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Abstract: Several studies have been conducted using both visual and thermal facial images to identify
human affective states. Despite the advantages of thermal facial images in recognizing spontaneous
human affects, few studies have focused on facial occlusion challenges in thermal images, particularly
eyeglasses and facial hair occlusion. As a result, three classification models are proposed in this paper
to address the problem of thermal occlusion in facial images, with six basic spontaneous emotions
being classified. The first proposed model in this paper is based on six main facial regions, including
the forehead, tip of the nose, cheeks, mouth, and chin. The second model deconstructs the six main
facial regions into multiple subregions to investigate the efficacy of subregions in recognizing the
human affective state. The third proposed model in this paper uses selected facial subregions, free of
eyeglasses and facial hair (beard, mustaches). Nine statistical features on apex and onset thermal
images are implemented. Furthermore, four feature selection techniques with two classification
algorithms are proposed for a further investigation. According to the comparative analysis presented
in this paper, the results obtained from the three proposed modalities were promising and comparable
to those of other studies.
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1. Introduction

The human affective state is an important factor that greatly influences our lifestyle,
including our thoughts, activities, thinking, focus, and our problem-solving and decision-
making abilities. Thus, affective state recognition is of considerable interest to researchers.
Affect, mood, and emotion are concepts included in the domain of affective computing.
Affect is a general term for a range of feelings that a person can experience. It includes
emotions, which are intense feelings that can be directed at a source and are usually short-
lived, and moods, which are longer-lasting, less intense, and may not require a specific
stimulus [1,2].

Researchers have recently been looking into techniques to recognize human emotions
and are applying them to a variety of fields. This includes human–computer interaction
to facilitate communication between humans and computers. Human–robot interaction
involves understanding how people behave and feel, as this helps the robot to interact
with people in an appropriate manner [3]. Human emotion techniques have been used in
security applications to identify people who are able to mask their emotions, often referred
to as having a “poker face” [4], and in deception detection to detect when someone has not
been truthful or accurate in their statements [5,6]. They have also been used for medical
applications, including people with autism disorder who may not be able to use their body
language, facial expressions, or spoken language to show how they feel. Therefore, they
require assistance to help with their specific needs in order to understand and express their
emotions [7]. Other medical applications include sleep apnea, which causes a person’s
breathing to become shallow or to temporarily stop when they are sleeping [8].
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Human affect can be identified by observing the different characteristics of a person,
such as their facial expressions, the way they speak, their gestures, the way they stand
(their pose), and the direction they are looking. More importantly, previous studies have
mentioned that emotional messages are conveyed through facial expressions 55% of the time
and through spoken words 7% of the time, while the remaining message is expressed by the
manner in which words are spoken, known as paralanguage [9]. Numerous approaches,
based on contactless and noninvasive methods, have been applied in emotion recognition
and include speech emotion recognition, gesture emotion recognition, and facial emotion
recognition, while other studies have concentrated on physiological signals, such as human
temperature, cardiac signals, respiration rate, and sweat gland activities.

The human face is often used as a source of information because observing the face
is a noninvasive way to collect data. This means that it does not require physical contact
or the use of medical instruments. Therefore, it is used in different areas of research, and
many studies have been conducted using visible facial images. Despite productive results
being reported in the facial emotion recognition literatures, limitations to technique, such
as visible images being sensitive to illumination variation [10–13] and diversity in skin
color, facial shape, and facial texture, could all contribute to differences in accuracy for
the recognition of emotions via facial features. Additionally, different ethical backgrounds
and cultural differences could also have an effect, meaning that what is considered happy
or sad may be understood differently by different people [10,14]. Furthermore, the dis-
crimination between spontaneous and deceptive emotions is challenging [13]. Therefore,
implementing visual-based imaging could contribute to reducing accuracy of affective state
recognition [15–17].

Recently, researchers have focused on the thermal imaging approach for affective
state recognition because of its ability to reveal a heat pattern consisting of fluctuations in
skin temperature caused by involuntary blood circulation that correlates to a particular
human expression. Due to the involuntary nature of blood flow, actual emotions may
be discernible in the thermal signature [6]. Moreover, the arousal of emotions can cause
subtle temperature changes in different regions of the face, such as the forehead, periorbital,
supraorbital, tip of the nose, lips, and maxillary [18]. Thermal imaging could be a potential
solution to overcoming the illumination variation problem and facilitating the recognition
of spontaneous emotion rather than visible images. Although thermal imagery has many
tangible advantages, this technique has a variety of drawbacks. One of the limitations is
that eyeglasses appear opaque in thermal images and thus decrease the thermal sensitivity
of the informative facial regions, such as the inner eye, supraorbital, and periorbital loca-
tions [11,19–21]. Moreover, facial hair is another obstacle in thermal imaging which affects
the accuracy of temperature measurements [21–23]. A few studies have focused on facial
occlusion in affective state recognition. For example, Wang et al. [19] reduced the effects
of spectacles by using a thermal temperature pattern; for each frame, the study calculated
the mean temperatures of the ambient points, then calculated the temperature differences
between each frame and its preceding frame, and finally updated the temperatures of all
points for each frame by subtracting the temperature differences. Basu et al. [23] applied a
median filter and CLAHE and selected six facial regions, including the forehead, left and
right eyes, left and right cheeks, nose, and mouth, proposing Hu’s seven moment invariant
method to extract features. Nguyen et al. [11] proposed an improved ROI extraction process
to overcome eyeglass opacity. Nguyen et al. [20] proposed the fusion of thermal and visual
images to overcome the eyeglass occlusion problem.

However, the goal of this study was to investigate more efficient facial subregions
in thermal images to overcome eyeglass and facial hair occlusion and to enhance facial
affective state recognition. More importantly, the proposed solution in this study comprises
three models, with each having its own objective. The first proposed model applies six
main ROIs. The eye region is excluded, and other facial areas are employed, including the
forehead, tip of the nose, cheeks, mouth, and chin. Moreover, the goal of this model is to
recognize the human affective state without implementing important eye ROIs, contrary to
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previous studies, which means that abandoning eye ROIs could lead to overcoming the
eyeglass occlusion challenge. The second proposed model in this study divided the 6 main
ROIs into 27 sub-ROIs; the goal of this model is to explore the efficiency of facial sub-ROIs
in recognition human affects rather than using the main ROIs, which could have partial
occlusion. The third proposed model in this study conducted affective state recognition
based on 11 selective sub-ROIs. The selected ROIs located on facial patches with the free
existence of facial hair, such as a beard, mustaches, and hair bangs. Therefore, the goal of
this model is the recognition of the human affective state even when wearing eyeglasses
and with the facial hair occlusion.

2. Previous Studies

This section presents a brief overview of previous studies related to human affective
state recognition based on thermal imaging and discusses the main stages, such as dataset
collection, preprocessing, facial regions of interest (ROIs), feature extraction methods, and
classification algorithms.

2.1. Thermal Dataset

The sophistication of thermal sensors has encouraged researchers to use thermal
images to recognize human affects. According to previous studies, the dataset collection
stage is an important process; thus, several studies constructed their own dataset [22,24–26],
while others used already-published databases, such as KTFE or USTC-NVIE [11,27,28].

Depending on the emotion type, thermal datasets can be classified as posed or sponta-
neous [29]. Individuals in the posed dataset were asked to express a variety of emotions in
order to identify their posed emotional state. This means that this type of emotion does not
accurately represent the affective state. In contrast, participants were exposed to stimuli
and were unaware that they were being recorded to elicit their spontaneous affective state
while their actions were being recorded. As a result, creating spontaneous databases is a
difficult process [30].

2.2. Preprocessing

In the preprocessing stage, literatures have proposed various methods to enhance
thermal images and localize faces; for instance, HOG and SVM were used by Kopaczka
et al. [28] to extract faces from thermal images. In order to identify the region of the initial
frame and calculate the head motion, Liu and Yin [31] proposed a model for face identifica-
tion which comprises a combination of trees with the shard pools of parts drawn from [32].
Otsu thresholding is an approach used in image processing to transform a grayscale image
into a black and white image. Wang et al. [13] applied the Otsu thresholding method to
create a binary image, and then they analyzed the vertical and horizontal curves of that
image to determine the gradient with the highest value; this was used to identify the facial
boundary. Latif et al. [33] conducted contrast limited histogram equalization to enhance
image contrast. Moreover, to detect the facial region, Mohd et al. [10] used a computer
vision technique known as the Viola–Jones boosting algorithm combined with a series
of Haar-like features to identify facial regions within a thermal image. Wan et al. [19]
proposed a method to help identify the face in an image. The technique uses temperature
space, which means that it looks at how hot or cold different parts of an image are. This
allows the algorithm to tell which parts are the face and which parts are the background.
For face detection, Goulart et al. [24] designed a process to detect a face in a thermal image.
This process used three different kinds of filters: median filters, gaussian filters, and a
binary filter.

2.3. Region of Interests (ROIs)

Human affects contribute significantly to temperature differences in facial regions.
More specifically, the sympathetic nervous system (SNS) responds to human affects by
controlling a variety of physiological signals, such as increasing blood flow, which then
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causes an increase in body temperature, propagated to the surface of the face. Consequently,
thermal imaging could detect minor differences in facial temperature [33]. Moreover, vari-
ations in facial temperatures are caused by contractions in the facial action unit during
human affects [34]. Numerous facial regions have been focused on by previous studies to
measure the human affective state, including the forehead, tip of the nose, eyes, mouth,
cheeks, and chin [6,10,24,31,33,34]. Differences in temperature values according to a spe-
cific emotion type have been reported in numerous studies; for example, Cruz-Albarran
et al. [35] mentioned that the temperature of right and left cheeks increased when showing
the emotion of being sad or disgusted, whereas the temperature of the maxillary and nose
decreased when showing the sad or disgusted emotion. Ioannou et al. [36] showed that
forehead temperature decreased when expressing sad or fear emotions and that it increased
when showing the anger emotion. Moreover, the study of Jian et al. [37] reported that
there is a positive correlation in the cheek and eye regions related to human emotions.
Rooj et al. [6] selected facial ROIs such as cheeks, forehead, nose, and maxillary. Kumar
et al. [38] proposed facial landmarks with the DenseNet model for facial ROI localization
and extraction. Saha et al. [22] proposed the DFTA model to propose eight small facial
patches, which contain important information which contributes to differentiating between
emotion classes.

2.4. Feature Extraction

The type of selected features plays an important role in classification accuracy; thus,
previous studies have used various types of features in their work. For example, statis-
tical features including mean, variance, covariance, median, minimum, maximum, and
histogram statistical features [13,20,23–25,28,34,39]. Other feature types which have been
used are GLCM features [13,33,40], HOG features (HOG) [28], and LBP features [22,33,34].
Some studies in the literature have also used features from deep learning methods, such as
transfer learning from Alex Net [41] and convolutional sparse coding [6].

2.5. Classification

Numerous classification algorithms have been utilized in human affective recognition.
For example, the support victor machine algorithm (SVM) has been widely used in previous
studies [13,28,31,33,42]. The local discriminant analysis classifier (LDA) [24–26], deep
Boltzmann machine (DBN) [13], and deep learning classification algorithms [2,38,41,43,44]
have also been utilized.

3. Proposed Methodology

The proposed method in this study consists of three classification models, each with a
different number of ROIs. The goal of implementing three models with different numbers
of ROIs is to encompass all situations of occlusion presence and explore the efficiency
of sub-ROIs in classifying human affects. For example, if a facial image only contains
eyeglass occlusion, model one can handle this because it excludes eyes patches from
the ROIs. Furthermore, model three can be used to avoid occlusion when facial images
include both eyeglasses and facial hair, such as beards or mustaches. The main stages
for proposed models are demonstrated in Figure 1. The first stage is the preprocessing of
facial images prior to classification; facial images were extracted from their backgrounds
and a frontal view process was used to ensure that all the faces had the same correlation
due to spontaneous emotions, which are usually accompanied by head movements. Then,
6 main ROIs were cropped from facial patches and subdivided into 27 sub-ROIs. In the
proposed models, the following ROIs are used: the first model has 6 main ROIs, the second
model has 27 sub-ROIs, and the third model has 11 selective sub-ROIs. The next stage
implemented nine statistical features for three models and four types of feature selection
algorithms were applied, such as principal component analysis (PCA), analysis of variance
(ANOVA), neighborhood components analysis (NCA), and naive Bayes (NB). The last stage
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focused on the classification of an affective state based on SVM and MLP for the three
proposed models.
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3.1. Dataset Selection

This study selected a dataset based on numerous factors. The first one is the recognition
of a spontaneous affective state. The second requirement is that onset (beginning of emotion
intensity) and apex (maximum emotion intensity) frames should be available for each
individual in order to compute statistical features between two images. The third factor
focused for the current study is facial occlusion, which includes eyeglasses and facial hair.
As a result, the USTC-NVIE [27] database was selected because it satisfied the previous
factors. The database provides six basic spontaneous emotions, which are happy, disgust,
fear, surprise, anger, and sad. Furthermore, the database applied an evaluation process
to ensure the intensity of an emotion for each class through five experienced evaluators.
Based on their evaluation report, the study conducted an outlier process to select subjects
with a higher emotion intensity, and after detecting the outliers, the number of instances
employed for each class was as follows: happy: 99 subjects, disgust: 81 subjects, fear:
55 subjects, surprise: 65 subjects, anger: 56 subjects, and sad: 73 subjects.

3.2. Preprocessing Stage

As demonstrated in Figure 1, facial extraction is the first step in the preprocessing
stage. Several approaches have been accomplished in previous studies to extract facial
regions, for example, HOG with SVM [45], face detection based on eye coordination and
template matching [46], and the Viola–Jones algorithm [33]. The current study applied
Goulart et al.’s [24] approach to extract thermal faces by using median and Gaussian filters
with further preprocessing stages. More importantly, both onset and apex images have
been selected to extract statistical features between them. Therefore, the facial extraction
process was applied on both images, which are related to the same subject. Spontaneous
emotions were accompanied with facial movements [47]. Therefore, to preserve the same
coordination and frontal view for onset and apex images, this study applied image registra-
tion by conducting a similarity transformation. The images in Figure 2a,b are the onset and
apex images before the similarity transformation, and those in Figure 2c,d are the onset
and apex images after conducting a similarity transformation.
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3.3. Selected ROIs

Despite the fact that the aforementioned studies from the literature have focused
on several facial regions, such as the forehead, tip of the nose, eyes, mouth, cheeks, and
chin [44,48,49], very few previous studies tackled the challenge of manipulating facial
occlusion. Therefore, the current study selected facial images with eyeglass occlusion and
excluded the important eye region from the selected ROIs. Moreover, this study utilized
three classification models to explore the efficiency of ROIs when thermal face comprised
occlusion. For example, the first classification model employed six main facial ROIs,
including the forehead, tip of the nose, cheeks, mouth, and chin. The second classification
model focused on decomposing the previous six main ROIs into 27 sub-ROIs to explore the
efficiency of sub-ROIs in the recognition of human affects. The third proposed classification
model in this study selected 11 sub-ROIs from 27 sub-ROIs; the selection process conducted
based on the criteria of each sub-ROI should be free of facial hair, as the goal of this study is
to tackle the challenge of manipulating facial occlusion. Figure 3 demonstrates the proposed
three types of selective ROIs for each classification model. The selection of facial ROIs for
three proposed classification models in this study is illustrated in the following steps:

• Classification based on six main ROIs: forehead, tip of the nose, left cheek, right cheek,
mouth, and chin.

• Classification based on subdividing 6 main ROIs into 27 sub-ROIs as the following:

1. Subdivide forehead main ROI into 12 sub-ROIs.
2. Use tip of the nose ROI without subdividing.
3. Subdivide left cheek main ROI into three sub-ROIs.
4. Subdivide right cheek main ROI into three sub-ROIs.
5. Subdivide mouth main ROI into six sub-ROIs.
6. Subdivide chin main ROI into two sub-ROIs.

• Selected 11 sub-ROIs from 27 sub-ROIs, as demonstrated by the blue color in Figure 3c,
labeled as: R9, R10, R11, R12, R13, R14, R17, R22, R23, R24, and R25.

• ROIs extraction in this research accomplished by manually selecting the bounding
box on the main facial ROI for the apex image and the coordination of the bounding
box applied on onset image to preserve the same ROIs coordination for both the
onset and apex images. However, some previous studies have been conducted using
the automatic ROI extraction method, but this technique exceeds the scope of the
current study.
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3.4. Feature Extraction

Before the feature extraction process, the facial regions were converted to temperature
values using the equation from [50]. Therefore, the features were calculated based on
temperature values instead of gray level intensity values. However, this research proposed
nine statistical features to explore the variation in emotion intensity between apex and
onset images for each emotion class, as demonstrated in the following:

Equation (1): the mean value of the temperature points (X) in the apex image. f1
represents feature one.

f1 = X =
1

l.m

l

∑
i=1

m

∑
j=1

Xi j (1)

Equation (2): the mean value of the temperature differences (xd) between the onset
and apex images. Variable f2 represents feature two.

f2 = xd =
1

l.m

l

∑
i=1

m

∑
j=1

Xdi,j (2)

Equation (3): variation in the temperature points in the apex image. Variable f3
represents feature three.

f3 = Variance(x) (3)

Equation (4): variation in the temperature differences (Xd) between the onset and apex
images. Variable f4 represents feature four.

f4 = Variance (Xd) (4)

Equation (5): the maximum temperature value obtained from the apex image. Variable
f5 represents feature five.

f5 = Max(X) (5)

Equation (6): the minimum temperature value obtained from the apex image. Variable
f6 represents feature six.

f6 = Min(X) (6)

Equation (7): the mean of the maximum and minimum temperature values obtained
from the apex image. Variable f7 represents feature seven.

f7= Mean ( f5 + f6) (7)
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Equation (8): the median of the temperature values for the apex image. Variable f8
represents feature eight.

f8 = Median(X) (8)

Equation (9): the median of the temperature differences (Xd) between the onset and
apex images. Variable f9 represents feature nine.

f9 = Median(Xd) (9)

After conducting statistical features, the number of features for the first, second, and
third classification models in this research are 54, 243, and 99 features, respectively. Conse-
quently, for an efficient classification, the feature reduction technique is required due to the
large number of features. Four types of feature selection methods were proposed to explore
the more efficient features. The selective feature reduction methods include principal com-
ponent analysis (PCA), analysis of variance (ANOVA), neighborhood components analysis
(NCA), and feature selection based on the naïve Bayes (NB) algorithm. After the feature
selection algorithms arrange the features according to their importance in the classification,
the first 50 features were selected from the ANOVA and PCA algorithms, while first 10
features were selected from the NCA and NB algorithms.

3.5. Classification

For the current study, the support vector machine (SVM), and backpropagation multi-
layer perceptron (MLP) algorithms were utilized for the classification of six basic emotion
classes, including the emotions of happy, disgust, fear, surprise, anger, and sad. To obtain
the multiclassification process, the one-against-one technique was used by reducing the
multi-classification process to multiple binary classifications between two pairs of classes.
Therefore, 15 binary classification models were utilized for each multiclassification. How-
ever, to ensure the data of each class were free of noise, the outlier process was performed
before the classification by calculating the mean and standard deviation of each class, and
instances with more than three standard deviations far from the mean were excluded.
More importantly, to preserve balance criteria in binary classification, the down sampling
technique was performed. Moreover, a 10-fold cross validation technique was utilized
for the validation process. The selected kernel for the SVM classifier was the radial basis
function, with an epsilon equal to 0.001, while the configuration of MLP was as follows:
the learning rate was equal to 0.01, the number of epochs was 500, the backpropagation
rate was 0.2, and the number of hidden layers equaled 6.

4. Experimental Analysis and Discussion

This section demonstrates the experimental results obtained from three classification
models and discusses the reported results based on the study’s objectives. For each classi-
fication model, the process flow was obtained as demonstrated in Figure 4. To evaluate
the performance of the proposed models, three statistical analysis methods were obtained,
including the precision, F1 score, and Kappa analysis.

4.1. Affective State Recognition Based on Six Main Facial ROIs

The goal of the proposed classification model was to explore the efficiency of six
main facial ROIs to classify six basic emotions. Table 1 outlines the mean accuracy results
reported from the SVM and MLP classification algorithms with PCA, ANOVA, NCA, and
NB feature selectors. As shown in Table 1, the highest mean accuracy results were reported
in the sad class, at 98.5%, for SVM-NCA, and the second highest mean accuracy results, at
98.4%, were reported in the sad class for SVM-NB. Moreover, the lowest mean accuracy
result was reported to be 62.9% in the fear class from MLP-PCA. Furthermore, Table 2
demonstrates that SVM-NCA reported 95.3%, which is the highest overall mean recognition
accuracy result, followed by MLP-NB, which reported 92.1%. The minimum overall mean
accuracy results were reported at 73.8% for SVM-PCA. For the evaluation process, Table 3
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outlines three statistical evaluation methods, the precision, F1 score, and Kappa, which
were reported to be highest from the first two classification algorithms.
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Table 1. Mean accuracy results for affective state recognition based on six main ROIs reported
from the implementation of SVM and MLP classifiers with PCA, ANOVA, NCA, and NB feature
selection algorithms.

Classifier/Feature Selector Happy Disgust Fear Surprise Anger Sad Mean

SVM-PCA 74.6% 72.2% 74.2% 70.2% 71.0% 80.8% 73.8%
SVM-ANOVA 76.7% 82.5% 72.4% 68.6% 77.4% 86.4% 77.3%

SVM-NCA 95.8% 98.2% 90.2% 93.5% 95.3% 98.5% 95.3%
SVM-NB 90.0% 96.4% 84.4% 88.6% 92.5% 98.4% 91.7%

MLP-PCA 84.9% 88.2% 62.9% 76.1% 82.8% 80.2% 79.2%
MLP-ANOVA 75.5% 92.1% 70.2% 75.3% 79.9% 88.9% 80.3%

MLP-NCA 91.5% 97.3% 76.0% 84.1% 90.7% 98.1% 89.6%
MLP-NB 90.9% 97.0% 86.2% 90.5% 90.3% 97.5% 92.1%

Mean 88.1% 94.9% 78.3% 84.7% 88.6% 93.6% 88.0%
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Table 2. Precision, F1 score, and Kappa statistical evaluation method reported from classification
human affective state recognition based on six main ROIs and SVM, MLP classifiers with NCA and
NB feature selection algorithms.

Classifier/Feature Selector Evaluation Happy Disgust Fear Surprise Anger Sad Mean

SVM-NCA
Precision 0.94 0.96 0.94 0.96 0.93 0.99 0.95
F1 score 0.95 0.97 0.92 0.95 0.94 0.99 0.95
Kappa 0.64 0.64 0.71 0.67 0.70 0.65 0.67

SVM-NB
Precision 0.92 0.90 0.89 0.89 0.92 1.00 0.92
F1 score 0.91 0.93 0.87 0.89 0.92 0.99 0.92
Kappa 0.65 0.63 0.72 0.68 0.70 0.65 0.67

MLP-NCA
Precision 0.89 0.85 0.93 0.97 0.89 0.90 0.91
F1 score 0.90 0.91 0.84 0.90 0.90 0.94 0.90
Kappa 0.64 0.62 0.74 0.69 0.70 0.64 0.64

MLP-NB
Precision 0.91 0.91 0.97 0.95 0.90 0.92 0.93
F1 score 0.91 0.94 0.91 0.92 0.90 0.94 0.92
Kappa 0.65 0.63 0.72 0.68 0.70 0.64 0.67

Table 3. Mean accuracy results for affective state recognition based on 27 sub-ROIs reported from
implementation of SVM and MLP classifiers with PCA, ANOVA, NCA, and NB feature selection
algorithms.

Classifier/Feature Selector Happy Disgust Fear Surprise Anger Sad Mean

SVM-PCA 66.4% 55.5% 74.2% 59.8% 54.1% 59.6% 61.6%
SVM-ANOVA 66.4% 63.3% 69.5% 57.8% 55.6% 78.9% 65.2%

SVM-NCA 93.0% 95.2% 95.6% 94.4% 97.1% 95.3% 95.1%
SVM-NB 94.8% 96.7% 95.3% 93.5% 94.6% 96.0% 95.2%

MLP-PCA 66.7% 76.1% 58.5% 64.7% 82.1% 79.1% 71.2%
MLP-ANOVA 70.0% 66.7% 65.1% 61.1% 69.1% 77.0% 68.2%

MLP-NCA 94.8% 97.3% 91.3% 93.1% 96.8% 96.3% 94.9%
MLP-NB 94.2% 97.6% 93.1% 94.8% 93.2% 96.3% 94.9%

Mean 80.8% 80.7% 80.8% 77.6% 80.1% 84.6% 80.8%

4.2. Affective State Recognition Based on 27 Sub-Facial ROIs

The second classification model in this study explored the efficiency of decomposing
6 main facial ROIs into 27 sub-ROIs with the implementation of 9 statistical features for
each sub-ROI. Table 3 outlines the mean accuracy results reported from the proposed
method. The highest mean accuracy was reported, at 97.6%, in the disgust class obtained
from the MLP-NB classification, and the second highest accuracy result was reported, at
97.3%, in the disgust class from MLP-NCA. The lowest mean accuracy result was reported,
at 54.1%, in the anger class from SVM-PCA. The highest overall mean accuracy results
were reported to be 95.2% from SVM-NB and 95.1% from SVM-NCA. The overall lowest
mean accuracy result reported was 61.6% in SVM-PCA. Table 4 demonstrates statistical
evaluation methods related to a higher classification with the feature selection method used
in this model.
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Table 4. Precision, F1 score, and Kappa statistical evaluation method reported from classification
human affective state recognition based on 27 sub-ROIs and SVM and MLP classifiers with NCA and
NB feature selection algorithms.

Classifier/Feature Selector Evaluation Happy Disgust Fear Surprise Anger Sad Overall

SVM-NCA
Precision 0.96 0.94 0.95 0.93 0.96 0.96 0.95
F1 score 0.94 0.95 0.95 0.94 0.97 0.96 0.95
Kappa 0.65 0.64 0.70 0.67 0.70 0.66 0.67

SVM-NB
Precision 0.94 0.97 0.92 0.93 0.96 0.98 0.95
F1 score 0.94 0.97 0.94 0.93 0.96 0.97 0.95
Kappa 0.65 0.65 0.70 0.67 0.70 0.65 0.67

MLP-NCA
Precision 0.93 0.93 0.98 0.95 0.96 0.96 0.95
F1 score 0.94 0.95 0.94 0.94 0.96 0.96 0.95
Kappa 0.64 0.64 0.71 0.68 0.70 0.65 0.67

MLP-NB
Precision 0.93 0.93 0.98 0.95 0.94 0.97 0.95
F1 score 0.94 0.95 0.95 0.95 0.94 0.97 0.95
Kappa 0.65 0.64 0.71 0.67 0.70 0.65 0.67

4.3. Affective State Recognition Based on Selective 11 Sub-Facial ROIs

The third proposed model for the current study relied on the selection of 11 sub-ROIs
from 27 sub-ROIs; the goal of this proposed model was to explore the efficiency of the
selected sub-ROIs with free facial hair to avoid thermal occlusion. As demonstrated in
Figure 3c, R14 and R17 are the sub-ROIs related to the upper left and right cheeks selected
to avoid the existence of hair from a beard. Furthermore, the selected lower sub-ROIs in
the forehead are represented by R10 to R12 in Figure 3c, also to avoid patches of forehead
that could be covered by hair (bangs). Moreover, only upper and lower lips, represented
by R22 to R25, were selected from the mouth region to avoid subregions, which may
include facial hair such as mustaches and a beard. However, Table 5 demonstrates the
mean accuracy results reported from SVM and MLP classification algorithms and PCA,
ANOVA, NCA, and NB feature selectors. The disgust class reported the highest mean
recognition accuracy of 96.7% in MLP-NCA and 96.1 in SVM-NCA. Surprisingly, the lowest
class was reported to be 42.2% from SVM-ANOVA. Moreover, MLP-NCA reported the
highest overall recognition accuracy result of 93.4%, followed by SVM-NB, which reported,
at 92.8%, the second highest recognition accuracy. SVM-PCA reported a 51.5% overall
lower recognition accuracy. Table 6 demonstrates the statistical evaluation method reported
from the classification of the human affective state based on the selected 11 sub-ROIs and
SVM and MLP classifiers with NCA and NB feature selection algorithms.

Table 5. Mean accuracy results for affective state recognition based on selective 11 sub-ROIs re-
ported from implementation of SVM and MLP classifiers with PCA, ANOVA, NCA, and NB feature
selection algorithms.

Classifier/Feature Selector Happy Disgust Fear Surprise Anger Sad Mean

SVM-PCA 56.4% 49.4% 48.4% 55.9% 47.0% 51.9% 51.5%
SVM-ANOVA 63.0% 55.9% 61.6% 42.2% 55.9% 79.2% 59.6%

SVM-NCA 90.9% 96.1% 90.2% 90.5% 94.6% 94.1% 92.7%
SVM-NB 91.5% 92.7% 93.5% 91.2% 93.2% 94.4% 92.8%

MLP-PCA 48.8% 50.6% 50.5% 52.9% 55.9% 50.6% 51.6%
MLP-ANOVA 68.8% 67.9% 62.8% 59.5% 59.9% 86.0% 67.5%

MLP-NCA 93.6% 96.7% 90.9% 92.2% 91.7% 95.3% 93.4%
MLP-NB 92.4% 94.2% 91.6% 93.5% 91.8% 93.5% 92.8%

Mean 75.7% 75.4% 73.7% 72.2% 73.7% 80.6% 75.2%
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Table 6. Precision, F1 score, and Kappa statistical evaluation method reported from classification
human affective state recognition based on selective 11 sub-ROIs and SVM and MLP classifiers with
NCA and NB feature selection algorithms.

Classifier/Feature Selector Evaluation Happy Disgust Fear Surprise Anger Sad Overall

SVM-NCA
Precision 0.93 0.92 0.95 0.91 0.92 0.94 0.93
F1 score 0.92 0.94 0.92 0.91 0.93 0.94 0.93
Kappa 0.65 0.64 0.71 0.67 0.70 0.65 0.67

SVM-NB
Precision 0.93 0.92 0.93 0.92 0.94 0.93 0.93
F1 score 0.92 0.92 0.93 0.92 0.93 0.94 0.93
Kappa 0.65 0.65 0.70 0.67 0.70 0.65 0.67

MLP-NCA
Precision 0.93 0.93 1 0.93 0.91 0.92 0.94
F1 score 0.93 0.95 0.95 0.93 0.91 0.94 0.94
Kappa 0.65 0.64 0.72 0.67 0.70 0.65 0.67

MLP-NB
Precision 0.93 0.92 0.96 0.91 0.95 0.92 0.93
F1 score 0.93 0.93 0.94 0.92 0.93 0.93 0.93
Kappa 0.65 0.64 0.71 0.67 0.71 0.65 0.67

4.4. Comparative Study

The highest results from the previous proposed classification models have been re-
ported by two feature selection algorithms, namely, NCA and NB, while the lowest out-
comes were identified by PCA and ANOVA. This finding may refer to the significance of
feature selection algorithms in the classification process. Moreover, as aforementioned, the
number of selected features could play a significant role in the classification results. In
the current study, 50 higher ranked features were opted from PCA and ANOVA, while
10 higher ranked features were selected from NCA and NB. The reason for selecting 50 fea-
tures from PCA and ANOVA relied on experimental trails to achieve higher accuracy
results. More importantly, Figure 5 documents a comparison between the results reported
from three proposed models. As shown in Figure 5, the highest overall mean accuracy
result in model one was 95.3%, reported from the SVM-NCA classifier, and the highest
overall mean accuracy result in model two was 95.2%, reported from SVM-NB classifiers,
while the highest overall mean accuracy result in model three was 93.4%, reported from
MLP-NCA. However, the results from the three proposed models appeared to be nearly
identical, which means that the proposed method of decomposing main facial patches
into sub-regions could help the researcher to avoid occluded facial regions in thermal
images, such as eyeglasses and facial hair. Furthermore, the results of this study show
that, despite using a small number of facial ROIs, the classification performance is still
promising. More importantly, the current study’s findings show that increasing the number
of features does not always result in a higher accuracy, while few robust features could
report more significant impact.

After a comparison has been made between three proposed models, it is important
to compare the proposed models with those conducted in the literature. Therefore, the
current study selected models from other studies which selected their data from the USTC-
NVIE [27] database. Table 7 demonstrates the comparative results obtained from the current
study with other methods from the literature based on the UTSC-NVIE database. As shown
in Table 7, the results reported from the current study outperform the results reported from
other studies, except for the study in [41], which reported higher mean accuracy results.
The reason for this could refer to the type of features that were used.
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Table 7. Comparative results with other literature studies based on USTC-NVIE database.

Methods Features ROIs Classifier Accuracy Precession F1 Score Kappa

[22] LBP Selected facial
sub-ROIs

Multiclass
SVM 78.16% 78.3% 0.774 -

[51] Statistical features 100 sub-ROIs
without facial area SVM 76.45% 76.6% 0.753 0.637

[41] Transfer Learning Hybrid approach Multiclass
SVM 99.3% 98.5% 0.984 0.93

[6] Sparce coded filter Selected facial
sub-ROIs SVM 66.1% 67.1% 0.663 0.179

Our Proposed
methods

Statistical features 6 main facial ROIs SVM-NCA 95.3% 95% 0.95 0.67

Statistical features 27 facial sub-ROIs SVM-NB 95.2% 95% 0.95 0.67

Statistical features Selective 11 facial
sub-ROIs SVM-NB 92.8% 93% 0.93 0.67

This study also validated its findings by comparing them to previous studies based
on visual facial images. Table 8 outlines the comparison based on visual images and
shows that the mean accuracy results reported from the current study are competitive with
other results.
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Table 8. Comparative results with other studies in the literature based on visual facial images dataset.

Methods Datasets Features Classifier Accuracy

Proposed model one USTC-NVIE Statistical features SVM-NCA 95.3%
Proposed model two USTC-NVIE Statistical features SVM-NB 95.2%

Proposed model
three USTC-NVIE Statistical features SVM-NB 92.8

[52] JAFFE Haar, Gabor, LBP SVM, KNN 89.5%

[53] JAFFE facial landmarks, and
center of gravity SVM 91.9%

[54] JAFFE DBN ANN 90.95%

[55]
KDEF Transfer learning CNN 98.78%
JAFFE Transfer learning CNN 99.52%

5. Conclusions

This paper proposed three modalities for spontaneous affective state recognition based
on facial thermal images with eyeglass and facial hair occlusion. The main objective of this
paper was to explore the facial sub-regions which were free of eyeglass and hair occlusion
and more efficient in exploring the human affective state. The three proposed models
were dependent on each other. The first model focused on the classification of affective
states based on six main facial ROIs, and the eyeglass location was excluded. The second
model decomposed the 6 main ROIs into 27 sub-ROIs to explore the efficiency of sub-facial
regions in the classification of affective states. The third model in this paper selected 11
sub-ROIs from 27 ROIs to explore the ability of avoiding facial hair regions in thermal
images. In comparison to previous studies, the results reported from the three proposed
models demonstrate a higher mean accuracy: 95.3%, 95.2%, and 92.8% for models one,
two, and three, respectively. Furthermore, the results of this study show the importance
of feature selection techniques in improving classification accuracy. However, in future
studies, we will focus on the automatic extraction of ROIs and employ deep learning
algorithms to improve the recognition of human affective states.
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