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Abstract: The elastic light-scatter (ELS) technique, which detects and discriminates microbial organ-
isms based on the light-scatter pattern of their colonies, has demonstrated excellent classification
accuracy in pathogen screening tasks. The implementation of the multispectral approach has brought
further advantages and motivated the design and validation of a hyperspectral elastic light-scatter
phenotyping instrument (HESPI). The newly developed instrument consists of a supercontinuum
(SC) laser and an acousto-optic tunable filter (AOTF). The use of these two components provided
a broad spectrum of excitation light and a rapid selection of the wavelength of interest, which en-
ables the collection of multiple spectral patterns for each colony instead of relying on single band
analysis. The performance was validated by classifying microflora of green-leafed vegetables using
the hyperspectral ELS patterns of the bacterial colonies. The accuracy ranged from 88.7% to 93.2%
when the classification was performed with the scattering pattern created at a wavelength within
the 473–709 nm region. When all of the hyperspectral ELS patterns were used, owing to the vastly
increased size of the data, feature reduction and selection algorithms were utilized to enhance the
robustness and ultimately lessen the complexity of the data collection. A new classification model
with the feature reduction process improved the overall classification rate to 95.9%.

Keywords: bacterial identification; elastic light scattering; bacterial colony phenotyping; hyperspectral
imaging; light diffraction; optical sensing; supercontinuum laser

1. Introduction

Foodborne illnesses are caused mainly by the consumption of food that is contami-
nated with pathogenic bacteria, viruses, parasites, or chemicals [1]. Early detection of these
contaminants is critical in reducing morbidity and preventing costly recalls of contaminated
foods during an outbreak. Therefore, faster, easier-to-use, and more reliable detection and
organism identification are crucial in the food industry and other related areas. Optical
metrology for bacterial identification has gained interest due to its convenience, noninva-
siveness, lack of contact with the measured material, and speed [2]. Optical scattering and
diffraction pattern-based identification methods such as the elastic light scattering (ELS)
technique [3–5] and Bacterial Identification System by Light Diffraction (BISLD) [6] are
shown to be rapid, nondestructive, and label-free, demonstrating potential applicability in
the clinical and food safety sectors. The core technology behind these two optical techniques
is the same and involves identifying bacterial species based on the forward scattering and
diffraction patterns of their colonies. A volumetric photon-cell interaction explains the
fundamental mechanism underpinning pattern creation. The interplay between light,
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individual cells, and extracellular material forms a highly unique 2D diffraction pattern
that provides information about individual cell features and the aggregate morphological
qualities of a colony [3].

The previously demonstrated pattern-generation methodology utilized a
single-wavelength 635 nm light source to test a variety of microbial organisms, with
the performance being reported in several publications [7,8]. However, owing to the
morphological similarity of colonies formed by phylogenetically close microorganisms,
this established technique performed poorly when attempting to identify them. Several
techniques, such as multiwavelength and multichannel systems, have been developed to
address this issue and enhance classification performance [9–11]. When the multispectral
ELS system incorporating 405, 635, and 904 nm diode lasers was tested with seven distinct
E. coli spp. serovars, it demonstrated an improvement over the single-wavelength tech-
nique [9]. The features were extracted from the multispectral patterns, and the random
forest (RF) algorithm was adopted to select highly predictive features for the classification
model. This successful early implementation of a multispectral system accompanied by ma-
chine learning motivated the creation of a new ELS system that utilizes more wavelengths
and relies on hyperspectral ELS patterns for improved classification.

The major differences between the hyperspectral and multispectral approaches are the
number and resolution of the spectral bands employed in the measurement. Multispec-
tral systems collect signals from a few discrete spectral bands, whereas the hyperspectral
approaches utilize a large number of bands approximating a continuous spectrum [12].
Therefore, hyperspectral techniques can provide more in-depth details and generate more
precise spectral fingerprints than multispectral techniques [13]. Hyperspectral imaging
techniques thus can leverage the benefit of traditional digital imaging, computer vision,
and spectroscopy to process both spatial and spectral information [14]. Since hyperspectral
imaging requires more spectral bands than multispectral imaging, highly sophisticated
hardware and software is needed. This raises the cost of data acquisition and process-
ing [15].

A hyperspectral system typically requires a broadband source and wavelength mod-
ulator that efficiently isolates the light at a single wavelength so that the imaging sensor
can capture the spatial information of an object in a variety of wavelengths [16]. Since the
light source must be coherent in the ELS system to create the diffraction pattern, a super-
continuum (SC) laser is an attractive option for this application due to its broad spectrum
and high coherence properties [17]. SC laser is a broadband light source generated when
an optical pulse propagates through an extremely nonlinear medium. For the wavelength
modulator, an acousto-optic tunable filter (AOTF) is popular tool that utilizes acousto-
optical interaction through birefringent medium to modulate the wavelength of light. The
anisotropic Bragg diffraction of broadband light triggered from the acoustic signal passing
through the birefringent medium provides excellent optical and technical characteristics,
including high spectral and spatial resolution, a broad tuning range, no moving parts, and
rapid wavelength tuning speed [18]. Therefore, AOTF is widely utilized in biomedical
applications that require wavelength selection such as hyperspectral imaging [19], flow
cytometry [20], and fluorescence and confocal microscopy [21,22]. The SC lasers are also
often paired with acousto-optic tunable filters (AOTFs) in various applications to precisely
control the interrogating wavelength [23,24]. By integrating these components with the
ELS system, it is possible to generate the hyperspectral pattern and perform simultaneous
measurement. The ELS technique differs from the imaging or microscopic technologies
mentioned earlier in that it classifies bacterial colonies based on their Fresnel diffraction
and scattering patterns. This technique directly measures the spatial intensity of the pattern
without using any optics. As a result, it is not subject to any imaging aberrations caused
by factors such as chromatic aberration and acousto-optic interaction, making it free from
the need for calibrations to correct such distortions. Along with the spectral resolution
improvement, the hyperspectral sensing approach also increases the data dimensionality.
This can bring additional challenges because of the increased number of images [25]. Thus,



Sensors 2023, 23, 3485 3 of 18

feature or variable selection approaches are often employed to decrease the possibility
of overfitting and lower the computational complexity while preserving or improving
classification accuracy [26]. Feature extraction and selection are crucial steps in a pattern or
image classification. Their importance is demonstrated in various applications, including
PM2.5 feature recognition and air pollution control [27–29].

Herein, we report the development and validation of a hyperspectral ELS phenotyping
instrument (HESPI). The novel device utilized an SC laser as a broadband light source
and an AOTF to select the wavelength of interest for the ELS pattern generation. The
classification ability of the hyperspectral ELS system was evaluated using eight different
bacteria species of Arthrobacter sp., Curtobacterium sp., Massilia sp., and Microbacterium sp.,
which are a part of the natural microflora found in a green leaf vegetable such as lettuce.
With the newly developed instrument, a total of 70 scattering patterns were collected within
the wavelength range 473–709 nm for each colony, and descriptive features were extracted
from the patterns for classification purposes. As a result of the increased amount of data,
a machine learning technique was required to process the variables and construct the
classification model.

2. Materials and Methods
2.1. Instrumentation Design

HESPI consisted of four major parts: a white light source, a wavelength modulator, an
image sensor, and a sequence controller. The schematic in Figure 1 illustrates the path of
a laser beam (solid arrows) originating from the SC laser and the sequence of the system
control (dotted arrows). For the white light source, an SC laser (SC-5, YSL Photonics,
Wuhan, China) whose spectrum covers 450–2400 nm was utilized. The laser provided
a collimated beam with a diameter of about 2 mm at 633 nm. The repetition rate of the
pulse was fixed to 5 MHz, resulting in a total power of approximately 800 mW. The overall
power of the laser was controlled from the PC via a USB connector. A 45◦ cold mirror
(FM03, Thorlabs, Inc., Newton, NJ, USA) was placed right after the laser to split the beam
into VIS and IR. The transmitted IR portion was disposed of in a beam dump, and only
the VIS portion was applied to create the ELS pattern. For the wavelength modulator, an
AOTF crystal block obtained from a Brimrose AOTF Microscope video adaptor (MIM-200,
Brimrose Corp., Sparks Glencoe, MD, USA) was utilized to select a specific wavelength of
interest. The filter was connected to an RF driver (VFI-139-90-SPS-A-C2, Brimrose Corp.),
which consists of a MHz frequency generator with an amplitude modulator to control
the wavelength and amplitude of the diffracted beam. The frequency and the percent
amplitude were set using ASCII commands sent through a serial port. The driver generated
an acoustic signal from 95 to 180 MHz, equivalent to 454–749 nm in wavelength. The
spectral resolution of the AOTF was 2.4 nm at 488 nm and 5.5 nm at 633 nm. At the exit
of the AOTF, the beam was split into unfiltered (0th order) and filtered (1st order) beams
by acoustic signal causing the diffraction. The exit angle of the diffracted beam varied
by the wavelength, and to compensate for the various diffraction angles, two identical
biconvex lenses (LB1723, Thorlabs Inc.) whose diameter and focal lengths were 2 inches
and 60 mm were positioned after the AOTF. At the target, the spot size of the laser beam
was about 1.5–2 mm to fully cover the 1 mm diameter bacterial colony, and the power of
the laser beam was also varied by wavelength because of the spectral efficiency of the SC
laser. The measured beam power in µW, depending on the wavelength, is presented in the
Supplementary Materials (Table S1, in the Supplementary Materials). A monochromatic
CMOS sensor (PL-B741, Pixelink Corp., Gloucester, ON, Canada) whose resolution was
1280 × 1024 pixels with a 6.7 µm unit pixel size was placed 40 mm below a Petri dish
and captured the scattering pattern with 0.1 s of exposure time and 0 gain. The captured
scattering patterns were then stored on a PC for further analysis. The total acquisition
time was less than 30 s for scanning the colony for 70 times to capture 70 spectral patterns.
The pictures of the actual HESPI setup are provided in the Supplementary Materials
(Figure S1).
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Figure 1. A schematic diagram of the hyperspectral elastic light-scatter phenotyping instrument
(HESPI) and flow chart of the measurement. The main components of the instrument are illustrated
in different colors. The solid line represents the beam path whereas the dotted line is the sequence
of controls.

2.2. Sample Preparation

Samples representing a range of bacterial species, including Arthrobacter sp.,
Curtobacterium sp., Massilia sp., and Microbacterium sp., were cultured to test the classifica-
tion performance of the hyperspectral system. These organisms represent natural microflora
found in green leafy foods such as lettuce. They were chosen based on the classification perfor-
mance of the conventional single-wavelength approach, which had previously demonstrated poor
success in separating these eight bacterial species (see Supplementary Materials—Figure S5). The
selected bacteria were 128—Massilia, 284—Microbacterium, 410—Microbacterium,
441—Microbacterium, 510—Arthrobacter, 526—Arthrobacter, 536—Curtobacterium, and
586—Curtobacterium. The code numbers before the genera name represent different strains.
Bacterial samples were prepared by culturing on plate count agar (PCA). Stock cultures
were prepared from frozen stocks stored at −80 ◦C, streaked on PCA, and incubated at
30 ◦C until colonies could be identified visually. For each species, one colony was randomly
selected, picked from the streaked plate, and diluted in 4 mL buffer solution (PBS) followed
by three serial dilutions of 1:40 in PBS. A 50 µL aliquot of the last dilution tube was spread
on PCA using a sterile hockey stick. The plates were incubated at 30 ◦C until the diameters
of the colonies were between 800 and 1000 µm.

2.3. Pattern Image Preprocessing

In the region of shorter wavelengths, 450–550 nm, the spectral inefficiency of the
SC laser led to a decrease in laser beam strength, which negatively affected the quality
of the recorded scattering patterns. For this reason, the scattering patterns generated at
this wavelength range had relatively lower contrast, and the diffraction rings were hardly
visible. Therefore, image preprocessing was performed using a MATLAB procedure to
increase the contrast in the scattering patterns. For each pattern, the intensity values were
adjusted based on a reference pattern whose average intensity was the highest among
70 hyperspectral data sets. This operation leveled the intensity of the pattern images and
increased the contrast. Details and an example of image preprocessing are presented in the
Supplementary Materials (Figure S2).
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2.4. Feature Extraction

As phenotypic characteristics of the bacterial colony lie in the scattering patterns, ex-
tracting appropriate descriptive features from the patterns is the key to successful bacterial
classification. Owing to the specific physical properties of the analyzed images, features
based on complex moment invariants such as Zernike and pseudo-Zernike moments are
preferred over simple geometric descriptors such as area, perimeter, roundness, and so
forth [30]. Zernike moment invariance is a particularly attractive feature as the readout is
not affected by the rotation of the scatter pattern, and the magnitude remains unchanged.
Therefore, this approach works well with circular and symmetric patterns [30]. For this
study, we employed the magnitudes of pseudo-Zernike moment (PZM) as invariant fea-
tures. They are computed using pseudo-Zernike polynomials, which are a set of orthogonal
polynomials with similar properties to Zernike polynomials but are recognized as being
less sensitive to noise than conventional Zernike moments [31].

2.5. Classification and Feature Interpretation

The classification model was constructed using the extracted feature set. A separate
testing set containing a subset of the data was used to evaluate the constructed classifier.
The ratio between the training and testing sets was 7:3. This study applied two classification
strategies: the use of trained classifiers specific to each wavelength and the use of a single
classifier trained on all wavelengths as a single set. The number of variables in the feature
set varied depending on the classification methods. For a single-wavelength classifier, we
utilized the linear support vector machine (SVM) model. When using all 70 wavelengths, it
was necessary to use a feature selection technique to minimize the dimensionality of the
feature space by deleting strongly correlated features that severely impact classification
accuracy. The excessive number of variables in the feature set can increase the computa-
tional cost of the training, and more importantly, the increased dimensionality can cause an
overfitting [32]. Therefore, two steps of feature selection were implemented in this study:
univariate and multivariate feature selections.

Univariate feature selection evaluates every single feature separately, whereas multi-
variate feature selection evaluates the entire feature subset [33]. A linear correlation-based
filter mechanism, the analysis of variance (ANOVA), was used for the univariate step.
Hence, each variable in the feature set was evaluated by building a linear model and in-
specting the observed effect size (η2), representing the proportion of explained variance [34].
The features associated with models that show smaller effect sizes were filtered out for
the set. The remaining features were then processed further by a multivariate feature
selection process.

The multivariate feature selection was performed with the help of multinomial logistic
regression with elastic net regularization (ENET) [35]. Combining `1 (LASSO) and `2
(ridge) regularization, this classification method incorporates feature selection, allowing
for simultaneous training and variable selection [36]. The procedure was implemented
in Python with open-source libraries from Scikit-learn [37]. The grid search across the
space of parameters was used to determine the strength of regularization and the relative
contribution of `1 and `2 penalties.

The performance of classifier was presented by the cross-validation matrix. Based on
the CV matrix, five statistical parameters were calculated: accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV):

Accuracy = (TP + TN)/(TP + FP + TN + FN) (1)

Sensitivity = TP/(TP + FN) (2)

Speci f icity = TN/(FP + TN) (3)
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PPV = TP/(TP + FP) (4)

NPV = TN/(TN + FN) (5)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively.

After the classification was performed, the model was interrogated to find the features
that were contributing the most to its predictive ability. The feature importance is directly
related to the absolute value of the corresponding model coefficients. However, we also
used an independent feature ranking via a local interpretable model-agnostic explanation
(LIME) algorithm. LIME is a novel technique that explains the prediction performed
by a classifier by constructing an interpretable local model around the prediction [38].
LIME modifies an instance by adjusting the feature values and evaluates the output’s
response. This method provides local interpretability by describing the contribution of
each feature to the prediction. The feature rankings from LIME and the ENET were
then cross-checked for verification. Figure 2 is a flowchart depicting all the described
classification steps for hyperspectral light-scatter patterns, including feature selection and
interpretation procedures.
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3. Results
3.1. Hyperspectral ELS Patterns

Hyperspectral ELS patterns of the bacteria samples were collected using the HESPI
system. For each organism, 50 colonies were randomly selected, and 70 hyperspectral
patterns were collected per colony. The wavelength of the laser was controlled by the
acoustic frequency through the RF driver, ranging from 101 to 170 MHz, which provided a
spectral range of 473–709 nm. Figure 3 shows the representative images of hyperspectral
patterns for the sample bacteria colonies. The rows represent the bacteria species, whereas
the columns represent different wavelengths. The pattern images are grouped in red
boxes according to their genus type, indicating that there are multiple species sharing the
same genus. The successful classification of this sample group brings the hyperspectral
approach closer to being a species-level classification tool. From the visual inspection, it
is apparent that seven out of eight bacteria produced concentric ring-type patterns. The
scattering patterns of 526—Arthrobacter in Figure 3F were distinct because the pattern was
too large to fit within the active area of the imaging sensor. Consequently, only the center
portion of the patterns is shown in the displayed images. Additionally, it was observed
that the shapes of the patterns changed as the wavelength changed. More specifically, the
number, thickness, and distance between the diffraction rings changed. Previous studies on
the wavelength-dependent ELS pattern characteristics predicted and explicitly explained
this phenomenon. Our previous work simulated the spectral effect on the shape of ELS
patterns using a scalar diffraction model. The simulation revealed that the ring gap and
ring width were proportional to the incident wavelength, while the number of rings and
half diffraction angle were inversely proportional. This phenomenon was experimentally
verified by measuring the change in the scattering patterns of S. aureus colonies with respect
to the incident wavelength [7].
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(A) 128—Massilia,  (B) 284—Microbacterium,  (C) 410—Microbacterium,  (D) 441—Microbacterium,  (E) 
Figure 3. Representative images of the hyperspectral ELS patterns of the eight bacterial colonies:
(A) 128—Massilia, (B) 284—Microbacterium, (C) 410—Microbacterium, (D) 441—Microbacterium,
(E) 510—Arthrobacter, (F) 526—Arthrobacter, (G) 536—Curtobacterium, and (H) 586—Curtobacterium.
The numbers before the bacteria name indicate the strain code that was assigned during the previous
investigation. The wavelength ranged from 473 to 709 nm, and the sample organisms were grouped
by their genera.
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3.2. Hyperspectral ELS Pattern Classification

The patterns of hyperspectral light scattering were initially analyzed separately ac-
cording to their respective wavelengths. PZMs were extracted from each pattern using the
10th-order pseudo-Zernike polynomials, which yielded the most accurate classification
results demonstrated after an iterative search. The detailed explanation and result of the
order search are provided in the Supplementary Materials (Figure S3). Figure 4 illustrates
the classification performance of each wavelength as a heatmap to visually represent the
positive predictive value (PPV) for each organism. For every wavelength, the classifier was
trained using linear SVM with 10 × 2 cross-validation (CV). The overall average PPV was
92.7%, and among the eight bacteria, 284—Microbacterium resulted in the lowest average
PPV with 85.7%, while 526—Arthrobacter achieved the highest average PPV with 99.9%.
In general, 284—Microbacterium, 410—Microbacterium, and 441—Microbacterium resulted
in PPVs below the average because of the low classification efficiency in the 600–700 nm
region. In addition, each organism was associated with a single wavelength that yielded the
best classification performance. For example, the 128—Massilia classifier had the highest
PPV around the 532 nm region, which implies that 128—Massilia is likely to be differentiable
when the scattering patterns are created with the 532 nm light source. This indicates that
using several wavelengths would be more effective for distinguishing between species than
one wavelength. The second study used all the features from the entire wavelength range
for classification. A new feature set was created by combining all the variables. As a result
of combining all 70 wavelengths, the number of features was 70 times greater than with
the previous classification method. The new linear SVM yielded an average classification
accuracy of approximately 96.4%, indicating that incorporating the entire wavelength range
improved classification performance over single-wavelength classification. A table with
individual values is provided in the Supplementary Materials (Table S2).
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Figure 4. Positive predictive values for each organism in relation to the laser’s incident wavelength.
The heatmap demonstrates that certain organisms are distinguished more effectively at specific
wavelengths.

3.3. Feature Selection and Classification

When integrating the entire spectral range into the classification model, the total
number of variables for each observation was 9450 (for the PZM order set to 15). There
were 70 wavelengths, and each wavelength contained a vector of 135 invariant features.
Owing to a large number of features relative to the number of observations, there was a
risk of the classification model overfitting. Consequently, a feature selection procedure
was employed during classification. For the univariate feature selection, a series of linear
models were built, and the effect size demonstrated in each model was determined in order
to rank them. The top 300 out of 9450 features were chosen based on the effect size, and
the feature number was determined by classification score, which was tested with feature



Sensors 2023, 23, 3485 9 of 18

numbers ranging from 10 to 500 (see Figure S4). It was discovered that the number of
selected features was the same for each wavelength. Before the filtration, each wavelength
had a vector of 135 features, and after the filtration, only the 1st, 2nd, 3rd, and 10th index of
features representing PZM invariants remained in every wavelength.

The filtered features were subsequently utilized in the multivariate feature selection
step. The ENET logistic regression model was used with the tuned hyperparameters.
The search was repeated 10 times, and the result showed that the best classification was
achieved when the `1 contribution was 100%. This means that the ENET regularization
employed only the LASSO penalty. Figure 5 depicts the classification result as five statistical
parameters calculated based on the CV matrix. Despite the reduced number of features,
the performance was promising, as the averages of the parameters were greater than 90%.
In terms of PPV, the results from both the ENET and the linear SVM demonstrated that
the classification using all of the wavelengths resulted in improved performance over the
single wavelength method. The average PPV improved from 93.1 ± 2.1% to 96.2 ± 3.0%
for ENET and 96.4 ± 1.78% for the linear SVM, as all wavelength bands were utilized to
build the classifier. The comparison shown in Table 1 demonstrates that the PPVs of most
organisms were higher when the entire feature set was used for classification. This result
indicated that hyperspectral ELS data produce a more accurate classification model than
single wavelength patterns.
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Figure 5. Classification performance of eight bacterial species utilizing the elastic net logistic regres-
sion classifier created with hyperspectral ELS data (n = 10).

Table 1. A comparison of three different classification methods by PPVs: individual classifications
with a linear SVM for every wavelength, a linear SVM with all features from entire wavelengths, and
the elastic net logistic regression model (n = 10).

128Ma 284Mi 410Mi 441Mi 510Ar 526Ar 536Cu 586Cu

SVM 93.73 85.64 90.46 88.63 95.80 99.87 96.15 94.62
Single wavelength (3.4) (3.7) (5.8) (3.2) (2.7) (0.5) (2.0) (2.0)

SVM 93.76 95.71 94.74 94.94 100 100 97.22 94.81
Entire feature set (0) (3.9) (3.0) (6.4) (0) (0) (3.5) (2.9)

ENET 96.13 91.27 98.44 96.88 98.39 100 92.77 96.02
Entire feature set (5.6) (8.8) (3.0) (3.3) (3.0) (0) (5.1) (4.6)

The comparison between the ENET result and single-wavelength classification using
SVM is provided in Figure 6. This comparison demonstrates, once again, the improvements
to classification by hyperspectral application in the ELS method. The horizontal red dotted
line represents the average classification score of the ENET-based system, whereas the bars
represent the classification performance at every separate wavelength. Although some
wavelengths between 520 and 540 nm used with the SVM classifier produced performance
comparable to that of the hyperspectral ENET, the majority of wavelengths resulted in
lower classification scores. The wavelengths represented by the bars highlighted in blue
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are 488, 532, 561, 635, 650, and 670 nm, as they are easily available in the commercial diode
lasers. This shows that the hyperspectral approach with a white-light laser can easily create
scattering patterns in wavelengths that are not available in conventional diode laser format.
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3.4. Feature Interpretation

LIME provides a method for explaining the mechanism underlying the classification
model’s predictions. Since a multinomial logistic regression model was used as the classifier
for this investigation, each observation was assigned to the class with the highest probabil-
ity. LIME enabled the creation of an ordered list of features based on their contribution to
the classifier’s judgment. For each observation, the top 25 classification-relevant charac-
teristics were evaluated. The contributions from these features were considered measures
of the local feature’s importance. The final scaled feature importance was obtained by
normalizing the feature importance scores by the highest (first-ranked) feature, which
was assigned a value of 100. The feature importance scores were produced by averaging
10 repeated feature rankings. The results are presented in Figure 7. Each feature was
denoted by its wavelength followed by the feature index number (e.g., 709F001). The
highly ranked features had the highest average contributions. The error bar shows the
standard deviation of 10 measurements. Interestingly, it was discovered that for some
organisms, only specific features (specific moment invariants) significantly contributed to
classification. For example, in Figure 7B, the 10th moment invariant from each wavelength
contributed the most. In contrast, Figure 7C,E show that each wavelength’s 1st and 2nd
moment invariants contributed the most to classification decisions. The 1st moment was
identified as the primary contributor to the decision in Figure 7G. The first-ranked features
were consistently selected as the most critical contributing feature in every repetition shown
in Figure 7A,C,G,H. These features had a score of 100 in every test, indicating they were
the most powerful features in determining the presence of particular organisms.

Unlike black-box classifiers such as neural networks, the ENET provides the regression
model’s coefficients to determine the globally most important predictive features. Figure 8
depicts the global feature importance for each organism. The scaled feature importance
was computed using the absolute value of the coefficients in the ENET model. They
were also normalized by the most important (first-ranked) feature on a scale of 0 to 100
and averaged over 10 independently trained models. Results similar to the outcome
indicated by LIME were observed and are summarized in Figure 8B,C,E: the 1st, 2nd, and
10th moment invariants were highly ranked. Figure 8F shows that there was no dominant
feature allowing the classification of 526—Arthrobacter, as the differences among the selected
features were not statistically significant. This was also indicated by the LIME result, but
not to the extent demonstrated in Figure 8F. The results imply that in the case of some
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organisms, one cannot pinpoint a single specific feature or wavelength that is responsible
for the classification. The unique result for 526—Arthrobacter is not a surprise: the scattering
patterns looked perceptually very different from the results acquired from other organisms.
As illustrated in Figures 7 and 8, (A) and (H) share a common characteristic in that 709F010
and 473F003 had the highest average contribution and importance score.
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Figure 7. Top 10 contributing features and the normalized contribution values for individ-
ual organisms are presented: (A) 128-Massilia, (B) 284-Microbacterium, (C) 410-Microbacterium,
(D) 441-Microbacterium, (E) 510-Arthrobacter, (F) 526-Arthrobacter, (G) 536-Curtobacterium, and
(H) 586-Curtobacterium. The most contributing features for each organism are identified by LIME. The
feature contribution was scaled based on the feature with the highest contribution value. The result is
an average of 10 repetitions, and the error bar represents the standard deviation. The feature names
are defined by their wavelength followed by “F” and the index position of the corresponding feature.
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Figure 8. Top 10 predictive features and the normalized feature importance values for individ-
ual organisms are presented: (A) 128-Massilia, (B) 284-Microbacterium, (C) 410-Microbacterium,
(D) 441-Microbacterium, (E) 510-Arthrobacter, (F) 526-Arthrobacter, (G) 536-Curtobacterium, and
(H) 586-Curtobacterium. The most predictive features for each organism were identified by the
ENET regression model coefficients. The feature importance was scaled based on the feature with
the highest absolute coefficient value. The result is an average of 10 repetitions, and the error bar
represents the standard deviation. The feature names are defined by their wavelength followed by
”F” and the index position of the corresponding feature.

4. Discussion
4.1. Motivation for Developing the Hyperspectral ELS System

The ELS method has yielded encouraging results for distinguishing bacterial colonies
based on their optical properties. As the phylogenetical distance between bacterial species
decreases, however, the morphological characteristics of the colonies become less different
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and more similar. Classification of these organisms using ELS patterns is quite difficult [9].
Previously studied and inaccurately classified samples were reanalyzed with a hyper-
spectral instrument to demonstrate potential improvement. The sample set consisted of
multiple strains of Arthrobacter sp., Curtobacterium sp., Massilia sp., and Microbacterium sp.
These organisms were previously investigated by the researchers in the Department of
Botany and Plant Pathology at Purdue University using a commercial single-wavelength
ELS instrument (BEAM) developed by Hettich Lab Technology (Tuttlingen, Germany). The
classification showed modest performance, with the average PPV around 84.2%. For those
experiments, the scattering patterns were collected at fixed incubation times of 24, 36, or
72 h, regardless of the colony size. PZM with polynomial order of five was extracted from
the patterns, and then utilized to build a linear SVM classifier. The limited accuracy of the
classification was also evident when single-wavelength measurement was performed using
HESPI to differentiate the sample group. In contrast to the previous experiment using
BEAM, where the colonies were of varying sizes, the single-wavelength measurements
using a 635 nm band from the SC laser were repeated in this study with colonies of 1 mm
diameter. This was done to ensure consistency with hyperspectral readouts since the HESPI
used in this study was optimized for colonies of 1 mm. The repeated single-wavelength clas-
sification resulted in an average PPV of 82.7% for the linear SVM classifier constructed with
PZM with polynomial order of five. Four out of eight classified organisms had PPVs below
85%. The previous experiments that were conducted utilized only a single wavelength,
which was a limiting factor in terms of the amount of information that could be extracted
from the data. As a result, the classification performance was not optimal for the particular
sample group. Additionally, the number of features used in the previous experiments was
not optimized for the best possible classification outcome. However, when the polynomial
order for PZM was increased to 10 to include more descriptive features, the average PPVs
for BEAM and single-wavelength measurements using HESPI improved to 89.1% and
92.0%, respectively. This suggests that the poor performance of the previous experiments
was due to a lack of descriptive features, and that even adding more information through
the implementation of a hyperspectral approach eventually improved the overall PPV to
around 96.4% with a linear SVM model. The scattering patterns measured with the two
different single-wavelength measurements and the corresponding classification results
using only PZM order of five are presented in the Supplementary Materials (Figure S5).

4.2. Prototype Design

Essential to the formation of the scattering pattern was the coherence of the light
source. Since the ELS pattern is a manifestation of diffraction phenomena caused by the
constructive and destructive interference of coherent light waves, the coherence parameter
of the incident light is a crucial factor for correctly creating a distinguishable ELS pattern.
Three different light sources were utilized to generate the scattering pattern from E. coli K12
colonies to explore the effect of coherence properties. The effect of the white LED flashlight,
a 635 nm diode laser, and a 635 nm beam from HESPI are presented in Figure S6. The
LED flashlight is an example of an incoherent light source. In this case, diffraction was not
created, and only the shadow of the bacterial colony was observed. On the other hand, the
diode laser, which emits spatially and temporally coherent light, could easily create visible
diffraction patterns. Similarly, the patterns were also observed when HESPI was used as
the incident light source. Based on the comparison, we can infer that the combination of
the SC laser and AOTF produced a laser beam with sufficient coherent properties.

The attractive property of the AOTF was that it filters a specific wavelength of interest
using the acoustic signal and spatially separates the filtered beam at a certain diffraction
angle. However, this spatial filtering mechanism caused a design problem during the in-
strumentation causing the beam spot of the laser to move due to the wavelength-dependent
diffraction angle. It was challenging to align the colony with the laser beam unless it
moved in the same direction as the beam spot movement. At the imaging plane where
the detector was located, the total distance of the beam movement was around 2 mm
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while the wavelength was shifting from 455 to 715 nm. Nevertheless, the diffraction angle
was consistent with the wavelength, so the movement was only in one direction and the
displacement was also consistent.

A linear stage with a motorized actuator (Z812B, Thorlabs Inc., Newton, NJ, USA)
was integrated into the system to move the AOTF crystal block based on the position
of the beam spot in order to compensate for the movement of the beam spot. Figure S7
shows the schematic and the picture of the HESPI system with the linear stage. The AOTF
crystal block was placed on top of the 1D linear stage operated by a motorized actuator.
To compensate for the misalignment, the actuator moved the AOTF crystal block in the
opposite direction from the beam spot. The motorized stage was controlled by the PC
through a USB connector. Since the location of the beam spot on the sample was consistent
with the corresponding wavelength, the displacement of the linear stage was preset in the
software, and no feedback control was required. HESPI’s motorized stage resolved the
issue with beam spot movement but slowed measurement speed. It took about 10 s to
capture 16 spectral patterns. However, the stage’s travel speed (1.6 s/wavelength) was
significantly slower than the AOTF’s wavelength shifting speed (0.01 s/wavelength), which
negated the greatest advantage of AOTF, which is the rapid wavelength switching.

An alternative optical method was implemented to minimize the movement of the
beam spot. The sample and the AOTF were separated by a pair of identical biconvex lenses
with 2 inch diameters and 60 mm focal lengths. An optical simulation showing the effect of
the two biconvex lenses is illustrated in Figure S8. Two collimated beams, represented in
different colors, were exiting the AOTF at different angles and were eventually merged at
the sample location. The positions of the lenses determined in the simulation were also
experimentally verified. Replacing the motorized stage with the optical component brought
several benefits to the instrument. Since the measurement speed was no longer reliant
on the linear stage’s travel speed (0.4 s/wavelength), it was significantly increased. By
incorporating a camera with a higher frame rate, the measurement speed can be increased
further. Moreover, the optical solution was cheaper, simpler, and independent from the
control unit. However, the additional optics caused deformation of the beam spot and
a slight beam divergence at the imaging plane. Beam distortion was observed at the
detector because the diffracted beam passed through lenses with short focal lengths and
was severely refracted. Nonetheless, no significant changes were observed in terms of the
light-scatter pattern. Since most distinguishable phenotypic features are present in the
outer region of the scattering pattern, slight distortion in the beam shape did not pose a
significant issue [7].

4.3. Classification Result

Utilizing multiple-wavelength or single-wavelength patterns, the hyperspectral
method suggested two distinct classification strategies. Comparing the two methods
revealed that using more wavelengths significantly improved classification accuracy, as
there were many more informative characteristics to describe the colonies. This result
suggested that the multiple wavelength method was a more appropriate technique to
differentiate the bacteria in general. Nevertheless, despite a lower overall classification
performance, the single wavelength method demonstrated that certain colonies can be
classified with greater sensitivity using specific wavelengths. This encourages a strategy
of selecting optimal wavelengths for the particular type of organism. Adopting a discrete
diode laser-based system is more cost-effective, so using an optimized choice of wavelength
could reduce the cost of the instrument while maintaining classification performance. Ow-
ing to its extensive range and diverse selection of wavelengths, the HESPI can also be
used as a reference instrument to determine the single or multiple-wavelength version
for a specific application, as it can provide input for the design of a stand-alone system.
Regarding future research, due to the robust performance of the hyperspectral approach
in classifying the tested bacteria, it is worthwhile to further investigate its effectiveness
with bacterial groups at lower taxonomic levels such as serovar or strain level using the



Sensors 2023, 23, 3485 15 of 18

hyperspectral system. This would provide valuable insights into the potential of the hy-
perspectral approach for improving bacterial classification at the subspecies level, with
practical applications in fields such as microbiology, food safety, and medical diagnostics.

4.4. Feature Selection and Importance

LIME and the elastic net regression evaluated the features by their contributions to
the classification model. A direct comparison of the results of the two methods revealed
that certain features (particular orders of PZM) participated in predictions more frequently
than others. For example, as shown in Figures 7B and 8B, the 10th order PZM had the
highest contribution or importance values according to LIME and the elastic net analysis.
Similar behaviors were observed in (C), (E), and (H), showing that most of the highly
ranked features were similar in both methods. The feature analysis using LIME and elastic
net revealed that the classification model relied on specific orders of the PZM rather than
a group of features derived from patterns collected at the same wavelength. Although
709 nm had the largest number of features that were highly ranked, this does not necessarily
imply that 709 nm was the best-performing wavelength for this application. This is because
features obtained from different wavelengths were highly correlated, indicating that every
hyperspectral pattern contained meaningful information. The feature correlation heatmap
is presented in Figure 9. For example, the feature associated with 1st order PZM in
wavelength had absolute correlation values close to 1. The 2nd order PZMs were correlated
at 0.8 level.
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5. Conclusions

This report presents the design and evaluation of a hyperspectral elastic light-scatter
phenotyping instrument (HESPI). A proof-of-concept experiment was conducted to test the
classification ability of the hyperspectral ELS technique with eight bacteria collected from
lettuce leaves. HESPI was able to generate the hyperspectral ELS patterns in 70 different
wavelengths in less than 30 s. The varied selection of wavelengths made it possible to
generate scattering patterns in the wavelength that cannot be produced by diode lasers
currently on the market. The increased number of wavelengths improved classification,
resulting in an almost 95% accuracy rate. PZMs were extracted from the collected patterns
and served as descriptive and predictive features. The feature selection techniques, a
univariate (ANOVA) and multivariate (elastic net regularization), were applied to avoid
overfitting. In addition, a post hoc feature analysis was implemented to understand
the decisions made by the classifier. LIME algorithm was used to perform local feature
analysis. The global feature importance was determined using the elastic net regularized
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regression coefficients. Despite its strong performance, the HESPI system might benefit
from enhancements in multiple areas. Its signal acquisition hardware could be improved to
speed up the measurement. Integration of HESPI with another modality, such as vibrational
spectroscopy, would be useful in characterizing additional phenotypic traits of the bacterial
colonies, resulting in even more precise classification.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s23073485/s1, Table S1: The power of the diffracted beam with
respect to the wavelength; Figure S1: The experiment setup for the hyperspectral elastic light scatter
phenotyping instrument (HESPI); Figure S2: The contrast adjustment of the light scattering pattern
for the intensity compensation; Figure S3: The classification scores of the SVM-classifier with respect
to the order of PZM (n = 10); Figure S4: The classification score in relation to the number of features
selected from the univariate feature selection; Figure S5: The classification of the sample bacteria using
single wavelength method.; Table S2: The classification result is given in PPV for each wavelength.
Green represents good, while red represents poor efficiency; Table S3: Classification performance of
eight bacterial species utilizing the elastic net logistic regression classifier created with hyperspectral
ELS data. (n = 10); Figure S6: The light-scatter pattern generation with different coherence properties;
Figure S7: The schematic diagram and picture of HESPI with a mechanical solution to compensate
for the beam spot movement at the imaging plane; Figure S8: A simple ray-tracing simulation of
multiple lenses implemented in HESPI to minimize the beam spot movement at the imaging plane.
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