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Abstract: Various navigation tasks involving dynamic scenarios require mobile robots to meet the 

requirements of a high planning success rate, fast planning, dynamic obstacle avoidance, and short-

est path. PRM(probabilistic roadmap method), as one of the classical path planning methods, is 

characterized by simple principles, probabilistic completeness, fast planning speed, and the for-

mation of asymptotically optimal paths, but has poor performance in dynamic obstacle avoidance. 

In this study, we use the idea of hierarchical planning to improve the dynamic obstacle avoidance 

performance of PRM by introducing D* into the network construction and planning process of PRM. 

To demonstrate the feasibility of the proposed method, we conducted simulation experiments using 

the proposed PRM-D*(probabilistic roadmap method and D*) method for maps of different com-

plexity and compared the results with those obtained by classical methods such as SPARS2(improv-

ing sparse roadmap spanners). The experiments demonstrate that our method is non-optimal in 

terms of path length but second only to graph search methods; it outperforms other methods in 

static planning, with an average planning time of less than 1s, and in terms of the dynamic planning 

speed, our method is two orders of magnitude faster than the SPARS2 method, with a single dy-

namic planning time of less than 0.02s. Finally, we deployed the proposed PRM-D* algorithm on a 

real vehicle for experimental validation. The experimental results show that the proposed method 

was able to perform the navigation task in a real-world scenario. 

Keywords: probabilistic roadmap (PRM); D*; robotics; path planning 

 

1. Introduction 

With the development of the times, the application of mobile robots is becoming 

more and more popular. Disaster relief robots, industrial transportation robots, inspection 

robots, etc., are moving deeper and deeper into our lives. Among many robot work sce-

narios, path planning work in large-range scenarios has been a difficult task. Because it 

needs to complete static planning to ensure the planning speed and path quality, it also 

needs to have the ability of dynamic planning. The wheeled robot we used is shown in 

Figure 1a, and its movement scenario is shown in Figure 1b. The goal was to determine 

end-to-end feasible paths and fast dynamic obstacle avoidance on a large-scale map. A 

path planning approach using deep learning seemed to be able to have both capabilities, 

but it required a long training time and is not suitable for deployment on an embedded 

platform. Therefore, we choose a traditional approach for the path planning task. 

Common path planning methods include the genetic algorithm (GA), fuzzy logic al-

gorithm (FA), D* algorithm [1], dynamic window approach (DWA), particle swarm opti-

mization (PSO), ant colony optimization algorithm (ACO), and the probabilistic roadmap 

method (PRM) [2]. 
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(a) (b) 

Figure 1. Indoor navigation task: (a) Four-wheel differential drive robot; (b) Office building as the 

deployment environment. 

The initial versions of the aforementioned methods have various limitations in real-

world applications; subsequently, researchers have improved these to overcome prob-

lems, such as increasing the number of variation operators to avoid the PSO algorithm 

falling into a local minimum [3] and increasing the number of crossover operators and 

fitness functions to avoid the fast convergence of the GA algorithm [4]. Furthermore, other 

methods have been utilized to address limitations. The adaptive fractional-order velocity 

algorithm was used to improve the PSO algorithm and minimize problems of falling into 

a local minimum and fast convergence [5]. The ACO algorithm has been improved using 

the sorting ant colony system to avoid falling into local traps [6]. The potential field 

method was employed to improve the planning success rate of PRM in narrow channels 

[7,8]. Weighted and automatic clustering methods have been used to reduce the planning 

time of D* [9,10]. Many researchers have introduced more environmental factors, such as 

the risk-based objective function [11] and road condition information [6], to improve the 

algorithm’s performance. In addition, a proportion of people chose to optimize parame-

ters or paths. For example, the path was optimized by the Bessel curve to facilitate control, 

and the stability of the normalized robot was optimized by step size in the fuzzy control 

to reduce its motion error [12]. 

The above methods, which optimized the algorithms, are only applicable to specific 

environments and have significant limitations in a wide range of navigation tasks involv-

ing dynamic scenes, such as long operation times [6,11,13,14] and poor adaptation to dy-

namic environments [4,5,7,8]. 

PRM, as one of the classical path planning methods, constructs paths by randomly 

sampling in space, connecting sampling points, generating a network graph, and finally 

searching among discrete sampling points; it is characterized by a simple principle, prob-

abilistic completeness, fast planning speed, and the asymptotic optimality of the formed 

path, but has poor performance in dynamic obstacle avoidance. When we used D* to plan 

a path in a wide range of scenes, the number of grids to be computed for graph searches 

increased dramatically due to the enlargement of the map area, which always led to ex-

cessive time overhead despite its dynamic planning speed being fast. Therefore, we pro-

pose a PRM-D* planning method for large-scale scenarios by combining PRM and D* al-

gorithms, which introduces the D* algorithm in PRM to build a network that can reduce 

redundant sampling points and speed up the global planning speed of PRM; meanwhile, 

D* was used as a local planner in the execution phase to increase the dynamic performance 

of the algorithm, as a way to overcome the limitations encountered by these algorithms 

when they are employed individually. 

The rest of this paper is organized as follows. In Section 2, we present related work. 

In Section 3, we discuss the PRM-D* algorithm and its three main improvement compo-

nents, adding network edges, constructing local maps, and implementing dynamic obsta-

cle avoidance. In Section 4, we show the differences between our method and other meth-

ods for maps of different complexity and experimentally validate the applicability of the 
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proposed method in real-world scenarios. Section 5 concludes the whole paper. Finally, 

Section 6 describes the shortcomings of the method and future research directions. 

2. Related Work 

There are two different improvement ideas for solving path planning problems in 

complex scene environments using PRM methods. 

One is to optimize the PRM algorithm itself. Bohlin et al. proposed the LazyPRM 

method, which turns PRM into a single-query fast planning method through the idea of 

delayed collision detection [15]. Karaman et al. proposed PRM* and LazyPRM* based on 

the improvement of PRM and LazyPRM, respectively, and eventually obtained the opti-

mal path by increasing the number of contact points in the expansion gauge [16]. Dobson 

et al. increased the original single-layer network graph of PRM to two and proposed the 

SPARS algorithm, which accelerated the convergence speed by sparse and dense two-

layer networks while possessing asymptotic optimality [17]. Thereafter, SPARS2 was pro-

posed on this basis, and the interface calculation of the two-layer map was improved to 

further enhance the algorithm effect [18]. The above methods greatly improved the path 

search speed and shortened the path length of PRM. However, they did not solve the 

problems faced by PRMs in dynamic scenarios. For example, when the robot’s original 

route appeared to obscure obstacles, these methods require the re-planning of the overall 

path and could not meet the real-time nature of dynamic obstacle avoidance. 

Another idea uses the idea of hierarchical programming to overcome the limitations 

of algorithms by combining different algorithms. The A* algorithm was used to plan the 

overall path, and PRM quadratic planning was used in the local scope to eliminate sharp 

turns in the path of A* planning [19]. However, in this approach, the global plan time of 

A* and the retraining time of PRM were high when dynamic obstacles conflicted with the 

map resolution. The PRM algorithm was used to estimate the general path, and the GA 

algorithm was used to calculate and improve branch point connections and optimize the 

wiring harness layout and reduce overall consumption [20]; however, this technique was 

applicable only for static environments. Rapidly exploring Random Trees (RRT) has been 

used to establish a global random search tree, and the Reinforcement Learning (RL) algo-

rithm has been employed as a local planner and controller for optimizing the extension of 

RRT [21]. However, the training time is too long, the scene portability is poor, and the 

actual planning is time-consuming. Subsequently, a method based on the combination of 

PRM and RL was proposed [22]; PRM was used to preliminarily plan the path, and RL 

was used to act as a local agent. RL was used to train each local area in detail and then 

splice it. Compared with the previous method [21], this method was faster and could re-

alize fine-obstacle avoidance movements. However, if the number of obstacles suddenly 

increased, there was a high risk that this method would not work. To address the problem 

of traditional deep learning algorithms requiring long development time, Gao Jun li et al. 

proposed a phased cultivation method PRM- TD3 to shorten the development time, which 

consists of PRM undergoing global planning TD3 and conducting local training for be�er 

flexibility in single-step time but performing poorly in overall path time [23]. In a multi-

robot cooperative task, Semiz, Fatih et al. performed initial planning based on the conflict 

search and used D* for the underlying planning of individual robots to improve resilience 

in dynamic scenarios [24]. D* has been used to determine the path cost node, and PSO has 

been used to optimize the control execution trajectory at the execution level [25]. The curve 

is be�er in a dynamic environment, but D* consumes more time in a large range of scenes. 

As for the slow search time of D* in large-scale scenes, Hu Huang et al. reduced the path 

planning time by 1/3 using the D* method with improved heuristic functions in vector 

maps [26], but the planning time was still too long compared to methods such as PRM. 

The aforementioned improved algorithm proves the effectiveness of PRM in global 

planning and the flexibility of the D* algorithm in dynamic environments. Therefore, in 

this study, we used PRM for initial planning and D* for local planning. The success rate 

of the PRM path planning was improved, the number of PRM path queries was reduced, 
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the planning speed improved, and the introduced D* algorithm optimized the path length 

of PRM planning to a certain extent while making PRM have a strong dynamic planning 

capability. 

3. Method 

Improvements to PRM can be divided into two major parts, namely, improvements 

in building networks and improvements in dynamic planning capabilities. The former 

speeds up the planning success rate and planning speed of the PRM, and the la�er gives 

PRM the ability of dynamic obstacle avoidance. The building network phase was con-

ducted by making changes to the pathfinding method among PRM nodes in order to re-

duce the number of network nodes and speed up the pathfinding. Dynamic planning can 

be achieved by constructing a local map dependent on the main path, and the dynamic 

planning capability of the algorithm was enhanced by introducing the D* algorithm. 

3.1. PRM Construction 

In the classical PRM method, the barrier-free path between nodes is utilized to con-

nect two points in a straight line and judge whether they pass through the obstacle. This 

method yields a fast calculation speed; however, in practical applications, it often leads to 

the failure of connectivity in narrow positions. As shown in Figure 2a, it can be assumed 

that the interior of the box is the interior and the space between the lines is the corridor; 

the indoor and corridor are connected through doors, and sampling points on both sides 

are easily blocked. Increasing the sampling points solves this problem but creates a large 

number of redundant points, which increases the duration of the path-planning phase. 

  
(a) (b) D* planning 

Figure 2. Different ways to build edges: (a) Line connection (b) D* connection. 

Therefore, we used the D* algorithm to perform secondary retrieval when the road 

map node failed to pass a straight-line edge construction so that it could bypass the simple 

occlusion in the neighborhood range, as shown in Figure 2b. 

Algorithm 1 describes how PRM-D* adds edges to the PRM. In classical PRM, the 

connection cost of a straight-line edge was determined by calculating the Euclidean dis-

tance between two points. To match the weight of the D* planned path and the original 

PRM edge, the distance of the points with the same x- or y-axis coordinates in the path 

array was denoted as 1, and the distance of the remaining adjacent points was denoted as 

1.4. For example, if you move from the grid (0, 0) to (2, 1), its walking path is (1, 0), (2, 1), 

then the connection cost of this path is (1 + 1.4) * grid resolution. Finally, the weight of the 

path was obtained by summing up the distance between all points and multiplying the 

obtained value with the grid resolution. 

Algorithm 1: Addition of edges in PRM-D*  

1.weight ← 0 

2.for i = 1 … N do 

3.   for j = i +1 … N do 

4.      if F(si, gj) then 

5.         weight ← O(si, gj) 
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6.         if weight <DIS then 

7.            add_ edge←[ si, gj, weight] 

8.      else: 

9.         try: 

10.            path  ← D-S(si, gj) 

11.            weight ← W(path) 

12.            if weight <DIS then 

13.               add_ edge←[ si, gj, weight] 

14.          except: 

15.               pass 

16.return  add_ edge 

When judging whether the sampling points are connected, s, g is the current calcula-

tion of two sampling points; point N is the total number of sampling points, O is the path 

cost between two sampling points when they can be connected in a straight line, W is the 

path cost between two sampling points when they cannot be connected in a straight line 

but can be connected using D*, DIS determines whether the cost is too high after D* con-

nection; in a complex environment, the actual connection path of points close to the spatial 

distance may be very long. F determines whether the two sampling points can be con-

nected in a straight line. 

The planning results are shown in Figure 3. The improved PRM first generates the 

path after linear connection, then invokes the local planning results of D* to generate Fig-

ure 3c. However, the path at this point contains many corners, which are difficult to use 

for robot walking control. B spline is a common curve interpolation optimization method, 

and it can also enhance local modification through the control points, so we choose to use 

B spline to optimize the original path. 

    
(a) (b) (c) (d) 

Figure 3. PRM- and PRM-D*-generated paths in the complex map: (a) is the PRM path, (b) is the 

modified PRM path, (c) is the path after introducing D*, and (d) is the final path. 

3.2. Local Map Construction 

Algorithm 2 describes the process of local map construction. The construction of local 

map boundaries under normal conditions is illustrated in Figure 4a. The local map bound-

ary range n is usually around 50 raster distances; if n is too small, it will affect dynamic 

obstacle avoidance, and a too large n will lead to an increase in D* local search time. The 

black squares in the figure represent obstacles, and points O and A are path nodes gener-

ated by the PRM algorithm. The robot moves from point O to point A, the coordinates of 

point O are (x, y), and n is the size of the local map. With x+n as fixed X-axis coordinate 

parameters and y+n to y-n as Y-axis coordinate parameters, the set of the right bounding 

box is formed, and similarly, the left bounding box and upper and lower bounding boxes 

can be generated. The intersection point B of the border and PRM path is the target point 

of the local map. The cross centerline is constructed similarly to the border, except that the 

(x, y) coordinates are no longer offset by a distance n. If the center line of the cross has no 
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intersection with the PRM path, the final path is the part selected by the red do�ed box. 

In the case of an intersection between the path and the center line of the cross, as shown 

in Figure 4b, the local map with an intersection at the cross line is retained. 

Algorithm 2: Local map construction 

1. NL ← S, N0 ← S,N1←S , In← 0  

2. if N0 != G then 

3.    LE ← LES (N0,n) 

4.    In,P ←  Intersection(LE,Pp) 

5.    if  In == 1 then  

6.       N1 ←  P 

7.       PE ← PES(N0,n) 

8.       in,p ← Intersection (PE,Pp) 

9.       if in is not empty then 

10.           Local_ edge←// Preserve the boundary of the half region where p is 

located 

11.       else 

12.           Local_edge←// Preserve the boundaries of the quarter area where the 

N1 is located 

13.       Pp ←//Pp removes the pathpoint before the N0 coordinate 

14.    elif In > 1 then 

15.       if NL == N0 then // initial position 

16.       ��̇ ← vector(N0,P) 

17.        //Calculate the angle α between ��̇ and �̇ 

18.           N1 ← min(P,α) // The vector with the smallest Angle 

19.        //Repeat 7 ~ 13 

20.       else  

21.              �̇ ← vector(NL, N0) 

22.       //Repeat 16~19 

23.    else 

24.       N1 ← G 

25.     //Repeat 7~13 

26.    local_map ← local(local_edge,glogal_map) 

27.    return local_map 

28. else 

29.    return End of the navigation 

Figure 4a,b shows the situation corresponding to a single intersection point between 

the border and PRM path. In the case of multiple intersections, vectors must be con-

structed to help select local target points. As shown in Figure 4c, vector OA is formed with 

O as the starting point, and AB, AC, and AD constitute three vectors. The included angle 

between vectors OA and AB can be calculated as follows: 
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(a) Normally built map (b) Intersecting the center line (c) Multiple points of intersection 

Figure 4. Different local map builds. The selected local map in (a) is the red do�ed box selection 

range, and (b,c) omits the unselected map. 

��̇ =  (��, ��) =  (��  −  �� , ��  − �� ) (1)

��̇ = (��, ��) = (��  −  �� , ��  −  ��)  (2)

������̇, ��̇�  = [���� + ����]/ ��(��
� + ��

�) × �(��
� + ��

�)�.  (3)

� = ������ (cos(��̇, ��̇))  (4)

The point with the lowest angle is selected as the next node. 

In this logical segment, S, G are the starting and target points under the global map. 

The map planned by the PRM is formed by connecting several nodes, and the robot builds 

a new local map when it walks to a node. At this point, the node where the robot is cur-

rently located is denoted as N0, the node it has just walked past is denoted as NL, and the 

node it is going to is denoted as N1. When building the local map, we first built a large 

bounding box around the node, i.e., LE, and the function to build LE was LES. To reduce the 

planning time of D* in the local map, we chose to use two vertical intersecting medians to 

divide LE into four. A large bounding box, LE, was constructed around the node, and the 

function to construct LE was LES. In order to reduce the planning time for D* in the local 

map, we needed to reduce the local map area as much as possible, so we chose to divide 

the LE into four parts using two vertically intersecting medians, this median boundary line 

is denoted by PE, and PES is the function for constructing PE. Pp is the global path. 

3.3. Dynamic Obstacle Avoidance 

For most scenes, the local map constructed using the aforementioned algorithms 

could meet the planning needs. However, as shown in Figure 5a, for the global planning, 

the path was connected, but for the intercepted local map, there was no feasible path be-

tween the starting point and the target point. Or as shown in Figure 5b, the sudden obsta-

cle blocks all provide feasible routes in the local map but do not affect the selection of 

nodes. At this point, the construction of the local map was abandoned, and the robot loca-

tion and N1 were selected as the starting point and end point, respectively, to construct 

the global map for D* planning. This method works well for these special scenarios; how-

ever, there is a slight increase in planning time when boundary constraints are lost. If ob-

stacles block the target node, as shown in Figure 5c, the point where the current robot is 

located, that is, N0, is used to reconstruct the local map and plan the local path. 

   
(a) (b) (c) 

Figure 5. Different special cases: (a) Obstacles beyond the local map, (b) A sudden obstacle obscur-

ing all feasible paths in the local map. (c) A target point obscured by a dynamic obstacle. 
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The specific process is shown in Algorithm 3. 

Algorithm 3: Dynamic obstacle avoidance 

1. local_path←[] 

2. if move_obs is empty then 

3.    try: 

4.       local_path←D_S(s, g, local_map)// D_S:D* agent’s policy 

5.       return local_path 

6.    except: 

7.       local_path←D_S(s, g, glogal_map) 

8.       return local_path 

9. else 

10.    local_map ← local(local_map , move_obs) 

11.    try: 

12.       Local_path ← D_S_updata(s, g, local_map) 

13.    except: 

14.       new_glogal_map ← glogal_map +move_obs 

15.       if g∈move_obs then 

16.          return []//Returns a null value, restart the map building process 

17.       else 

18.          try: 

19.             local_path ← D_S_updata(s, g, local_map) 

20.             return local_path 

21.          except: 

22.             local_path ← D_S_updata(s, g, new_glogal_map) 

23.             return local_path 

4. Experiment and Analysis 

4.1. Basis of Experiment 

(1) Robot setup: A differential drive was used for robot kinematic models. The robot’s 

movement was controlled at 20 Hz, and the obstacles observed by the depth camera were 

projected onto the plane map through coordinate system transformation and were repre-

sented as a whole composed of squares 0.1 m. The detection frequency of the camera was 

set at 30 frames per second. 

(2) Map selection: Figure 6 shows the grid maps selected for simulation according to 

different complexities. The resolution of the grid maps was set as 500 × 500, and the size 

of one grid was set as the size of the robot. 

 

Figure 6. Raster maps used in the experiment arranged in the order of increased difficulty. 

(3) Roadmap Construction: For simplicity, we used uniform random sampling to 

construct the roadmaps. The construction range N of the local map was usually 50 times 

the size of the robot. Therefore, in point-to-point PRM network construction, the Euclid 

distance between a single point and a point generally does not exceed the distance N 
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unless otherwise stated to prevent errors in the navigation stage and reduce the time cost 

of edge construction. 

(4) Parameter selection: PRM-D* can be compared with classical PRM, D*, GA, fuzzy 

methods, and the SPARS2 method from the OMPL library. In the edge building phase of 

PRM, a straight-line connection was used, and the neighborhood distance was chosen to 

be 100 to meet the construction requirements of a simple map. the maximum number of 

iterations of GA was chosen to be 50 to prevent the operation time from being too long. 

Since the parameters of the fuzzy method needed to be adjusted in maps of different com-

plexity, Fuzzy manually adjusted the parameters according to different maps. 

4.2. Performance Comparison before and after PRM Improvement 

According to the principle of improved edge addition in PRM, when the local map is 

simple, the occlusion is small, and there is li�le difference in the algorithm performance 

before and after improvement. Therefore, only the raster map with the highest complexity 

was selected here to discuss the performance comparison of the PRM algorithm before 

and after improvement. 

To verify the performance comparison of PRM before and after improvement, we 

selected different numbers of the sampling points in the same map and conducted exper-

iments and analyses in terms of three aspects: the number of edges built, the success rate 

of the path planning, and time consumption. The experimental data included the average 

results of each group of experiments performed 100 times. As can be seen from Figure 7a–

c, with the increase in the number of sampling points, both PRM and PRM-D* exhibited 

an overall upward trend in terms of all three aspects. However, under the same number 

of sampling points, the improved PRM-D* exhibited far more edges and a higher success 

rate than the PRM method. When the number of sampling points was 300, the difference 

was the largest, and the difference in the success rate was 88%. The time cost of PRM-D* 

in network construction, however, was much higher compared to that before the improve-

ment. This is because we did not limit the upper limit of the paths between the sampled 

points searched by D* when we performed the validation in order to explore gaps in the 

network construction. This can be seen in Figure 8a, where there are long network edges 

in the right-hand image. However, in the slit experiment, as shown in Figure 9b, after 

increasing the upper limit of the search, there was only a limited number of connected 

lines, at which time we found that after se�ing the search range of D* to be equal to the 

neighborhood distance of PRM, the network construction time took usually two to three 

times longer than that of the traditional PRM method, which varied according to the com-

plexity of the map. 
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(c) (d) 

Figure 7. Performance comparison of PRM and PRM-D* in network construction. (a) Number of 

sampling points versus number of edges required. (b) Relationship between number of sampling 

points and success rate. (c) The number of sampling points versus the time required for network 

construction. (d) Relationship between number of edges and success rate. 

  
(a) (b) 

Figure 8. Network construction under different numbers of sampling points: (a) Comparison of 

PRM and PRM-D* composition for 150 sampling points; (b) Comparison of PRM and PRM-D* 

composition for 1000 sampling points. 

An analysis of the success rate data of PRM-D* revealed that although an overall up-

ward trend was observed, when beyond a certain number of sampling points, increasing 

the number of sampling points did not result in more improvements. For 300 sampling 

points, the success rate was 95%, and for 500 sampling points, the success rate was 100%. 

This indicates that for a given complexity, there was an upper limit for the number of 

sampling points, and the number of sampling points could be reasonably selected accord-

ing to the complexity of the map. 

The comparison of the number of edges constructed by PRM and PRM-D* for differ-

ent numbers of sampling points with the success rate in Figure 7d revealed that the num-

ber of edges for PRM at 1000 sampling points was more than twice the number of edges 

for PRM-D* at 500 sampling points; however, the success rate of PRM was only 0.6 times 

that of PRM-D*, and combined with Figure 8, it could be seen that the traditional PRM 

method had fewer effective edges at corner locations. After the improvement, the number 

of corner edges increased. 

The difference between PRM-D* and PRM could be more easily observed in maps 

with slits. The classical PRM algorithm often requires more sampling points to obtain the 

required success rate when facing a slit map. We started the experiment from 150 sam-

pling points and repeated the network construction 20 times for each additional 50 sam-

pling points to verify the probability of successful path planning. The conventional PRM 

method could guarantee a planning success rate of 90% after only 800 sampling points. 

By contrast, the improved method required only 150 sampling points to obtain be�er re-

sults, as shown in Figure 10. The reason for this can be easily derived from Figure 9, which 

shows that the classical method had some network edges near the slit, even at 800 sam-

pling points. The improved PRM-D* algorithm performed well in dealing with the slit 

scenario. 
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(a) (b) (c) (d) 

Figure 9. Slit map planning results: (a) Classical PRM network at 800 sampling points; (b) PRM-D* 

network at 150 sampling points; (c,d) are the final results for PRM and PRM-D* after planning, 

respectively. 

 

Figure 10. Comparison of the success rate of PRM and PRM-D* for each sampling point in the slit 

map. 

4.3. Influence of Sampling Density on Planning Speed and Path Quality 

From the results in the previous section, we know that in a complex map such as 

Figure 6, 150 sampling points had a planning success rate of 50%, 500 sampling points had 

a success rate of just reaching completion success, and 1000 sampling points created a 

large amount of redundancy. Therefore, to verify the effect of different sampling points 

on the overall planning speed and planning quality, we selected 150, 500, and 1000 sam-

pling points and analyzed the secondary planning speed and path length when the num-

ber of sampling points changed on raster maps with different complexities. 

From Figure 11a, it can be seen that the path-planning time consumed by the same-

map PRM increased with the number of sampling points, and the path-planning time of 

different-map PRM decreased with an increase in map complexity. From Figure 11c, the 

reason can be noted that the higher the complexity of the map, the smaller the number of 

established edges. Therefore, in practical applications, the number of sampling points can 

be adjusted according to the complexity of the environment to achieve a balance between 

the success rate and time overhead. 
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(c) (d) 

Figure 11. Performance comparison of PRM and PRM-D* with different parameters in different 

maps during the path planning phase. (a) Path planning duration under different maps; (b) Path 

length in different maps; (c) Relationship between the number of sampled points and edges in maps 

of different complexity; (d) Time required to construct a local map in a single pass in different maps. 

Figure 11b depicts variations in the path length for PRM-D* and PRM for different 

numbers of sampling points. Overall, the path length of PRM-D* was smaller than the 

path generated by PRM regardless of the number of sampling points and the complexity 

of the maps, which proves that the original PRM path was optimized after incorporating 

the D* algorithm. Looking at each map alone, the increase in the number of sampling 

points had a greater effect on the PRM path length, while the impact on PRM-D* was 

smaller, which proved that the optimization of D* based on the original path of PRM was 

sufficient to compensate for the optimization results of the PRM path, which was caused 

by an increase in the number of sampling points by a certain amount. 

The effect of increasing the number of sampling points on the single planning time is 

shown in Figure 11d; the overall trend of the local planning speed was the same as the 

map changes, which indicates that the effect of map complexity on the planning time was 

much greater than that of the number of sampling points. 

4.4. Comparison of PRM-D* with Other Methods 

In Section 4.3, we discuss the success rate of PRM-D*. Here, we used different meth-

ods on all the maps to compare and validate the performance of PRM-D* in terms of plan-

ning time and path length. From the analysis of the results in the previous sections, we 

selected 500 sampling points, which could ensure sufficient planning success with a low 

time overhead as the base parameters for PRM-D*. In the comparison process, the path 

length and planning time of PRM-D* are the sum of all local planning results. The path 

length of the non-raster method was calculated by fi�ing it with the centroid spacing of 

the raster through which it passed. 

Figure 12a,b shows the length and time consumption of the paths planned by each 

method in different maps. In terms of the path length, the graph search-based D* algo-

rithm was optimal among the methods, but the search time consumption had too much 

overhead compared with the PRM-related improvement algorithm. Comparing this 

method with the SPARS2 method, the different maps both had advantages and disad-

vantages in terms of path length, and the overall performance was approximately the 

same considering the randomness of PRM-generated path nodes. In terms of planning 

time overhead, the proposed method was slightly faster than the SPARS2 method when 

the sampling points were taken to be 500. Experimentally, this method proved to be very 

competitive in static pathfinding. 
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(a) (b) 

Figure 12. Time and path overhead of each method in different maps. (a) Length of paths gener-

ated by different algorithms on different maps. (b) Time required for different algorithms to plan 

paths on different maps 

4.5. Dynamic Obstacle Avoidance 

To verify the dynamic obstacle avoidance performance of PRM-D*, we calculated the 

time required for PRM-D* to replan in the case of the sudden appearance of obstacle points 

by manually adding points and, thus, changing the original path. When adding different 

obstacles, it is difficult to guarantee that both methods have the same path change length 

when avoiding obstacles; therefore, an approximate interval was used to measure the level 

of replanning. The final time was chosen as the average of 20 sets of data. 

Figure 13 shows the replanning time required for different levels of path changes 

when different obstacles were encountered. The comparison of the replanning times for 

different intervals shows that the proposed PRM-D* method did not differ significantly 

from D* when faced with similar environmental changes; the time spent by both is almost 

linear when replanning for grid number changes, while the SPARS2 method still required 

a new planning effort when encountering map changes, it thus had poor dynamic obstacle 

avoidance, compared to which our method was nearly two orders of magnitude faster in 

dynamic planning; thus, it can be demonstrated that PRM-D* yields a good dynamic per-

formance under usual circumstances. 

 

Figure 13. Dynamic planning time comparison. 

4.6. Autonomous Movement and Dynamic Obstacle Avoidance 

In the previous subsections, we discussed the performance of PRM-D* in raster maps. 

In this section, we verify the effectiveness of our method for planning a real scene. The 

experiments were carried out on a section of street in a campus with an overall size of 96 

m × 24 m. After determining the start and target points, the initial planning results are 

shown in Figure 14a. The robot acquires the 3D spatial information of the target for target 

recognition through a depth camera mounted in the center of the robot and performs a 

coordinate system transformation to project the obstacle into a 2D SLAM map of the 
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obstacle. We arranged for a human to push the obstacle so that it could move laterally 

during the robot’s walk, and when the robot detected the obstacle, its change trajectory is 

shown as the red trajectory in Figure 14b. As the obstacle moved rapidly, the robot again 

planned a path, as shown in the green trajectory in Figure 14c. The robot’s walking trajec-

tory was generated from the LiDAR data, and its final path trajectory is shown as the black 

trajectory in Figure 14d. The experiments demonstrate that our method can be used in 

real-life scenarios. 

   
(a) (b) (c) 

 
(d) 

Figure 14. Scenario map and planning in real-world experiments. (a) Initial planning of the path. 

(b) Change of route when an obstacle appears. (c) The route changes again after the obstacle moves. 

(d) The planned path and the actual path traveled by the robot. 

5. Conclusions 

The PRM method has become one of the classical path planning methods because of 

its simple and easy-to-understand principle and its probabilistically complete and asymp-

totically optimal characteristics, but the lack of a dynamic obstacle avoidance capability is 

always a pressing problem. In this study, a hierarchical planning method was developed 

by combining the PRM and D* algorithm. Through experiments and comparisons, the 

following conclusions were drawn: (1) The improvement of the add-edge algorithm ena-

bles the PRM algorithm to achieve a higher success rate with fewer sampling points, and 

the reduction in the number of sampling points greatly reduces the time cost of the path 

planning process. The global planning speed is slightly be�er than the spars2 method 

when the effective sampling points are selected at 500. (2) PRM-D* greatly improves the 

dynamic obstacle avoidance capability while ensuring fast global planning and increases 

the dynamic planning speed by two orders of magnitude compared with spars2; (3) Alt-

hough the path generated using PRM-D* is not optimal, the global path length was smaller 

than that achieved using the original PRM, and was close to that generated by spars2, 

which was competitive; (4) Experimental. The results show that the robot can achieve nav-

igation and dynamic obstacle avoidance in a wide range of maps. In summary, this study 

uses PRM as the basis and introduces D* to complete the network construction, giving a 

new way to accelerate the planning by constructing more effective edges, reducing the 

need for sampling points, and speeding up the path generation in the query phase; in 

addition, using D* as a local planner with the idea of hierarchical planning can achieve 

fast dynamic planning in the local range, making the method applicable to dynamic 

scenes. 
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6. Discuss 

In this paper, we experimentally validated the feasibility of our algorithm and the 

competitive planning performance it exhibits in static and dynamic scenarios through dif-

ferent perspectives. However, there are still shortcomings compared with other methods, 

such as the optimality of static paths. The spars2 method of making paths asymptotically 

optimal by generating additional nodes near existing path nodes in an iterative way is a 

good approach, and be�er paths can have less motion overhead at the beginning of plan-

ning or other scenarios where planning efficiency is less demanding. In future work, we 

will investigate the optimality of the paths. 

In addition, the method in this paper does not consider the difference in energy over-

head in terms of straight ahead, turning, and in situ steering in conjunction with the mo-

tion process during the study and only improves the algorithm in terms of path length 

and planning speed. Combining kinematic principles to generate paths that are more con-

sistent with the motion process will also be the focus of future research. 
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