapping an unknown environment
given a top-down view figure (e.g., satellite Google Earth image). Then, the proposed
path planning algorithm as well as other methods are validated in different grid maps,
which are collected from realistic simulations and an actual environment. The evaluation
of the toolbox when being used with ROS in various Gazebo simulation environments
is presented, together with the comparisons with the default path-planning methods
employed by the ROS navigation stack.

7.1. Exploration Strategy for Creating the Occupancy Grid Map

The proposed path planning process requires constructing a polytope map from a
standard grid map. One simple method for creating such grid maps is to use the laser-based
SLAM package gmapping while driving the robot around either manually or autonomously.
We implemented an exploration program, which receives a top-down image of the environ-
ment around the robot, then allows the user to select points that will be connected as the
exploration path for the robot to follow afterwards, autonomously, by using the move_base

https://github.com/jsk-ros-pkg/jsk_visualization


Sensors 2023, 23, 3532 18 of 23

function in ROS (c.f. Figure 9a). Note that a simple sketch of the environment is sufficient
for the program, but a screenshot of the simulation from a top-down view or satellite map
image of the field is better. Moreover, the size of the map must be specified in meters and
the starting position and orientation of the robot has to be specified. The exploration and
mapping process is visualized in real-time in the program window as shown in Figure 9a.
The dashed white line indicates the sequence in which the exploration path passes through
the predefined points. Boundaries of mapped obstacles are highlighted in red, unexplored
parts of the map are grayed-out and explored areas are colored. The robot’s position is
marked by the robot symbol. After obtaining the grid map, one can apply the Navigation
with Polytopes toolbox to construct the polytope map and plan a B-spline reference path
(given by solid red line) as shown in Figure 9b. A comparison with the standard path
planner Navfn in ROS (with its result plotted in a solid green line) is also presented there,
which shows similarities and comparable performances (e.g., smoothness, shape, length) of
the two methods. More details on the applications of the toolbox and comparisons with the
Navfn method will be discussed in the next section.

(a) (b)

Figure 9. Illustration of the exploration strategy using a top-down figure of the environment and
the corresponding path planning results (reference paths obtained from the Navigation with Polytopes
toolbox and from the standard Navfn planner of ROS plotted in red and green lines, respectively).
(a) Exploration program window; (b) path planning results after the exploration.

7.2. Simulation Results

Figure 10 shows the results of the whole path planning process performed by the
toolbox on different grid maps. Figures 10a–c were captured from an agricultural field, while
Figure 10d resulted from an indoor scenario after an earthquake with scattered furniture.
All were simulated with high fidelity in Gazebo. Note that more results from different
aspects of the aforementioned two scenarios, as well as another laboratory and office maps,
are provided in Appendix A. In all scenarios, the toolbox performs the sequential steps as
described throughout the paper: (i) constructing a polytope map, (ii) finding the sequence of
polytopes that leads from start to goal points, and (iii) planning a reference path using one
of the three methods available in the toolbox. The polytope maps are bordered in blue, the
sequence of polytopes allowing safe travel from Ps to Pf is filled with green, and the B-spline
reference path is plotted in red. The computation time for constructing the polytope map
for the complex agricultural field (c.f. Figure 10a–c) is around 500 ms, while for the indoor
scenario after the earthquake shown in Figure 10d, it takes up to 900 ms due to numerous
small and cluttered obstacles. Next, the optimal path planning process consumes 1225,
1080, and 1460 ms for the three scenarios shown in Figure 10b, 10c, and 10d, respectively.
Figures 9b and 10b–d also present the comparison of the toolbox with the path planning
results of the standard Navfn function of ROS. The average computation time of the Navfn
planner is around 100 ms, which is much less than the proposed toolbox. It is understandable
as the Navfn planner is basically a modified version of the A* algorithm [5,27], which is



Sensors 2023, 23, 3532 19 of 23

well-known for its fast searching capability. However, the Navigation with Polytopes toolbox
serves as a global path planner, which only runs once at the beginning of the navigation
task in order to find a safe and optimal path; spending several seconds is an acceptable
trade-off with numerous advantages that the B-spline path provides in comparison with the
A* path. For more details, in Figures 10d and A1a, the Navfn path planner plans the paths
through the unknown gray area, which are shorter than the B-spline paths but possibly
unsafe. The reason is due to the high safety demand of the Navigation with Polytopes toolbox,
it only considers the explored and free regions when constructing the polytope map while
the Navfn path planner allows the movements inside the unexplored area. Furthermore,
the paths resulting from the Navfn planner (plotted in solid green) are not as smooth as the
B-spline path (in red) and are longer in most of the cases. These prove the effectiveness of
the proposed minimal-length path planning algorithms in (44). Another important property
of the planned paths is their smoothness. As shown in Figure 10b as well as Figure A1b–d
in Appendix A, the B-spline paths (plotted in solid red lines) are significantly smoother
than the results from the Navfn path planner (plotted in solid green lines) despite the usage
of the Savitzky–Golay path smoother, which is already implemented in the Navfn planner.
After extensive simulation and experimental trials, the Navigation with Polytopes toolbox was
tested carefully with various maps of different environments and of various sizes to validate
its scalability and robustness, as shown in Figures 10 and A1.

(a) (b)

(c) (d)

Figure 10. Comparisons of different path planning methods in occupancy grid maps: Navigation with
Polytopes toolbox (red lines) versus the standard Navfn of ROS (green lines). (a) Agriculture field in
the Gazebo simulation; (b) results in the field map: test case 1; (c) results in the field map: test case 2;
(d) results in an earthquake-affected house.

8. Discussion

The Navigation with Polytopes toolbox and its theoretical background were introduced
in this paper. The toolbox currently serves as a global path planner and is compatible with
the ROS navigation package. It takes the standard occupancy grid map of the environment,
the current robot’s position, and the selected goal as inputs and provides a safe and smooth



Sensors 2023, 23, 3532 20 of 23

reference path with an optimal length to the goal. Major distinctions (with respect to existing
works in the literature) are the construction of a polytope map from the original grid map,
the usage of the B-spline curve via its equivalent Bézier representation on the constrained
path planning problem, and the conversion from B-spline to Bézier control points of the
curve. As an unavoidable consequence of the optimization usage, the computation time is
higher than any standard path planning methods using the grid and graph search strategies
(e.g., Dijkstra, RRT [2–4]). However, the results obtained with the toolbox show advantages
over the standard methods employed in the current path planner of the ROS navigation
package, such as a shorter length, a smoother profile, and enhanced safety. Another
advantage of the toolbox is that optimization can be reformulated with much flexibility. In
the case of the agricultural field map (c.f. Figure 10a), the optimization problem (44) can
be enforced to plan the path along the center lines of the rows and not pass through them
by adding an additional constraint on the connectivity of the polytope map, i.e., by not
considering two polytopes to be connected if they cut through the predefined rows. We
emphasize that the use of a polytope map allows for the integration of various optimal
control methods to solve different navigation problems, in addition to the primary goal
of serving as a global path planner. By constructing the polytope map, the toolbox can
become a framework for easily integrating existing optimal control techniques into realistic
grid map data. The problems to be tackled are not limited to path/trajectory planning, but
also navigation, motion control, localization, etc. The transformation of the obstacle-free
space (i.e., non-occupied cells in a grid map) into a polytope map, as well as finding an
appropriate polytope sequence, allows simplifying and representing a safe environment
with only linear constraints (i.e., polytopic constraints). They have been employed in
various optimal control applications, such as MPC (model predictive control) and mixed-
integer-programming [15,28–30], e.g., in [28], the authors introduce an MPC controller for
the safe navigation of a mobile robot within a polytope, which can push the system far
away from the selected boundaries, such as walls. This controller will be added to the
toolbox as the local navigation controller in the near future.

Another worthy extension would be to improve the technique of finding an appropri-
ate sequence of polytopes by taking into account the narrowness of the corridor (i.e., only
distance is counted for now). It is needed to evaluate a trade-off between a short but narrow
corridor and a long but spacious one. More kinetic constraints will be taken into account,
such as turning the radius and speed into the path planning algorithms, considering their
effects on the solvability of the final optimization problem.

9. Conclusions

This paper presents the process to solve the path planning problem for a mobile robot
given a standard grid map of the surrounding environment. It first constructs a polytope
map of the free space and then seeks a sequence of connected polytopes leading to the
goal with minimal distance. Next, a B-spline path is planned within the sequence and
connects the two end points. Specifically, the B-spline path is converted into its equivalent
Bézier representation in order to reduce the conservativeness of the path planning problem.
Another contribution is the new technique to calculate the B-spline-to-Bézier conversion
matrix, which covers all partitions of the curve. Two variants of constraints that enforce the
B-spline path to stay within the aforementioned sequence of polytopes are presented with
proofs. The whole procedure is implemented in Python and is publicly available as the
Navigation with Polytopes (https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_
polytopes, accessed on 19 February 2023) toolbox, which is ready to use and compatible
with ROS as a global path planner for navigation.

Author Contributions: Conceptualization, N.T.N. and G.S.; methodology, N.T.N.; software, N.T.N.
and P.T.G.; validation, N.T.N., P.T.G. and N.F.K.; formal analysis, N.T.N.; investigation, N.T.N. and
P.T.G.; resources, F.E.; data curation, N.T.N. and P.T.G.; writing—original draft preparation, N.T.N.,
P.T.G. and N.F.K.; writing—review and editing, all authors; visualization, N.T.N., P.T.G. and N.F.K.;

https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes
https://gitlab.rob.uni-luebeck.de/robPublic/navigation_with_polytopes


Sensors 2023, 23, 3532 21 of 23

supervision, G.S. and F.E.; project administration, F.E.; funding acquisition, F.E. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the German Ministry of Food and Agriculture (BMEL), project
no. 28DK133A20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank our former and present colleagues at the University of
Lübeck, especially Heiko Hamann, Lars Schilling, Michael Sebastian Angern, and Arne Sahrhage, for
the fruitful discussions and technical support during the implementation of this work.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:
ROS robot operating system
SLAM simultaneous localization and mapping
CAD computer-aided design
RDP Ramer–Douglas–Peucker
MPC model predictive control

Appendix A. Illustration of the Path Planning Results from the Navigation with
Polytopes Toolbox

This section provides additional examples of the path planning results obtained from
the Navigation with Polytopes toolbox compared to the standard Navfn path planner in ROS.
The paths from the toolbox are plotted in solid red lines, while those obtained from Navfn
are plotted in solid green lines for four different environments: (i) an indoor scenario after
an earthquake in Figure A1a, (ii) an agricultural field (cf. Figure 8a) in Figure A1b, (iii) a
laboratory in Figure A1c, and (iv) an office floor in Figure A1d.

(a) Earthquake-affected house. (b) Agricultural field.

(c) Laboratory. (d) Office floor
Figure A1. Path planning results for different occupancy grid maps; compares the performance of
the Navigation with Polytopes toolbox (red lines) versus the standard Navfn in ROS (green lines).



Sensors 2023, 23, 3532 22 of 23

References
1. LaValle, S.M. Planning Algorithms; Cambridge University Press: New York, NY, USA, 2006.
2. Ab Wahab, M.N.; Nefti-Meziani, S.; Atyabi, A. A comparative review on mobile robot path planning: Classical or meta-heuristic

methods? Annu. Rev. Control 2020, 50, 233–252. [CrossRef]
3. Zhang, H.Y.; Lin, W.M.; Chen, A.X. Path planning for the mobile robot: A review. Symmetry 2018, 10, 450. [CrossRef]
4. Sánchez-Ibáñez, J.R.; Pérez-del Pulgar, C.J.; García-Cerezo, A. Path Planning for Autonomous Mobile Robots: A Review. Sensors

2021, 21, 7898. [CrossRef] [PubMed]
5. Kim, C.; Suh, J.; Han, J.H. Development of a hybrid path planning algorithm and a bio-inspired control for an omni-wheel mobile

robot. Sensors 2020, 20, 4258. [CrossRef] [PubMed]
6. Schildbach, G.; Borrelli, F. A dynamic programming approach for nonholonomic vehicle maneuvering in tight environments. In

Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 151–156.
7. Nguyen, N.T.; Prodan, I. Stabilizing a multicopter using an NMPC design with a relaxed terminal region. IFAC-PapersOnLine

2021, 54, 126–132. [CrossRef]
8. Nguyen, N.T.; Schilling, L.; Angern, M.S.; Hamann, H.; Ernst, F.; Schildbach, G. B-spline path planner for safe navigation of

mobile robots. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021; pp. 339–345.

9. Nguyen, N.T.; Gangavarapu, P.T.; Sahrhage, A.; Schildbach, G.; Ernst, F. Navigation with polytopes and B-spline path planner. In
Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023 .

10. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters. IEEE
Trans. Robot. 2007, 23, 34–46. [CrossRef]

11. Nguyen, N.T.; Prodan, I.; Lefèvre, L. Flat trajectory design and tracking with saturation guarantees: A nano-drone application.
Int. J. Control 2020, 93, 1266–1279. [CrossRef]

12. Manyam, S.G.; Casbeer, D.W.; Weintraub, I.E.; Taylor, C. Trajectory Optimization For Rendezvous Planning Using Quadratic
Bézier Curves. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague,
Czech Republic, 27 September–1 October 2021; pp. 1405–1412.

13. Stoican, F.; Ivănuçcă, V.M.; Prodan, I.; Popescu, D. Obstacle avoidance via B-spline parametrizations of flat trajectories. In
Proceedings of the 24th Mediterranean Conference on Control and Automation (MED’16), Athens, Greece, 21–24 June 2016;
pp. 1002–1007.

14. Stoican, F.; Prodan, I.; Grøtli, E.I.; Nguyen, N.T. Inspection Trajectory Planning for 3D Structures under a Mixed-Integer
Framework. In Proceedings of the 2019 IEEE International Conference on Control & Automation (ICCA’19), Edinburgh, UK,
16–19 July 2019; pp. 1349–1354.

15. Prodan, I.; Stoican, F.; Louembet, C. Necessary and sufficient LMI conditions for constraints satisfaction within a B-spline
framework. In Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December
2019; pp. 8061–8066.

16. Suryawan, F.; De Doná, J.; Seron, M. Splines and polynomial tools for flatness-based constrained motion planning. Int. J. Syst. Sci.
2012, 43, 1396–1411. [CrossRef]

17. Berglund, T.; Brodnik, A.; Jonsson, H.; Staffanson, M.; Soderkvist, I. Planning smooth and obstacle-avoiding B-spline paths for
autonomous mining vehicles. IEEE Trans. Autom. Sci. Eng. 2009, 7, 167–172. [CrossRef]

18. Zhang, X.; Wang, C.; Chui, K.T.; Liu, R.W. A real-time collision avoidance framework of MASS based on B-spline and optimal
decoupling control. Sensors 2021, 21, 4911. [CrossRef] [PubMed]

19. Maekawa, T.; Noda, T.; Tamura, S.; Ozaki, T.; Machida, K.I. Curvature continuous path generation for autonomous vehicle using
B-spline curves. Comput.-Aided Des. 2010, 42, 350–359. [CrossRef]

20. Romani, L.; Sabin, M.A. The conversion matrix between uniform B-spline and Bézier representations. Comput. Aided Geom. Des.
2004, 21, 549–560. [CrossRef]

21. Böhm, W. Generating the Bézier points of B-spline curves and surfaces. Comput.-Aided Des. 1981, 13, 365–366.
22. Amsters, R.; Slaets, P. Turtlebot 3 as a robotics education platform. In Robotics in Education: Current Research and Innovations 10;

Springer: Berlin/Heidelberg, Germany, 2020; pp. 170–181.
23. Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its

caricature. Cartogr. Int. J. Geogr. Inf. Geovisualizat. 1973, 10, 112–122.
24. Piegl, L.; Tiller, W. B-spline Curves and Surfaces. In The NURBS Book; Springer: Berlin/Heidelberg, Germany, 1995; pp. 81–116.
25. Hart, W.E.; Watson, J.P.; Woodruff, D.L. Pyomo: Modeling and solving mathematical programs in Python. Math. Program.

Comput. 2011, 3, 219–260.
26. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear

programming. Math. Program. 2006, 106, 25–57.
27. Raja, P.; Pugazhenthi, S. Optimal path planning of mobile robots: A review. Int. J. Phys. Sci. 2012, 7, 1314–1320. [CrossRef]
28. Nguyen, N.T.; Schildbach, G. Tightening polytopic constraint in MPC designs for mobile robot navigation. In Proceedings of the

2021 25th International Conference on System Theory, Control and Computing (ICSTCC), Iasi, Romania, 20–23 October 2021;
pp. 407–412.

http://doi.org/10.1016/j.arcontrol.2020.10.001
http://dx.doi.org/10.3390/sym10100450
http://dx.doi.org/10.3390/s21237898
http://www.ncbi.nlm.nih.gov/pubmed/34883899
http://dx.doi.org/10.3390/s20154258
http://www.ncbi.nlm.nih.gov/pubmed/32751685
http://dx.doi.org/10.1016/j.ifacol.2021.08.534
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1080/00207179.2018.1502474
http://dx.doi.org/10.1080/00207721.2010.549592
http://dx.doi.org/10.1109/TASE.2009.2015886
http://dx.doi.org/10.3390/s21144911
http://www.ncbi.nlm.nih.gov/pubmed/34300648
http://dx.doi.org/10.1016/j.cad.2009.12.007
http://dx.doi.org/10.1016/j.cagd.2004.04.002
http://dx.doi.org/10.5897/IJPS11.1745


Sensors 2023, 23, 3532 23 of 23

29. Caregnato-Neto, A.; Maximo, M.R.; Afonso, R.J. Real-time motion planning and decision-making for a group of differential
drive robots under connectivity constraints using robust MPC and mixed-integer programming. Adv. Robot. 2022, 37, 356–379.
[CrossRef]

30. Nezami, M.; Nguyen, N.T.; Männel, G.; Abbas, H.S.; Schildbach, G. A Safe Control Architecture Based on Robust Model Predictive
Control for Autonomous Driving. In Proceedings of the 2022 American Control Conference (ACC), Atlanta, GA, USA, 8–10 June
2022; pp. 914–919.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/01691864.2022.2117997

	Introduction
	Problem Description
	Polytope Map
	Construction of Polytope Map from an Occupancy Grid Map
	Finding of Appropriate Sequence of Polytopes for Navigation
	Transition Zone and Extended Polytope

	B-spline and Equivalent Bézier Curves
	Definition of B-spline Curves
	Local Equivalent Bézier Representation
	Calculation of B-spline-to-Bézier Conversion Matrix
	Equivalent Bézier Control Points of One Interval
	Conversion Matrix of One Interval
	Conversion Matrix of the Whole Curve
	Evaluation of the B-spline-to-Bézier Conversion Algorithm

	Application of B-spline-to-Bézier Conversion on 2D Path Planning

	B-spline Path Planning Algorithms in a Sequence of Connected Polytopes
	Variant 1: Constraint Formulation with a Minimal Number of Control Points
	Variant 2: Constraint Formulation with Guaranteed Solution
	Path Generation Problem with Minimal Length

	Navigation with Polytopes Toolbox
	Introduction to the Toolbox
	ROS Integration

	Validation Results
	Exploration Strategy for Creating the Occupancy Grid Map
	Simulation Results

	Discussion
	Conclusions
	AppendixA
	References

