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Abstract: Navigating robots through large-scale environments while avoiding dynamic obstacles is a
crucial challenge in robotics. This study proposes an improved deep deterministic policy gradient
(DDPG) path planning algorithm incorporating sequential linear path planning (SLP) to address this
challenge. This research aims to enhance the stability and efficiency of traditional DDPG algorithms
by utilizing the strengths of SLP and achieving a better balance between stability and real-time
performance. Our algorithm generates a series of sub-goals using SLP, based on a quick calculation
of the robot’s driving path, and then uses DDPG to follow these sub-goals for path planning. The
experimental results demonstrate that the proposed SLP-enhanced DDPG path planning algorithm
outperforms traditional DDPG algorithms by effectively navigating the robot through large-scale
dynamic environments while avoiding obstacles. Specifically, the proposed algorithm improves the
success rate by 12.33% compared to the traditional DDPG algorithm and 29.67% compared to the
A*+DDPG algorithm in navigating the robot to the goal while avoiding obstacles.

Keywords: deep reinforcement learning; path planning; mobile robot; deep neural network

1. Introduction

In recent years, the prevalence of indoor robotics has significantly increased. These
robots are usually assigned to perform different indoor operations, including but not
limited to transporting objects, offering navigation assistance, and handling emergencies.
To accomplish these tasks effectively, the robot must be able to navigate autonomously from
one location to another, making the path planning ability a critical factor in the autonomous
behavior of the robot. Moreover, in real-world scenarios, dynamic obstacles, such as human
beings or other robots, frequently arise, requiring the robot to also possess the ability to
dynamically avoid these obstacles in order to achieve a higher level of autonomy. Therefore,
a considerable amount of research has focused on studying path planning and dynamic
navigation of robots in indoor environments [1–4].

Over the past few years, many algorithms have been developed to tackle the challenge
of path planning. Among these approaches are the traditional methods, including the
genetic algorithm, A* algorithm, D* algorithm, and Dijkstra algorithm, as documented by
Gong et al. [5] in their study on efficient path planning. These traditional approaches have
demonstrated a degree of efficacy and success. However, some significant limitations have
also been identified, such as being time-consuming, having a tendency to converge to local
optima, failing to account for collision and risk factors, and so on. Consequently, these
prior methods require improvement to meet the demands of more advanced path planning
and increasingly complex environments.

Various advanced methods have been proposed in addition to the traditional path
planning techniques to improve the path planning process. These include the method
proposed by Haj et al. [6], which utilizes machine learning to classify static and dynamic
obstacles and applies different strategies accordingly. Bakdi et al. [7] have proposed an
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optimal approach to path planning, while Zhang et al. [8] have proposed a Spacetime-A*
algorithm for indoor path planning. Palacz et al. [9] have proposed BIM/IFC-based graph
models for indoor robot navigation, and Sun et al. [10] have employed semantic information
for path planning. Additionally, Zhang et al. [11] have proposed a deep learning-based
method for classifying dynamic and static obstacles and adjusting the trajectory accordingly.
Dai et al. [12] have proposed a method that uses a novel whale optimization algorithm
incorporating potential field factors to enhance mobile robots’ dynamic obstacle avoidance
ability. Miao et al. [13] have proposed an adaptive ant colony algorithm for faster and
more stable path planning, and Zhong et al. [14] have proposed a hybrid approach that
combines the A* algorithm with the adaptive window approach for path planning in large-
scale dynamic environments. Despite these advances, certain limitations still exist when
applying these methods in real-life situations. For instance, Zhang et al.’s model relies on a
waiting rule for dynamic obstacles, which may only be suitable for some types of dynamic
obstacles. Furthermore, Miao et al.’s adaptive ant colony algorithm does not consider
dynamic obstacles, making the model unsuitable for complex indoor environments.

The recent advancements in reinforcement learning have provided novel approaches [15–18]
to address the path planning problem. The success demonstrated by Google DeepMind in var-
ious tasks, such as chess, highlights the potential of artificial intelligence in decision-making
issues, including path planning. Implementing reinforcement learning in path planning en-
hances the autonomous capabilities of robots, resulting in safer, faster, and more rational obstacle
avoidance. The convergence of the model is expected to provide more optimal solutions in
the future. There have been numerous studies that propose reinforcement learning for path
planning, such as the SAC model proposed by Chen et al. [19] for real-time path planning
and dynamic obstacle avoidance in robots, the DQN model proposed by Quan et al. [20] for
robot navigation, and the RMDDQN model proposed by Huang et al. [21] for path planning in
unknown dynamic environments.

The sequential linear path (SLP) algorithm was introduced by FAREH et al. [22] in
2020. It is a path planning strategy that emphasizes the examination of critical regions,
such as those surrounding obstacles and the goal point. It prioritizes the utilization of
processing resources in these areas. As a global path planning approach, SLP generates a
comprehensive path from the starting point to the goal while considering static obstacles,
breaking down the dichotomy between path quality and speed. In our proposed path
planning method, we incorporate the SLP algorithm to enhance the performance of DDPG.

This study presents three key contributions: (1) An enhanced reinforcement learning
model for path planning is proposed, which enables the robot to modify its destination
dynamically and provide real-time path planning solutions. (2) Both the convergence
rate and path planning performance of DDPG are improved by incorporating the use of
SLP to generate a global path to guide DDPG in large-scale environment path planning
tasks. (3) To validate our approach, we conduct a comprehensive set of simulations and
experiments that compare various path planning methods and provide evidence for the
effectiveness of our proposed method.

The paper is structured as follows: In Section 2, the problem and related algorithms
are described. Section 3 introduces the path planning pipeline of the proposed SLP im-
proved DDPG algorithm, along with a detailed account of the reward function design.
Section 4 presents the simulation experiment and a detailed comparison and analysis
of the experimental results. Finally, Section 5 offers a comprehensive summary of the
paper’s contents.

2. Related Work
2.1. Problem Definition

As discussed, previous researchers have developed robust and efficient global path
planning algorithms. However, the assumption that the path planning environment is static
is only valid in ideal scenarios. In reality, most environments for robot path planning, such
as factories, warehouses, and restaurants, are dynamic. Thus, relying solely on global path
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planning will likely result in unsuccessful routing outcomes, as global planning cannot
adapt to dynamic obstacles. Robots following a global path in dynamic environments are
susceptible to collision with dynamic obstacles, as shown in Figure 1.

Figure 1. Problem of Global Path Planning in Dynamic Environment.

2.2. Deep Deterministic Policy Gradient

The deep deterministic policy gradient (DDPG) reinforcement learning algorithm was
introduced by the Google DeepMind group [23]. It addresses the parameter relevance
issue in the Actor–Critic algorithm and the inadequacy of continuous actions in the AQN
algorithm. The DDPG algorithm can be considered an improved version of AQN that incor-
porates the overall structure of the Actor–Critic algorithm. Like the Actor–Critic algorithm,
the DDPG algorithm consists of two primary networks: the Actor and Critic networks.

The output of the Actor network is a determined action, which is defined as a = µ(s, a|θµ).
The estimation network that produces real-time actions is the µθ(s), where we have θµ in-
dicating the parameters. It updates the parameter θµ, outputs the action A according to
the current state st and interacts with the environment to generate the next state st+1 and
reward rt+1. The Actor target network updates parameters in the Critic network and deter-
mines the following optimal action at+1 according to the next state st+1 sampled from the
experience replay.

The Critic network aims to fit the value function Q(s, a|θQ). The Critic estimation
network updates its parameters θQ, calculates the current Q value Q(st, at, θQ) and the
target Q value yi = r + γQ′(st+1, at+1, θQ′). The Critic target network calculates the Q′ part
of the target Q value. Here, γ is the discount factor that has the range γ ∈ [0, 1].

The training process of the Critic network is to minimize the loss function L shown in
Equation (1).

L =
1
N ∑

i
(yi −Q(si, ai | θQ))2 (1)

where yi is given by Equation (2).

yi = r(si, ai) + γQ′(si+1, µ′(si+1|θµ′) | θQ′) (2)

The Actor network is updated through a policy gradient shown in Equation (3).

∇θµ J ≈ 1
N ∑

i
∇aQ(s, a | θQ)|s=si ,a=µ(si)

∇θµ µ(s | θµ)|si (3)
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Target networks are updated through Equation (4), with τ � 1.

θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′
(4)

Comparing DDPG with previous path planning and dynamic obstacle avoidance
methods, such as ant colony, A* + adaptive window, roaming trail, etc., we may find DDPG
has more potential for high complexity dynamic environment path planning and dynamic
obstacle avoidance due to the following reasons:

1. DDPG is a reinforcement learning method that improves through multiple iterations
and gradually converges, which will likely provide optimal solutions for the current
environment and state.

2. Unlike traditional path planning methods that require previous knowledge of the
environment map, DDPG does not require any map but can reach the goal using a pre-
trained model. This makes the DDPG method more adaptive since, in dynamic envi-
ronments, it is hardly possible to track the environment’s moving obstacles’ trajectory.

3. Unlike traditional means of dynamic obstacle avoidance that produce simple actions
when the robot encounters a dynamic obstacle, DDPG outputs a series of actions.
The actions that DDPG produces to avoid obstacles are relatively reasonable and
may have connections with previous actions. It is a real-time obstacle avoidance.
The actions may be planned ahead of time instead of stopping the robot from adjusting
the trajectory when a dynamic obstacle is detected.

DDPG presents excellent potential in performing small-scale path planning. However,
DDPG is a reinforcement learning method, which inevitably inherited the characteristics of
randomness and uninterpretability of RL, thus causing the path planning results of DDPG
to represent signs of randomness and unreasonableness. This is one of the defects of DDPG
in path planning since it could cause inefficiency and is exaggerated as the scale of the
environment increases. An example of DDPG path planning failing the path planning task
or being unable to perform the task efficiently in a large-scale environment is shown in
Figure 2.

Figure 2. Problem of DDPG Path Planning in Large Environment.

2.3. Sequential Linear Paths

The SLP (sequential linear paths) approach is a path planning method put forward by
Fareh et al. in 2020 that has overcome the traditional trade-off between execution speed
and path quality (also known as the swiftness-quality problem), enhancing both the path
quality and swiftness.

The SLP path planning strategy focuses more on areas around static obstacles and
areas around the goal point, defined as critical areas. SLP exhausts the processing power in
critical areas to reduce computational resource waste and improve swiftness. It is interested
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in the obstacles that intersect with the direct linear line between the starting and goal points
while ignoring unnecessary obstacles that do not lie alongside the route.

The SLP is a hybrid approach that implements traditional path planning, such as
A*, D*, or the probabilistic roadmap (PRM), to find possible paths around obstacles that
intersect with the linear line from the robot to the destination. The implemented procedure
may reduce the computational efforts compared to applying the basis algorithm on the
whole map. SLP enhances the path quality by finding any linear shortcuts between any
two points in the path and modifying these shortcuts as the final global path.

The experimental results have proven that the SLP path planning strategy showed a su-
perior advantage over other path planning techniques in both aspects, computational time
(reached up to 97.05% improvement) and path quality (reached up to 16.21% improvement
for path length and 98.50% for smoothness).

Our path planning method used SLP to calculate a prior global route to guide the
DDPG to improve its performance in large-scale environments. The main idea is to perform
global path planning using SLP and select sub-goal points to provide directional aid for
the DDPG.

The sub-goals SG between the starting point S and goal point G are directly generated
using the SLP algorithm, and thus, the path can be denoted using points:

Path = {S, SG1, SG2, . . . , G} (5)

3. SLP Improved DDPG Path Planning
3.1. Path Planning Based on Improved DDPG Algorithm

When considering the application of reinforcement learning in small to medium-scale
dynamic environments for path planning, the model is likely to converge and achieve
satisfactory results after sufficient training. However, in large-scale dynamic environments,
where the distance between the starting point and the goal may be substantial, the model
may exhibit a low convergence rate and poor test results. The static path length (SLP)
algorithm exhibits exceptional performance in static environments for path planning, but it
may not be suitable for dynamic environment path planning. Conversely, the reinforcement
learning method deep deterministic policy gradients (DDPG) demonstrates competency in
dynamic obstacle avoidance through rational and continuous decision-making. Thus, SLP
is an excellent static environment path planning method, while DDPG is well-suited for
dynamic environments. To address the challenge of reinforcement learning for large-scale
path planning, we propose an improved DDPG path planning algorithm incorporating the
SLP method to leverage the strengths of both approaches.

Upon closer examination of the issue, it becomes evident that the key challenge lies in
that, in large environments, the RL model may require a significant number of iterations to
reach the goal, resulting in a low convergence rate and reducing its accuracy and robustness.
Given that the RL model is responsible for local path planning, training the model in small-
scale environments and using SLP to enhance the pre-trained model is recommended.
The proposed path planning pipeline involves the following steps:

The first step in the process is to obtain the environment grid map by having the robot
navigate the area and collect sensor data. Next, a path and sub-goals are generated using
the SLP algorithm based on the collected map, considering only static obstacles. The robot
then attempts to reach the sub-goals using a pre-trained DDPG model, with the expectation
that the model will avoid obstacles along the way. Generally, the SLP algorithm is antic-
ipated to provide the primary path, while the DDPG model handles obstacle avoidance.
Figure 3 depicts the proposed path planning pipeline, and the pseudo-code is presented in
Algorithm 1.
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Algorithm 1 SLP-improved DDPG path planning algorithm

Input: Map: Environment static map.
Input: S, G: Start and goal’s coordinates.
Input: x, y: Current self coordinates.
Input: dthresh: Method switch distance threshold.
Input: D: LiDAR sensor’s distances.
Input: ε: Goal threshold.
Input: Dynamic: Pre-trained DDPG model.
Input: MAXTIME: Timeout threshold.
Ensure: success_state

success_state← False, length← 0
Path← SLP(S, G, Map)// Apply the SLP method to generate a global path
Path← SelectSubGoals(Path)// Select sub-goals
for SG = SG1, SG2 . . . , SGn, G ∈ Path do

while
√
(x− SG.x)2 + (y− SG.y)2 > ε do

a← Dynamic(D, x, y, SG)
if TimeElapsed > MAXTIME or ∃di ∈ D di ≤ 0.13 then

return success_state //Fail when timeout or collision
end if

end while
end for
success_state← True
return success_state

Figure 3. Process Graph.

3.2. DDPG Reward Function Design

We use π to denote the policy specifying the action set the agent should take given
state st. In Equation (6), S denotes the set of possible states, A(st) is the action set given
state st, and at and st are the action and state elements in action space A(st) and state
space S.

π : at ∈ A(st), st ∈ S (6)
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Next, we designed a reward principle based on state st and action at shown in
Equation (7). Here di denotes the distance data detected by the i th LiDAR sensor, and D
is the matrix of the robot’s LiDAR scan ranges shown in Equation (8). Aside from direct
rewards for goal and collision, there are two other rewards robs and ryaw. robs is the obstacle
avoidance reward, shown in Equation (9). Here dmin is the minimum LiDAR scan range
in matrix D. ryaw is the action select reward, shown in Equation (9). Here h is the angle
between the robot’s heading and the goal, and k(k = 0, 1, 2, 3, 4) is the action serial number
indicating actions of turn left, turn front left, front, turn front right and turn right.

r(st, at) =


rgoal st = sgoal

rcollision st = scollision

robs + ryaw otherwise

(7)

D = [d1, d2, . . . , dn] (8)

robs =

−min(2
1

dmin , 50) dmin < 0.7
0 otherwise

(9)

ryaw = 1− 4|1
2
− (

1
4
+

1
2π

((h +
π

8
k +

π

4
) mod 2π))| (10)

State sgoal and scollision are defined in Equations (11) and (12), respectively.

sgoal :
√
(x− xgoal)2 + (y− ygoal)2 ≤ 0.1 (11)

scollision : ∃di ∈ D di ≤ 0.13 (12)

4. Experiments and Results

To assess the effectiveness of our methodology, we developed a simulation environ-
ment utilizing Gazebo. The Turtlebot3 platform implemented our approach within this
environment, including static and dynamic obstacles to simulate realistic conditions. We
evaluated the performance of our approach using three fundamental metrics: average
execution time (AET), average path length (APL), and success rate (SR). Notably, a higher
success rate can lead to longer execution times and path lengths, while early collisions
may result in shorter path lengths and execution times. To provide a normalized assess-
ment, we integrated two additional metrics, time index (TI) and path length index (PLI),
to offer a relative performance measure. The equations for computing these indices are
presented below:

TI =
AET
SR

(13)

PLI =
APL
SR

(14)

4.1. Experimental Setup

In this study, the experiment was conducted on an Intel Core i9 CPU(3.5 GHz) with
32 GB of RAM running the Ubuntu Xenial Xerus distribution of Linux. Python 2.7 and Py-
Torch 1.0.0 were used to realize the proposed algorithm. The simulation environment
was established using ROS 1.12.17 and Gazebo7, with the Turtlebot3 burger robot as the
model. The DDPG algorithm was trained over 3000 episodes within the environment to
generate a pre-trained reinforcement learning model, and the average cumulative reward
was computed. As shown in Figure 4, during the initial stages of training, the robot was in
the exploration and learning phase, resulting in a relatively low average cumulative reward.
However, as the number of episodes increased, the robot began utilizing its experiences,
causing the number of successful target reaches to increase and the average cumulative
reward to rise accordingly. After 1500 episodes, the model converged, resulting in a reward
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of approximately 4000 at its conclusion. To evaluate the validity of the proposed path
planning model, its performance was compared against well-established path planning
methods, such as A*, SLP, DDPG, and the A*-improved DDPG method.

Figure 4. Average Cumulative Reward of DDPG Algorithm.

4.2. Grid Map Generation

The limitations of DDPG can be mitigated and improved by utilizing a global route
that divides the large-scale environment path planning tasks into smaller-scale path
planning tasks.

Since SLP is a global path planning algorithm, obtaining the grid map is a prerequisite
for SLP to generate a global path. To acquire the grid map, we utilize a robot equipped
with LiDAR to manually scan the environment and reconstruct the raw grid map through
SLAM using the collected LiDAR data. An illustration of the raw grid map can be seen in
Figure 5b.

However, using the raw grid map for global path planning leads to inevitable failures
as the global planning algorithms must incorporate the robot’s collision volume. Modifying
the SLP planning algorithm to account for the collision volume increases computation time,
which is burdensome. An alternative approach is to add safe padding to the raw grid map.
This allows the SLP to consider both the obstacles and the padding as obstacles during
global path generation, thereby mitigating the likelihood of collisions with static obstacles
while following the global path to some extent.

The raw grid map is stored in a two-dimensional array, transforming the spatial corre-
lation to an array index correlation. We use an array element value to denote obstacles (0
for non-obstacle and 1 for obstacle). The grid map padding is added through Equation (15),
where O is the set of obstacles in raw grid map, xij is the element in a padded grid map
with index i, j, omn is the obstacle element in raw grid map with index m, n and thresh is an
arbitrary threshold. An example of a padded grid map is shown in Figure 5c.

d(xij, omn) =
√
(i−m)2 + (j− n)2

xij =

{
1 if ∃omn ∈ O that d(xij, omn) < thresh
0 otherwise

(15)

After generating the grid map, we now possess a padded grid map for using SLP to
generate a global path and conduct a simulation.
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Figure 5. Grid Map Padding.

4.3. Simulation Results in Static Environments

Our initial evaluation was conducted in a static environment, the configuration of
which is depicted in Figure 6. The target location was randomly selected within the con-
straints of the environment, while the robot was reset to a fixed starting point. To perform
path planning and obstacle avoidance in the static environment, we employed the following
methods: A*, SLP, DDPG, Hybrid Method A* Improved DDPG, and our Proposed Method.

Figure 6. Static Environment.

The experimental data are recorded in Table 1, the robot trajectory comparisons are
presented in Figure 7, and the trajectories of different methods are illustrated in Figure 8.
The results indicate that the SLP method has a 30.5% reduction in path length compared to
the A* method, albeit with a higher average execution time and lower success rate. How-
ever, these limitations of SLP can be addressed through integration with DDPG. The results
suggest that the SLP-enhanced DDPG method has reduced the average execution time by
46.58% and increased the success rate by 52.67% compared to SLP alone. The SLP method
substantially improves path length compared to the traditional A* method. However, its
lower success rate may stem from its characteristic of planning a path around obstacles,
which increases the likelihood of a collision. The DDPG reinforcement learning method
exhibits a high success rate of 94% in obstacle avoidance. The combination of SLP and
DDPG yields a method with a relatively short path length and high success rate. The results
in Table 1 demonstrate that the overall performance of the SLP-enhanced DDPG method in
static environments is superior to the other four algorithms.
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Figure 7. Trajectory Comparison in Static Environment.

Table 1. Test Case 1 (Static Environment).

Algorithm AET (sec) TI APL PLI SR (%)

A* 32.15 32.26 2.92 2.93 99.67
SLP 43.13 67.19 2.03 3.16 64.19

DDPG 19.28 20.51 2.67 2.84 94
A*+DDPG 29.76 38.01 2.66 3.40 78.3

SLP+DDPG 23.04 23.51 2.42 2.47 98

Figure 8. Robot Trajectory of Different Method in Static Environment.

4.4. Simulation Results in Dynamic Environments

Subsequently, the efficacy of our proposed path planning technique is evaluated in
a dynamic environment where two randomly moving cylindrical obstacles are present.
The schematic representation of this environment is depicted in Figure 9. We employed
the A* Algorithm, SLP, DDPG, the Hybrid Method incorporating A* and Improved
DDPG, and our proposed technique to carry out path planning and obstacle avoidance in
this environment.
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Figure 9. Dynamic Environment.

The experimental data are recorded in Table 2, the robot trajectory comparisons are
presented in Figure 10, and the trajectories of different methods are illustrated in Figure 11.
A comparison between the success rate and previous static data reveals a decrease in the
success rate of all algorithms by a certain percentage, likely due to the dynamic nature of the
environment, thus highlighting the challenge of path planning in dynamic environments.
The DDPG method demonstrated the highest success rate of 87.67%, indicating its ability
to avoid obstacles. Our proposed method’s TI, PLI, and success rate were slightly lower
than DDPG under a small-scale dynamic experiment environment. The results in Table 2
show that the SLP-improved DDPG method performs similarly to the DDPG method and
is superior to the A*, SLP, and A*-improved DDPG algorithm in the dynamic environment.

Figure 10. Trajectory Comparison in Dynamic Environment.

Table 2. Test Case 2 (Dynamic Environment).

Algorithm AET (sec) TI APL PLI SR (%)

A* 27.84 34.09 2.81 3.44 81.67
SLP 27.67 48.83 2.10 3.71 56.67

DDPG 19.78 21.42 2.75 2.98 92.33
A*+DDPG 25.18 35.63 2.27 3.21 70.67

SLP+DDPG 19.61 22.63 2.64 3.04 86.67
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Figure 11. Robot Trajectory of Different Method in Dynamic Environment.

4.5. Simulation Results in Large-Scale Dynamic Environments

Subsequently, the efficacy of our proposed path planning algorithm was evaluated
in a large-scale dynamic scenario. As the term “large” is ambiguous, a scenario with six
randomly oscillating cylindrical obstacles was selected. The robot speed was 0.15 m/s,
and the environment size was nine times greater than that of the previously employed
dynamic scenario. This environment is depicted in Figure 12. For path planning and
obstacle avoidance, DDPG, a hybrid approach combining A* with DDPG, and our proposed
method were employed, while static methods were omitted due to their poor performance
in large-scale dynamic environments.

Figure 12. Large-Scale Dynamic Environment.

The experiment data, recorded in Table 3, indicates that the success rate of all methods
has decreased due to the increased dynamism and complexity of the experiment environ-
ment. The results reveal that the proposed SLP-improved DDPG method has the highest
success rate, which is 21% higher than the A*-improved DDPG method and 10.33% higher
than the DDPG method. This further demonstrates that the proposed method has improved
performance in completing path planning tasks in large-scale dynamic environments. How-
ever, in this case, the proposed method’s TI and PLI are inferior to DDPG. Table 3 shows
that the SLP-improved DDPG method’s obstacle avoidance performance in large-scale
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dynamic environments is superior to other methods. At the same time, its path quality is
inferior to the DDPG method.

Table 3. Test Case 3 (Large-Scale Dynamic Environment).

Algorithm AET (sec) TI APL PLI SR (%)

DDPG 43.69 75.33 6.35 10.95 58
A*+DDPG 62.60 132.26 8.88 18.76 47.33

SLP+DDPG 59.18 86.61 8.59 12.57 68.33

In order to establish the robustness and efficacy of our proposed methodology, we
undertook additional experiments by varying the velocity of the robotic system and the
number of dynamic obstacles. Specifically, we conducted two more specific test cases, Test
Case 4 and Test Case 5, with different settings. Test Case 4 incorporated four dynamic
obstacles and a robot speed of 0.3 m/s, whereas Test Case 5 featured ten dynamic obstacles
with a reduced robot speed of 0.1 m/s. The outcomes of these experiments have been
meticulously documented and are presented in Tables 4 and 5, respectively.

The recorded experimental data presented in Table 4 reveals a reduction in path length
and execution time for all methods compared to Test Case 3. This outcome is attributed to
the increased speed of the robot and the reduced number of dynamic obstacles. The results
expose that the proposed SLP-improved DDPG method boasts the highest success rate,
exceeding the A*-improved DDPG method by 29.67% and the DDPG method by 12.33%.
These findings demonstrate that the proposed method’s performance in completing path
planning tasks in large-scale dynamic environments is enhanced. It is worth noting that,
in this case. At the same time, the DDPG method records the lowest AET and APL, and the
SLP-improved DDPG method scores the lowest TI and PLI, reducing by 11.72% and 12.10%,
respectively, suggesting improved path planning efficiency and path quality. Table 4 shows
that the SLP-improved DDPG method outperforms other methods concerning obstacle
avoidance performance and path quality in large-scale dynamic environments.

Table 4. Test Case 4 (Large-Scale Dynamic Environment).

Algorithm AET (sec) TI APL PLI SR (%)

DDPG 26.88 48.28 7.68 13.80 55.67
A*+DDPG 34.76 88.38 9.45 24.03 39.33

SLP+DDPG 29.41 42.62 8.37 12.13 69

The experimental data presented in Table 5 demonstrates a clear trend in the increase
in both path length and execution time and a decrease in success rate for all methods
compared to Test Case 3. This outcome can be attributed to the reduced speed of the robot
and an increased number of dynamic obstacles. The results reveal that the proposed SLP-
improved DDPG method achieved the highest success rate, exceeding the A*-improved
DDPG method by 21% and the DDPG method by 2%. These findings demonstrate that
the proposed method outperforms other methods in completing path planning tasks in
large-scale dynamic environments. Notably, the SLP-improved DDPG method also exhibits
the lowest average execution time (AET), average path length (APL), time inefficiency (TI),
and path length inefficiency (PLI). Compared to the DDPG method, the SLP-improved
DDPG method reduced TI by 7.62% and PLI by 7.05%, suggesting improved path planning
efficiency and path quality. Furthermore, the results presented in Table 4 confirm that
the SLP-improved DDPG method surpasses other methods regarding obstacle avoidance
performance and path quality in large-scale dynamic environments. These findings under-
score the effectiveness of the proposed SLP-improved DDPG method for addressing the
challenges of path planning in complex and dynamic environments.
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Table 5. Test Case 5 (Large-Scale Dynamic Environment).

Algorithm AET (sec) TI APL PLI SR (%)

DDPG 59.93 156.35 5.82 15.18 38.33
A*+DDPG 79.00 408.69 7.72 39.94 19.33

SLP+DDPG 58.25 144.43 5.69 14.11 40.33

5. Conclusions

This study proposes a novel approach for path planning of mobile robots in large-
scale environments. The method considers dynamic and static obstacles and prioritizes
efficiency and real-time performance in the path planning process. The proposed approach
improves the DDPG method and integrates a global planning strategy using the SLP
method. The pipeline of the proposed method consists of the following steps: obtaining
the environment grid map, executing SLP global planning and generating sub-goals, and fi-
nally, using the DDPG algorithm to navigate the environment while avoiding obstacles.
The performance of the algorithm was verified through Gazebo simulations. The results
of the path planning and collision avoidance tasks in three scenarios demonstrate that the
SLP-improved DDPG algorithm has the capability for path planning and dynamic collision
avoidance in compliance with robots. Additionally, various other path planning methods
were analyzed and compared. The experimental results indicate that the algorithm has
the advantages of real-time and safety in avoiding multiple dynamic obstacles, thereby
improving the robots’ efficiency in such scenarios.
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