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Abstract: The local reference frame (LRF) plays a vital role in local 3D shape description and
matching. Numerous LRF methods have been proposed in recent decades. However, few LRFs can
achieve a balance between repeatability and robustness under exposure to a variety of nuisances,
including Gaussian noise, mesh resolution variation, clutter, and occlusion. Additionally, most LRFs
are heuristic and lack generalizability to different applications and data modalities. In this paper,
we first define the degree of distinction to describe the distribution of 2D point clouds and explore
the relationship between the relative deviation of the distinction degree and the LRF error through
experiments. Based on Gaussian noise and a random sampling analysis, several factors that affect
the relative deviation of the distinction degree and result in the LRF error are identified. A scoring
criterion is proposed to evaluate the robustness of the point cloud distribution. On this basis, we
propose an LRF method (SliceLRF) based on slicing along the Z-axis, which selects the most robust
adjacent slices in the point cloud region by scoring criteria for X-axis estimation to improve the
repeatability and robustness. SliceLRF is rigorously tested on four public benchmark datasets which
have different applications and involve different data modalities. It is also compared with the state-of-
the-art LRFs. The experimental results show that the SliceLRF has more comprehensive repeatability
and robustness than the other LRFs under exposure to Gaussian noise and random sampling.

Keywords: local reference frame; 3D local cloud descriptor; distinction; slices

1. Introduction

Three-dimensional object recognition [1,2] and 3D registration [3,4] are important
tasks in computer vision. A core problem in both tasks is determining how to describe
and match two similar point clouds. The techniques used for matching corresponding
points between two surfaces can be divided into two categories: global methods [5,6] and
local methods [7,8]. The global approach, which encodes the global features of the model
as descriptors, is widely used in 3D shape retrieval techniques [9,10]. In contrast, local
methods achieve point pair matching by computing local point cloud descriptors, making
them suitable for 3D recognition and registration in scenes. Recently, local methods have
attracted increased attention from the research community due to their more superior
accuracy and robustness. Particularly in real scenes with viewpoint changes, clutter and
occlusion, instrument noise, and low mesh resolution (mr), local methods have been
increasingly used due to their more accurate and robust performance.

A local descriptor with strong discrimination and stability ability will directly affect
the accuracy and efficiency of local feature matching [11,12], which is crucial for local
surface matching. In recent years, many descriptors have been proposed, and these can be
roughly divided into two categories: handcrafted descriptors [13–21] and learning-based
descriptors [22–27]. The descriptor with a local reference frame (LRF) has better description
and discrimination abilities with fewer outlier matching pairs and a higher accuracy than
descriptors without an LRF. The gold of the LRF is to provide a unique and identical
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local reference coordinate system for a given set of point cloud patches, which aids in the
construction of rotation-invariant local feature descriptors. Despite relying on the original
coordinate system (OCS) and data enhancement, the descriptors can be rotation-invariant
from multiple perspectives, leading to an increased training cost and a weakening of the
generalization of the descriptor. Other methods for descriptors rely on the local reference
axis (LRA). This category of method usually selects the normal as the Z-axis and can only
guarantee the rotation-invariance of one dimension. For textured surfaces, the descriptors
have weaker discrimination and a poorer matching performance than those with an LRF.
Therefore, the LRF is important part of the pipeline of descriptor extraction. However,
LRFs are strongly coupled with a descriptor and their repeatability and robustness, which
directly affect the stability of the descriptor, have been the focus of many studies.

LRFs are usually represented as the X-axis and Z-axis. The Y-axis is computed by
taking the cross product of the Z-axis and X-axis. An LRF is regarded as repeatable if its
coordinate system variation is coherent with the rigid transformation of the 3D surface,
and it is robust if it remains invariant under exposure to a variety of nuisances, including
Gaussian noise and mesh resolution variation in various scenarios. Some LRFs are based
on analysis of covariance (CA-based) [28]. This method constructs LRF by calculating
the covariance matrix of the local point cloud or local surface, and using the eigenvectors
orthogonal of the matrix. Other methods use geometric features (GA-Based) [28] to estimate
the LRF, including the point position, normal, curvature, projection height, and gradient.
In particular, Ao [29] is an LRF estimation method used for CA-Based and GA-Based (Mix-
Based). From the definition of the X-axis, Ao [29] uses the height information to remap the
projected point cloud, which is consistent with the definition of the GA method. Compared
with the CA-Based method, the GA-Based method and Mix-Based method are more robust
in complex scenarios as they calculate the X-axis separately. In addition, the robustness
of the Z-axis can be improved by selecting a suitable support radius [29,30]. Therefore,
the robustness of LRFs is largely limited by the estimated X-axis.

In LRFs, on the one hand, the 3D point cloud is projected along the Z-axis with a
heuristic weight strategy (such as based on height or distance) to form the 2D point data,
which are used for a covariance analysis to obtain the X-axis. However, there is no theo-
retical support for adopting the heuristic weight strategy, which makes the generalization
of the existing LRFs low and limits their use to specific scenarios or sensors. On the other
hand, experimental results on the SD [31], TOLDI [19], and Ao [29] showed that selecting
or amplifying part of the point cloud is beneficial as it can improve the robustness of the
X-axis in the LRF. However, in the case of clutter, occlusion, noise, or downsampling, the re-
peatability and robustness of the current methods are limited. In short, the generalization
of different sensors and their robustness in complex environments are issues associated
with existing LRFs that need to be solved. To address these issues, we performed a theoreti-
cal analysis on the role of the heuristic weighting strategy and constructed an LRF with
competitive or better performance in complex environments.

Specifically, we first assumed that the Z-axis was determined and then showed that
the relative shape difference in the projected point cloud was positively correlated with
the accuracy of the LRF. Furthermore, through the derivation of noise and random down-
sampling distributions, we concluded that the properties of the point cloud also affect the
accuracy of the LRF. In addition, we sliced the point cloud along the Z-axis, calculated the
score from the slice’s attributes, and estimated the X-axis by selecting the slice with the
highest score. The main contributions of this paper are summarized as follows:

1. Rather than a heuristic design, we present, for the first time, a mathematical analysis of
the factors affecting the LRF and propose a scoring criterion to evaluate the robustness
of the point cloud distribution.

2. We propose a general method known as the SliceLRF, which addresses how to ef-
ficiently construct a repeatable and robust LRF that is applicable to various point
cloud scenarios.
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The rest of the paper is organized as follows: Section 2 reviews related work on LRFs.
Section 3 presents the factors that affect the accuracy of the LRF by proof of Gaussian noise
and random noise. Section 4 describes the details of the SliceLRF and presents the ablation
experiments. Section 5 shows the experimental results comparing the SliceLRF with five
existing methods. Section 6 concludes this paper.

2. Related Work

In recent years, LRFs have been developed and can be categorized into
CA-Based [15,16,32,33], GA-Based [19,30,31,34], and Mix-Based [29,35]. The initial pro-
posal of a reference frame to achieve rotational invariance of the descriptor was made by
Mian [33]. However, an ambiguity problem associated with Mian’s method was identified.
SHOT [16] defines the direction through the projection count of the reference axis of the
point cloud. Moreover, the repeatability of the LRF is enhanced by adding the distance
weights to the analysis of the covariance. RoPS [15] is a reference frame for meshes, and this
method improves the robustness of the LRF when the resolution of point clouds is incon-
sistent by the area weights. However, the acquisition and quality of the mesh limits the
further development of this method. The CA-Based method calculates the Z-axis and X-axis
synchronously. As the curvature of most object surfaces is small, the Z-axis definition in
the CA-Based method is clear, but the definition of the X-axis can be ambiguous due to the
proximity of two smaller eigenvalues. On the other hand, the GA-Based and Mix-Based
methods calculate the Z-axis and X-axis serially, with the core purpose of resolving the
ambiguity of the X-axis definition. SD [31] calculates the X-axis by selecting the highest
point in the point cloud, which improves the robustness of the LRF in occluded environ-
ments but is susceptible to global noise. TOLDI [19] obtains a highly discriminant X-axis
by remapping the point cloud with the height weights, which improves the repeatability
of the LRF. To address the inconsistent resolution of the point clouds, the Ao method [29]
proposes an adaptive scaling factor to improve the robustness of the LRF on the Z-axis.
Additionally, on the basis of the TOLDI method, Ao [29] corrects the nonlinearity of the
height weights and uses a 2D covariance analysis to obtain the X-axis, further improving
the repeatability and robustness of the method.

2.1. CA-Based LRF

The main process of the CA-based LRF method is to calculate the weight of geometry,
then analyze the covariance to obtain the Z-axis and the X-axis, and finally, calculate the
cross product of the Z-axis and the X-axis to obtain the Y-axis. Typical CA-Based methods
include Mian [33], RoPS [15], and SHOT [16].

1. Mian [33]: The method calculates the covariance of the local point cloud and then
extracts the eigenvalues and eigenvectors of the covariance matrix. However, it does
not define the direction of the eigenvectors, so the resulting coordinate system is not
unique. Its covariance is computed as:

Cov(p) =
1
n

n

∑
i=1

(pi − p̄)(pi − p̄)T

[
Varx, Vary, Varz

]
, [X, Y, Z] = Eigen(Cov(p))

(1)

2. SHOT [16]: Based on Mian [33], this method adds the definition of the direction of
the eigenvectors, which solves the problem of eigenvector ambiguity. In addition, it
reduces the weight of the point cloud on the search boundary through the distance
weight. The covariance matrix is computed as

Cov(p) =
1

∑n
i=1 wi

n

∑
i=1

wi(pi − p̄)(pi − p̄)T

[
Varx, Vary, Varz

]
, [X, Y, Z] = Eigen(Cov(p))

(2)
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where wi = R− ‖pi − p‖. After the covariance analysis, the direction of the eigenvec-
tors is consistent with most point cloud vectors pi − p. Experiments have shown that
the method can improve the robustness of the LRF.

3. RoPS [15]: Unlike Mian [33] and SHOT [16], the input data used by RoPS are no
longer a point cloud but a triangular mesh of local surfaces. According to the distance
weight and the area weight, the method can suppress the nonuniformity of the point
cloud and Gaussian noise well. However, it is often difficult to obtain triangular mesh,
and the quality of mesh directly affects the quality of the LRF, so the method is not
pragmatic for applications. Furthermore, the number of triangulated meshes is about
twice the number of points, which means that this method is more computationally
intensive. Its scatter matrix is computed as

C = ∑n
i=1 wi1wi2Ci[

Varx, Vary, Varz
]
, [X, Y, Z] = Eigen(C)

(3)

Ci =
1
12

3

∑
j=1

3

∑
k=1

(
pij − p

)
(pik − p)T

+
1

12

3

∑
j=1

(
pij − p

)(
pij − p

)T
(4)

where wi1 = |(pi2−pi1)×(pi3−pi1)|
∑N

i=1|(pi2−pi1)×(pi3−pi1)|
, wi2 = R − ‖pi − p‖. The area weight wi1 is

used to suppress the impact of the resolution reduction, and wi2 is similar to SHOT’s
distance weight [16], which is used to improve the method’s adaptability in complex
scenes.

2.2. GA-Based LRF

The main process of the GA-based LRF method is to estimate the Z-axis, construct
the projection function, estimate the X-axis, and finally, obtain the Y-axis by computing the
cross product. Representative methods include SD [31] and TOLDI [19].

1. SD [31]: The method is an improvement on the method of Board [30]. The authors
found that the use of distance information is more stable than using the normal to
estimate the X-axis. First, it uses a small neighboring ring of 5 mr to estimate the Z-axis
and then calculates the point of maximum height. Finally, it defines the projection
from the center to the highest point as the X-axis:

hi = (pi − p)Z

max = argmax(h)

X = (pmax − p)− hmax · Z
(5)

SD [31] shows good performance in terms of the repeatability in local distortions,
such as occlusions. However, it is sensitive to global noise, and the robustness of the
method has limitations.

2. TOLDI [19]: In the definition of the Z-axis, it selects the small neighbor of R/3.
The X-axis is computed from the weighted sum of the vectors:

hi = (pi − p)Z

p′i = pi − hiZ

X =
∑n

i=1 wi1wi2(p′i−p)
‖∑n

i=1 wi1wi2(p′i−p)‖

(6)

where wi1 = (R− ‖pi − p‖)2, wi2 = ‖(pi − p)Z‖2. wi1 is used to improve the robust-
ness, similar to in SHOT [16]. wi2 is the height weight, and the height information is
added to the calculation of the X-axis to improve the distinguishability of the point
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cloud. TOLDI has good robustness in uniform noise, but its performance deteriorates
significantly under exposure to occlusion and cluttered environments.

2.3. Mix-Based LRF

Mix-Based LRF, such as the Ao [29], uses analysis of covariance as the calculation
subject. However, in the estimation of the X-axis, the method often use the geometric
features to remap the point cloud.

Ao [29]: This method was developed based on TOLDI [19]. It proposes the use of
an adaptive scaling factor δ = scene.mr

c×model.mr to suppress the reduction of the resolution.
Furthermore, it provides a 1-ring neighbor weight with good performance in terms of the
shot noise. In terms of defining the X-axis, the projected point cloud can be constructed as

hi = (pi − p)Z

p′i = pi − hiZ

Ti = wi
(
p′i − p

)
+ p

Cov(T) = 1
n ∑n

i=1(Ti − p)(Ti − p)T[
Varx, Vary, 0

]
, [X, Y, Z] = Eigen(Cov(T))

(7)

where wi = wi1wi2wi3. wi1 = R−|pi − p|, wi2 = e−
(hmax−hi)

2

2σ2 , wi3 =

{
1, 0 < Li <

s
n ∑n

j=1 LJ

0, otherwise
wi2 is the height weight and wi3 is the 1-ring neighbor [36] weight. Compared with other
LRFs, the height weight adopts a Gaussian function to improve its robustness in complex
scenes, and its comprehensive performance is better.

3. Factors Affecting the Accuracy of the LRF

Since the robustness of the LRF is mainly limited by the X-axis, it is important to
explore the factors affecting the robustness of the X-axis. In the determination of the X-axis,
most LRFs adopt the covariance analysis method. Therefore, we explore which factor will
affect the error of the LRF when using the covariance analysis method on the X-axis.

After estimating the Z-axis, the 3D point cloud is projected along the Z-axis to form
the 2D point data. We introduce a distinction of shape (β) on the 2D point data, which is
defined as

β = Varx −Vary = λx − λy (8)

where Varx and Vary are the variance of the 2D point data in two orthogonal eigenvectors.
λx and λy are eigenvalues. In particular, Varx = λx and Vary = λy.

The larger the value of β computed, the more different the shapes in the point cloud,
and the easier it is to distinguish between the X-axis and the Y-axis. As β tends to 0,
the covariance analysis will be weakened in the presence of perturbations. However,
in complex environments, noise in the instrument, inconsistency between the resolution of
the scene and the model, and clutter and occlusion will affect the calculated β value. In
the covariance method, the LRF depends on eigenvectors and eigenvalues, so there is a
correlation between β and the error of LRF. In Section 3.1, we verify this correlation through
an experiment on the relative deviation of β (∆β/β) and the error of LRF (∆angle), which is
defined in Equation (30).

3.1. The Distinction of Shape

We add [−5 mr, 5 mr] uniform noise to 2D ellipse distributed point data to explore
the relationship between ∆β/β and ∆angle, as shown in Figure 1a. The semi-major axis of
the ellipse is equal to 1, and the semiminor axis is equal to 0.8. From the results shown in
Figure 1b, we can conclude that when ∆β/β tends to 1, the ∆angle increases exponentially.
Therefore, it is necessary to keep ∆β/β at a lower value.
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∆β is a posteriori information, which is unknown, but its probability distribution is a
priori due to external disturbance, so we replace ∆β with

√
D(β):

∆β

β
=

√
D(β)

β
(9)

where D(β) represents the variance of β. We can see that for smaller ∆β/β values, the
deviation is smaller, and the error in the LRF when disturbed is lower. In Sections 3.2 and 3.3,
we derive different expressions of

√
D(β)/β through the probability distribution of noise

and random sampling.

(a) Ellipse point cloud (b) The relationship between ∆β/β and ∆angle

Figure 1. The experiment on ellipse distributed point data. (a) The blue and red point data represent
the elliptical point data before and after the addition of noise. (b) The red and blue points represent
the data distribution and the average, respectively.

3.2. Gaussian Noise

The variance of the 2D point data in the X direction is calculated as

Varx =
1
n

n

∑
i=1

(xi − xc)
2 (10)

where xi represents the value of the 2D point data on the X-axis, and xc is the center of the
X coordinate of the 2D point data.

When we add Gaussian noise in the X direction, ∆x ∼ N
(
0, σ2) and N(·) is the normal

distribution. The new covariance and the change Varx can be respectively expressed as
Var′x and ∆Varx.

Varx
′ = 1

n ∑n
i=1(xi + ∆x− xc)

2 (11)

∆Varx = Varx
′ −Varx

=
1
n

n

∑
i=1

∆x2 +
2
n

n

∑
i=1

∆x(xi − xc)
(12)

According to Equation (12), ∆Varx is the superposition of the chi-square distribution
and the normal distribution. So E(∆Varx) and D(∆Varx) are:

E(∆Varx) = σ2

D(∆Varx) =
2σ4

n + 4σ2

n Varx ≈ 4σ2

n Varx
(13)
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where E(·) is the expectation of the mathematical statistics, and D(·) is the variance in
the mathematical statistics. For Equation (13), 2σ4

n + 4σ2

n Varx = 2σ2

n (σ2 + 2Varx). In the
brackets, the first part σ2 is the variance in the noise distribution, and the second part Varx
is the variance in the object distribution. The standard deviation of the noise is 0 < σ < mr,
σ2 = mr2. Since the support radius of the local point cloud is R = 15mr, the value range of
x is [0, 15mr]. We assume that x is uniformly distributed, so Varx = (15mr)2/12. As 2Varx

is 37 times larger than σ2, σ2 is ignored and 2σ2

n (σ2 + 2Varx) =
4σ2

n Varx.
Similarly, we add Gaussian noise in the Y direction. E

(
∆Vary

)
and D

(
∆Vary

)
are

expressed as
E
(
∆Vary

)
= σ2

D
(
∆Vary

)
= 2σ4

n + 4σ2

n Vary ≈ 4σ2

n Vary
(14)

We can deduce E(β), D(β) and ∆β/β as

E(β) = E(∆Varx − ∆Vary + Varx −Vary)

D(β) = D(∆Varx − ∆Vary + Varx −Vary)

E(β) = E(∆Varx − ∆Vary) + Varx −Vary = Varx −Vary

D(β) = D(∆Varx − ∆Vary) = D(∆Varx) + D(∆Vary) =
4σ2

n
(
Varx + Vary

)
∆β
β =

√
D(β)
β =

2σ
√

1
n (Varx+Vary)

β

(15)

In conclusion, ∆β/β is not only related to the external interference factor σ2, it is also
related to β, the number of points (n), and the size of the shape (Varx + Vary) of the 2D
point data.

3.3. Random Sampling

Assuming that each point in 2D point data follows a two-point distribution in the X
direction, it can be obtained as

(xi − x) ∼ (xi − x)π(p)
(xi − x)2 ∼ (xi − x)2π(p)
E
{
(xi − x)2

}
= p(xi − x)2

D
{
(xi − x)2

}
= p(1− p)(xi − x)4

(16)

where π(·) is the two-point distribution, and p is the random sampling rate and 0 < p < 1.
Therefore, after random sampling, Var′x, E

(
Var′x

)
and D

(
Var′x

)
can be expressed:

Var′x = 1
np ∑n

i=1(xi − x)2

E
(
Var′x

)
= 1

np ∑n
i=1 E

{
(xi − x)2

}
= Varx

D
(
Var′x

)
= 1

n

(
1−p

p

)(
1
n ∑n

i=1(xi − x)4
) (17)

Therefore, E(β), D(β), and ∆β/β are

E(β) = Varx −Vary

D(β) = 1
n

(
1−p

p

)(
1
n ∑n

i=1(xi − x)4 + 1
n ∑n

i=1(yi − y)4
)

∆β
β =

√
D(β)
β =

√
1
n

(
1−p

p

)(
1
n ∑n

i=1(xi−x)4+ 1
n ∑n

i=1(yi−y)4
)

β

(18)

Based on the above analysis, ∆β/β is not only related to the external interference, it is
also related to the attributes of the point cloud, such as β, n, Varx + Vary. Therefore, we,
for the first time, construct a score function that relies only on point cloud information to
reflect the robustness of 2D point data when using the analysis of the covariance method.
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The score function can be expressed as shown in Equation (19) and used in Section 4, where
the higher the score, the more resistant the shape is to external disturbances.

Score =
n
(
Varx −Vary

)(
Varx + Vary

) (19)

Bao Zhao [37] evaluated different weights through experiments. The experiments
showed that using distance and height information can improve the repeatability and
robustness of the LRF, but little theoretical analysis has been done. The score function
explains why R− ‖pi − p‖ adopted by SHOT, ROPS, and Ao can improve the robustness
of the method. This is because the distance weight remaps the peripheral points of the

point cloud to the center to reduce (Varx + Vary). In addition, e−
(hmax−hi)

2

2σ2 places more
weight on higher points and can improve β.

4. A Novel LRF Proposal

This section presents the details of the SliceLRF, including the construction of the LRF
as is briefly shown in Figure 2 and the effects of the parameters in the method.

(a) Model (b) Scene

Figure 2. A brief view of the SliceLRF. (a,b) On the left is the 2D point data after the local point cloud
is projected along the Z-axis, and the X-axis and Y-axis are obtained by covariance analysis. On the
right is the estimation result of the SliceLRF, where the point data are the point cloud within the
dotted line in the left subfigure. Red, green, dark blue, light blue, and purple express, respectively,
slices 0–4.

4.1. LRF Construction

For the key point pc and the support radius R, the local point cloud P = {p1, p2, . . . , pn}
is obtained by KD-tree to search a spherical neighborhood. The covariance matrix of the
local point cloud is calculated as [33]

Cov(pc) =
1
n

n

∑
i=1

(pi − p̄)(pi − p̄)T (20)

where n is the number of points in the local point cloud, and p̄ = ∑n
i=1 pi.

The eigenvector corresponding to the smallest eigenvalue in Cov(pc) is selected as the
Z-axis. The direction of the Z-axis is ambiguous, but the direction of Z-axis has no effect
on the calculation of the X-axis. Therefore, the direction of the Z-axis will be calculated
together with the X-axis direction at the end.

[Var0, Var1, Var2] = EigenValue(Cov(pc))

vz = EigenVector(Cov(pc))[argmin([Var0, Var1, Var2])]
(21)

After the Z-axis has been estimated, the following procedure is to use to define the
X-axis. Firstly, the height of the local point cloud is calculated as

hi = (pi − pc)vz (22)
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hmin and hmax can be obtained in a set of h:

hmin = min(h)
hmax = max(h)

(23)

The local point cloud is segmented into several slices, as shown in Figure 3. Then,
we project the point cloud along the Z axis onto the L plane with pc as the center and the
Z-axis as the normal:

p′i = pi − hiZ
steph = (hmax − hmin)/m

slices = {p′i ∈ Sα|α− 1 < (hi − hmin)/steph < α}, α = 1, · · · , m
(24)

where m is the number of slices, and Sα is the set of points in the slice.

Figure 3. The schematic of the slice in the point cloud. The cubes with different colors on the left
represent different slices, and the label of slices is the location of the binary; one the right is the surface
after cutting.

The points at the slice boundaries will be segmented in an unstable manner in the
presence of noise, which affects the results of the analysis of covariance, and the impact
will increase as the number of slices increases. Therefore, we combine slices with different
numbers of neighbors to form candidate regions representing point cloud features, which
we call neighboring slices Qi.

We use binary codes to represent combinations of slices. As shown in Figure 4,
the point cloud is evenly sliced into m (m = 5) slices according to the height, which is rep-
resented by different colors. Then, the adjacent slices are merged to obtain 15 combinations
of adjacent slices, represented by m-bit binary codes. Highlighted colors represent binary
1 s (checked), and dark colors represent binary 0 s (unchecked). A covariance analysis
is performed on each combination of adjacent slices to calculate the eigenvalues. After
projecting the point cloud onto the L plane, the adjacent slices are analyzed by covariance:

slices′ = {Q1, Q2, . . . , Qw}, w = m(m+1)
2

Cov(slices′) = {Cov(Q1), Cov(Q2), . . . , Cov(Qw)}
(25)

where w is the number of the adjacent slices, and Qi is the set of points in the adjacent slices.

Figure 4. Slice Combination Strategy.
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Then, the calculated eigenvalues and eigenvectors for each adjacent slice are sorted in
descending order: [Vari1, Vari2, 0], [vi1, vi2, vz]. The scores are calculated according to the
scoring criterion presented in Equation (19).

Score =
n(Vari1 −Vari2)

(Vari1 + Vari2)
(26)

Then, the combination of adjacent slices with the highest score is selected and used to
calculate the X-axis of the LRF of the local point cloud for the calculation of the LRF:

c = argmax(Score)
vx = vc1

(27)

However, the directions of the Z-axis and X-axis are ambiguous, so we use the normals
n of the local point cloud to define their directions:

Z =

{
vz, ∑n

i=1 vz · ni > 0
−vz, otherwise

(28)

X =

{
vx, ∑n

i=1 vx · ni > 0
−vx, otherwise

(29)

Finally, the Y-axis is calculated as the cross-product of the Z-axis and X-axis.
SliceLRF is based on the Mix-Based design idea as a whole. It performs a larger

covariance analysis than the other Mix-Based methods, which makes the method more
time-consuming. However, the time consumed by the SliceLRF is almost negligible due to
the fast 3x3 real symmetric matrix solution and the GPU parallel computation used for the
implementation of the algorithm.

4.2. Different Parameters in the SliceLRF

Compared with other LRF methods, the accuracy of the SliceLRF is mainly affected by
three parameters, including the score function, slice strategy, and the number of slices. The
following is an experiment on the influences of three different parameter settings. For the
experiments, we used Stanford’s model library [38] as a benchmark, which was obtained
using a laser scanner.In particular, Tables 1 and 2 show the accuracy of the SliceLRF under
different parameters, as defined in Equation (31).

Table 1. The result of different score functions on the SliceLRF.
.

No Score Function Noise Free Gaussian Noise (5 mr) Random Sample (1/16) Average

1 Varx −Vary 89.6% 59.5% 13.4% 54.2%
2 n(Varx −Vary) 90.1% 62.8% 15.3% 56.1%

3 n(Varx−Vary)

(Varx+Vary)
91.1% 64.1% 17.2% 57.5%

In Section 3, we derive three factors that affect the LRF, including n, β, and Varx +Vary.
To verify the effectiveness of these three parts, we added 0.5 mr Gaussian noise or 1/16
random downsampling to the retrieval dataset to test the effects of different factors on
the error in the LRF. The Table 1, it is shown that the third scoring function produces the
greatest improvement in the LRF. In addition, Table 1 proves the validity of the conclusions
derived in Section 3.

Table 2. The effects of different slice strategies on the SliceLRF.

No Score Function Noise Free Gaussian Noise (5 mr) Random Sample (1/16) Average

1 Slice 89.6% 59.5% 13.4% 54.2%
2 The adjacent slices 90.1% 62.8% 15.3% 56.1%
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In Section 4, we do not directly calculate slices but adopt the strategy of using adjacent
slices. Table 2 shows that the strategy of using adjacent slices can improve the accuracy of
the SliceLRF. Furthermore, the adjacent slice strategy makes the method insensitive to the
number of slices, as shown in Figure 5.

Figure 5. The relationship between the number of slices and the LRF accuracy.

As shown in Figure 5, with an increase in the number of slices, the accuracy of the
SliceLRF first increases and then becomes stable. The accuracy of the SliceLRF starts to
converge when the number of slices is 4 or 5. In the following experiment, considering
efficiency and robustness, the number of slices was set to 5. It is worth noting that the
number of slices is not fixed at 4 or 5 in different tasks, and it is related to the distribution of
point clouds. In specific tasks, the number of slices should be adjusted as a super parameter.

5. Experimental Evaluation
5.1. Experimental Setup
5.1.1. Dataset and LRFs

In applications, point clouds obtained with different acquisition strategies can have
different characteristics. Therefore, it was necessary to ensure the generalization of the
method. In the experiment, we selected four benchmark datasets [39], which were scabbed
by different sensors, including Retrieval, Random View, Kinect [16], and Space Time [40]
datasets, as shown in Table 3 and Figure 6. In order to ensure the consistency of the target,
we used the point cloud fragments provided by SHOT [16] for the 3D reconstruction.
Open3D [41] was then used to preprocess the reconstructed model to obtain the Retrieval
dataset. In the RandomView dataset, we placed the camera at 50 cm to 60 cm away from the
model and then rendered it with Open3D [41], which is consistent with the literature [38].
In particular, we reconstructed the mesh of the point cloud using the ball pivoting technique
where the radii were set to [mr, 2 mr, 4 mr, 8 mr, 16 mr].

Table 3. Evaluation of four benchmark datasets.

No Dataset Acquisition Quality Occlusion Clutter Model Scene

1 Retrieval Synthetic A N N 3D 3D
2 Random View Synthetic A− Y N 3D 2.5D
3 Kinect Mircosoft Kinect B− Y Y 2.5D 2.5D
4 Space Time Space Time Stereo B Y Y 2.5D 2.5D

The Retrieval dataset was obtained by random rotation and Gaussian noise was added
to test the repeatability of the LRF using a total of 8 models and 240 scenarios. The scenes in
the RandomView dataset were rendered by random view in cameras to test the robustness
of the LRF under occlusion using a total of 240 scenes. Because these datasets were obtained
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through simulations, the quality of the point cloud is better. The SpaceTime and Kinect
datasets are provided in the literature [16], with a total of 20 scenarios, where each scenario
contains 3 to 5 target objects. Affected by the resolution, noise of the instrument, and
background interference, the overall quality of the point cloud is poor.

All experiments were conducted with Visual Studio 2015 C++ and the Point Cloud
Library (PCL) [42]. The configuration of the computer was Intel Core i7-7500U 2.7 GHz,
8 G RAM, and a 64-bit Win10 system.

(a) Retrieval (b) Random View

(c) Kinect (d) Space Time

Figure 6. Mario Model in the Datasets.

We selected CA-Based methods (RoPS and SHOT), GA-Based methods (SD and
TOLDI), and a Mix-Based method (Ao) for comparison. The smaller neighborhood fac-
tor [29] was not used to estimate the Z-axis in the experiment, thereby reducing the accuracy.
The RoPS and SHOT methods were applied in PCL, while for SD, TOLDI, and Ao, we
reimplemented the methods in C++.

In Section 5.4, we used the RoPS and SHOT descriptors as benchmarks. The RoPS
descriptor was obtained by concatenating the central moment and the entropy of the
projection matrix calculated by the local point cloud rotation and projection. The SHOT
descriptor was computed by dividing the local point cloud into different regions according
to different radii, heights, and azimuths to obtain histograms and then concatenating them
together. The setting of the descriptor parameters was as follows: for RoPS, the number of
rotations was equal to 3, the matrix size was 5× 5, and the descriptor size was 135 floats;
for SHOT, the azimuth was divided into 8 parts, the height was divided into 2 parts, and
the radius was divided into 2 parts, giving a total of 32 regions, and the descriptor size was
352 floats.

Since the support radius has a great impact on the methods, we set the same support
radius of 15 mr for all LRFs in the experiment for consistency.

5.1.2. Normal Estimation

For a point p in the point cloud, the nearest 30 points were obtained by KD-tree,
and then the covariance was analyzed using the principal component method (PCA).
Finally, we selected the eigenvector with the smallest eigenvalue as the normal vector. We
defined the normal direction of the Retrieval dataset to be toward the outside of the model,



Sensors 2023, 23, 3483 13 of 22

and we defined the normal directions of the Random View, Kinect, and Space Time datasets
to be away from the viewpoint.

5.1.3. Evaluation Criterion

To quantitatively analyze the performance of our LRF, we used the evaluation crite-
rion [15] from RoPS. For the point pair (pm, ps) of a given model and scene, the model
LRF(Lm) and scene LRF(Ls) were calculated, and the error between the two LRFs was
defined as

error = arccos

(
Ls L̃m

−1

2

)
180
π

(30)

where L̃m = RLm, R is the ground-truth matrix. If the error is equal to 0, Ls = L̃m. In the
experiment, we randomly selected 1000 points in the scene as feature points, and then
found the closest point in the model after rotating by the ground-truth transformation. We
calculated the errors between corresponding LRFs using Equation (30). A histogram was
generated by counting the ratios of LRFs that fall within different quantization intervals of
errors. For methods that require grids as the input, such as RoPS, we used a fast greedy
triangulation method to quickly reconstruct the surface of the point cloud. Finally, we
calculated an averaged histogram of all scenarios in the four datasets. The histogram can
be used to assess the repeatability of the LRF.

Theoretically, a favorable repeatability means that the rotation error between two corre-
sponding LRFs is sufficiently small. Figure 7 shows the relationship between the LRF error
and the point cloud descriptor matching. When the LRF error is less than 10◦, the descriptor
matching results of the model and the scene have good accuracy. In our experiments, we
only counted the percentage of LRF errors below 10◦ to represent the accuracy of the LRF
by Equation (31). A higher percentage represents a more repeatable LRF.

The definition of accuracy for the LRF is as follows:

accuracy =
1
N

N

∑
i=1

1(errori < 10◦) (31)

where N is the number of point pairs in the model and scene. In the final method of
comparison, we show the mathematical histogram of the error distribution of 1000 sets of
point pairs and evaluate the performance of the LRF by comparing the error distribution.

(a) LRF error: 0◦ (b) LRF error: 10◦

(c) LRF error: 20◦ (d) LRF error: 30◦

Figure 7. The influences of different LRF errors on descriptor (RoPS) matching. Gray represents the
model, blue represents the scene, the green line represent correct matching, and the red line represent
wrong matching.
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5.2. Repeatability

An LRF is regarded as repeatable if its coordinate system variation is coherent with
the rigid transformation of the 3D surface. Using the evaluation method introduced in
Section 5.1.3, we compared the SliceLRF with other LRF methods in four public datasets in
terms of its repeatability.

As shown in Figure 7, when the LRF error is less than 10◦, the LRF has little impact on
feature matching. In the histogram shown in Figure 8, the first error level of the LRF is less
than 10◦. In general, compared with other LRFs, the SliceLRF has a higher proportion of
the first error level and lower proportions of the higher levels. In other words, the error
distribution of the SliceLRF is more concentrated in lower level errors. This proves that the
SliceLRF has greater repeatability than other LRF methods.

(a) Retrieval (b) Random View

(c) Kinect (d) Space Time

Figure 8. The repeatability results. The X-axis represents different error levels, and the Y-axis
represents the distribution proportions under these error levels.

In the high-quality model of the Retrieval dataset, which is shown in Figure 8a, the first
error levels of Ao, RoPS, SHOT, SD, TOLDI, and SliceLRF account for 88.06%, 39.35%, 91.1%,
83.06%, 81.98%, and 91.46%, respectively. Among them, the SliceLRF was found to achieve
the best results. In addition, the SHOT method performs well in terms of repeatability,
which shows that there are no obvious differences between CA-Based methods, GA-Based
methods, and Mix-Based methods when an ideal model is used.
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In the Random View dataset, as shown in Figure 8b, the performance of CA-Based
methods, such as RoPS (0.65%) and SHOT (14.48%), was found to be weaker than those
of GA-Based methods and Mix-Based methods, such as SD (62.01%), TOLDI (39.66%), Ao
(62.54%), and SliceLRF (64.29%), in an occluded environment. The GA-Based method and
Mix-Based methods were also shown to have more advantages in complex scenes. In terms
of rankings, SliceLRF (64.29%) achieved the best results, followed by Ao (62.54%) and SD
(62.01%). Compared to other methods, these methods use a smaller support radius (R/3) to
estimate the Z-axis, which improves the robustness of the LRF in occlusion environments.
In the estimation of the X-axis, SliceLRF, Ao, and SD all use height information to extract
part of the point cloud for estimating the LRF, which further proves that the use of height
information can improve the robustness of the LRF.

Finally, we investigated the poor-quality datasets of Kinect (Figure 8c) and Space Time
(Figure 8d) contain clutter, occlusion, and noise. The repeatability of SliceLRF, 22.4% on the
Kinect Dataset and 43% in Space Time Dataset, is higher than for other methods, which
shows its better overall performance in complex scenes.

5.3. Robustness

An LRF is considered robust if it is invariant to a variety of nuisances, including
Gaussian noise and mesh resolution variation. In this part, we tested the robustness of
the LRF in the presence of Gaussian noise and random downsampling. Gaussian noise
is often generated in actual scenes, and its sources differ, e.g., instrument measurement
noise, small jitters, etc. Thus, it is important to test the influence of Gaussian noise on the
LRF method, which directly determines the stability of the LRF. In addition, in the current
application, models and scenes may be acquired from different instruments. The model
incldues a priori data, so the data generally come from a higher precision instrument or
CAD model. For comparison, the scene data are limited in real-time and other conditions,
and the data usually come from instruments with lower precision. Therefore, precision
differences between instruments will cause differences in the mesh resolution (mr). The
purpose of downsampling is to simulate this condition.

In the following experiments, in Figures 9 and 10, the Y-axis presents the accuracy of
the LRF, which is defined as Equation (31).

5.3.1. Gaussian Noise

In order to test the robustness of the LRF to Gaussian noise, we added 0.1 mr, 0.3 mr,
and 0.5 mr Gaussian noise, respectively, to the scenes of the four benchmark datasets.

As shown in Figure 9, the accuracy of the LRF decreased with an increase in Gaussian
noise in general. The SliceLRF was shown to have higher accuracy under different levels of
Gaussian noise in the four public datasets compared with other LRFs. Even with 0.5 mr
Gaussian noise, the SliceLRF still performed well in terms of its repeatability, which shows
SliceLRF’s strong ability to suppress Gaussian noise. In addition, with the enhancement
of Gaussian noise, SliceLRF was more stable than the others in terms of its accuracy. In
the Kinect (Figure 9c) and Space Time (Figure 9d) datasets, the SliceLRF showed a small
change with different Gaussian noises. Since the calculation of the RoPS depends on the
quality of the grid, the accuracy of RoPS becomes minimal under the interference of low-
quality models and noise. The experiment results show that the SliceLRF has better noise
suppression than other LRFs.
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(a) Retrieval (b) Random View

(c) Kinect (d) Space Time

Figure 9. The Gaussian noise experiment results. The X-axis represents different noise levels, and the
Y-axis represents the accuracy of the LRF.

5.3.2. Random Sampling

To test the robustness of the LRF under exposure to downsampling, we performed
random sampling at different levels of 1/2, 1/4, 1/8, 1/16, and 1/32 in the scenes of
the four benchmark datasets. The Poisson-disk sampling [29,43] and random sampling
methods can lower the resolution of the point cloud, but the Poisson-disk will make the
point cloud uniform, while random sampling does the opposite. In practical applications,
due to factors such as undersampling of the instrument, etc, the point cloud will inevitably
be uneven. Based on the current situation, our experiment used random sampling.

As shown in Figure 10, Ao and SliceLRF performed better than the other methods
with random sampling in the four benchmark datasets, and Ao was shown to have better
stability. SliceLRF was shown to have better repeatability. Compared with the other
methods, the Ao method was shown to have greater robustness under 1/32 extreme
random sampling. The reason for this is that Ao adds greater weight to points with greater
heights and the points with greater heights are easier to retain than those with lower heights
in the occluded environment. SD was shown to have good robustness under exposure to
low random sampling, but as the sampling rate continued to decrease, the probability of
the highest point of the local point cloud being destroyed continued to increase, and the
accuracy decreases accordingly. Although the SliceLRF did not achieve the best score in
random sampling, Figure 10 shows SliceLRF’s ability to suppress 1/2, 1/4, and 1/8 random
sampling compared to other methods. We can see that SliceLRF has strong robustness from
the perspective of the random sampling experiments.
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(a) Retrieval (b) Random View

(c) Kinect (d) Space Time

Figure 10. The random sampling experiment results. The X-axis represents different downsampling
levels, and the Y-axis represents the accuracy of the LRF.

5.4. Descriptor Matching

Both repeatability and robustness are indicators of the accuracy of the LRF. In appli-
cations, the main purpose of LRF construction is to achieve accurate descriptor matching,
so descriptor matching is considered a major indicator of the LRF’s performance. The
descriptor matching experiment was conducted to calculate the LRF and feature descriptor
of each feature point in the model and the scene and then judge whether the model and
the scene descriptor match through the distance of the feature descriptor. Our experiment
used the RoPS descriptor and the SHOT descriptor.

Furthermore, descriptor matching requires an objective and systematic evaluation
method. Recall vs. 1-Precision curve [44] is currently a popular method for evaluating
descriptor matching. First, each feature point in the scene is calculated to obtain a descriptor.
Second, the nearest distance ratio technique [45,46] (NNDR) is used to match each scene
descriptor. The specific details are used to find the closest model descriptor f M

i and the
second closest model descriptor f M

i′ for each scene descriptor. When the ratio of their

distances is ‖ f S
i − f M

i ‖∥∥∥ f S
i − f M

i′

∥∥∥ < τ, the two descriptors f S
i and f M

i are considered to match. In

addition, if the distance between the feature point ps corresponding to f S
i and the feature

point p′m corresponding to f M
i is ‖ps − p′m‖ < d, it is defined as a true positive (TP), as

shown in Figure 11a; otherwise, it is a false positive (FP), where p′m = Rpm + t, R and t is
the ground-truth matrix. Finally, the nearest rotated model feature point p′m is found for
each scene feature point ps, and if ‖ps − p′m‖ < d, they are considered to be positive (P), as
shown in Figure 11b.The distance threshold (d) is set to the half of the support radius R/2,
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as shown in [29,46,47]. In particular, d is related to the repeatability of the descriptor in the
position and has little effect on the ranking of the LRFs.

(a) True positive (b) Positive

Figure 11. True Positive and Positive.

As shown in Table 4, the precision is calculated as precision = TP
match num , and the

recall is calculated as recall = TP
positive num . By changing the matching threshold τ from 0

to 1 [47], the recall vs. 1-precision curve can be drawn. In addition, the area under the
RPC curve (AUCPR) is an important indicator for evaluating the quality of the curve. In
ideal descriptor matching, AUCPR is always 1, and the descriptor can distinguish between
positive and negative, and the descriptors of the positive can be matched accurately.

Table 4. Match and Positive.

Count Match No Match Sum

Positive TP FN positive num

Negative FP TN all−positive num

Sum match num all−match num all

Figure 12 shows the RPC of the four LRFs in four public datasets: Retrieval, Random
View, Kinect, and Space Time. The RPC of the SliceLRF is steeper in the Retrieval, Kinect,
and Space Time datasets, and AUCPR is larger than the other LRFs, showing that the
SliceLRF has better repeatability for the RoPS and SHOT descriptors. This conclusion is
consistent with the results of the Repeatability experiments.
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(a) Retrieval(RoPS) (b) Random View(RoPS)

(c) Kinect(RoPS) (d) Space Time(RoPS)

(e) Retrieval(SHOT) (f) Random View(SHOT)

(g) Kinect(SHOT) (h) Space Time(SHOT)

Figure 12. The descriptor matching experiment results. Rows 1–2 use the RoPS descriptor, and rows
3–4 use the SHOT descriptor. The number in the legend is AUCPR.

6. Conclusions

Unlike the heuristic weight strategy, we first showed the relationship between the
relative deviation in the distinction (

√
D(β)/β) and the error of the LRF through exper-

iments and obtained the effects of the three factors, n, β, (Varx + Vary), on the error of
the LRF in the point cloud, according to a mathematical analysis. Furthermore, we built a
scoring function to evaluate the robustness of the point cloud. The function can not only be
used to analyze the influence of the weight on the LRF, but can also be used in subsequent
LRF structures to obtain strong generalization in different sensors and scenes. Regarding
the construction of the LRF, we proposed an LRF method known as the SliceLRF, which
consists of a slicing strategy and score function. By selecting the slice with the highest score
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to calculate the X-axis, an efficient and robust LRF is constructed. Finally, compared with
state-of-the-art LRF methods, the SliceLRF can achieve a better performance in terms of its
repeatability, robustness, and the matching accuracy of the descriptors.

In future work, we hope to discover and analyze more factors that affect the error of
the LRF. Another direction that is worth studying is the extraction of color information
in addition to geometric information from the slices to define the X-axis. Additionally,
remapping the point cloud by weight is a possible research direction associated with the
construction of the LRF. Finally, with the score function proposed in the paper to evaluate
the quality of mapping, we plan to learn the weights by unsupervised construction.
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