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Abstract: In this paper, a high-accuracy localization problem under a complex non-line-of-sight
(NLOS) condition is addressed by a new method that utilizes multiple NLOS paths to improve
localization accuracy, as opposed to the traditional method of suppressing them. The spatial multi-
path array fusion localization model is presented and analyzed, followed by an angle-of-arrival
(AOA) and time-of-arrival (TOA) algorithm based on spatial multi-information fusion that seeks
to improve localization accuracy. Multi-path of spatial signals, measurement of the multi-element
antenna, and geographic environment information are integrated into the proposed method for
localization optimization. Simulation experiments were carried out, and the results revealed that the
proposed algorithm is capable of making full use of spatial multi-location information for localization,
thus improving the accuracy of localization in a the NLOS environment effectively and increasing the
locatable probability of complex environment localization applications.

Keywords: wireless localization; non-line-of-sight (NLOS); information fusion; propagation path;
localization accuracy

1. Introduction

In the wireless localization system, when non-line-of-sight (NLOS) propagation occurs
between the target and localization station, deviation of the angle-of-arrival (AOA) or
time-of-arrival (TOA) can occur due to the effect of terrain, barrier, and geography, which
is called a NLOS error. NLOS and multi-path interference are the major error sources in
positioning [1]. NLOS errors are becoming an increasingly serious issue due to the rapid
expansion of cities and the increasing number of buildings and flat surface reflectors [1,2].
NLOS errors have far-reaching implications. They not only affects the value of the time
delay, but they also have a severe impact on the values of the angle and power, which has
become the main issue that restricts localization accuracy. In addition, the signal arriving at
the receiver antenna can arrive through multi-paths (reflection, refraction, scattering, etc.),
and the superposition of those signals can produce multi-path fading. This can lead to a
decrease in signal strength, as well as a distortion of the signal waveform. The traditional
time delay estimation algorithm struggles to distinguish the multi-paths, and leads to mea-
surement errors when the difference in arrival times of the multi-paths is slight. Multi-paths
and NLOS errors lead to serious interference, especially in the urban environment, where
multi-paths can create Rayleigh fading, severely affects the quality of communications,
and, even worse, the accuracy of timing and ranging measurements [3]. Multi-path effects
and signal blockages in an urban canyon can also lead to the inaccuracy and unavailabil-
ity of global navigation satellite systems [4]. Doppler frequency offset estimation is also
disturbed by multi-path interference, leading to carrier phase perturbations [5]. As multi-
path interference is present in most localization scenarios, it severely affects the accuracy
of positioning.

Currently, there are two approaches for reducing the NLOS error in localization al-
gorithms. The first approach considers the NLOS error as the solution of the localization
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algorithm when either the target is moving slowly with slow environmental changes or
when the target is moving quickly with short measurement time. The second approach
models the observed signals and NLOS error as a specific probability distribution, such as
exponential, uniform, Gaussian, or delta distribution, depending on the channel condition.
Research on NLOS errors is divided into two categories: NLOS identification, and mitiga-
tion without identification. The first category aims to detect and identify the presence of an
NLOS error in the received signal. Once the NLOS error is identified, it can be mitigated
by using an algorithm. For example, Wylie proposed a detecting algorithm based on the
standard deviation of noise [6]. In another study [7], a Markov chain model of LOS/NLOS
based on the assumption of NLOS intermittency was developed to identify and mitigate
NLOS errors. An NLOS identification and mitigation algorithm based on the distributional
characteristics of NLOS was proposed in [8], with the correctness of the results having
a directly impact on the performance of NLOS error mitigation algorithms. The second
category focuses on mitigating the effects of NLOS errors using the corresponding algo-
rithms by taking advantage of their characteristics rather than identifying their presence.
For example, the authors in [9] proposed a semidefinite programming-based algorithm to
mitigate the NLOS error without the requirement of NLOS information or identification of
the NLOS error.

For ground-based NLOS scenarios, the location of reflectors (e.g., tall buildings, moun-
tains, trees) is invariable. Thus, geographical information data or building data can be
introduced to algorithms as reflectors to assist in positioning, increasing the available
target location information, which can improve localization performance. In order to
improve the localization accuracy, we need to fully account for the errors existing in the
localization model. In practical applications, the position of the reflector may have errors,
especially the uncertainly of the target position and status, which makes the position of
the reflection points on the same reflection change over time. To address this issue, it
is necessary to further integrate array metadata, multi-path data, and other information
for joint optimization. Information fusion from multi-sources can be used to prove the
accuracy of channel estimation by combining information from the spatial domain. By
taking advantage of the fusion information, the algorithm can be optimized to better detect
and locate signals in a real-world environment. Researchers have explored information
fusion from multiple sources (e.g., energy domain, time domain, frequency domain, spa-
tial domain) to enhance accuracy in complex wireless communication environments [10].
This paper proposes a novel spatial multi-path information fusion localization algorithm
in ground NLOS environments. The main contributions of this paper are summarized
as follows:

1. We present a spatial multi-path array fusion model. The mathematical model is
constructed under the assumption of a single reflection scenario, where the positions
of the localization station and reflector are known.

2. An AOA/TOA optimal joint localization algorithm for ground NLOS situations is
proposed. To improve the localization accuracy, we comprehensively use the fusion
information. By decomposing the signal noise subspace, the proposed algorithm fuses
the multi-data from the path with array element and geospatial data.

3. Cramer–Rao Lower Bound (CRLB) was derived and used to compare the proposed
algorithm with other localization algorithms, and the results shows that our algorithm
achieves better estimation performance.

4. To validate the effectiveness of the proposed algorithm, we conducted simulations
under different numbers of array elements and reflection paths. The results reveal
that the proposed algorithm has excellent ability to measure multi-array data and has
effective information fusion capability.

The rest of this paper is organized as follows: the related work is described in Section 2;
in Section 3, a mathematical model for spatial multi-path array fusion localization is con-
structed; Section 4 implements a localization algorithm that fuses path, array element, and
geospatial multi-data based on the signal-noise subspace decomposition method; Section 5
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provides the CRLB for the proposed algorithm to further analyze the localization perfor-
mance, with the effectiveness of the algorithm verified through simulation experiments
described in Section 6; a discussion of the proposed algorithm is presented in Section 7;
and finally, Section 8 concludes the paper. The notations are used in this paper are shown
in Table 1.

Table 1. Notations.

Transpose of matrix [•]T

Hermitian transpose of matrix [•]H
Identity matrix I
(m,n)-th entry of a matrix [•]m,n
The real part of the complex number x Re{x}
The imaginary part of the complex number x Im{x}

2. Related Work

Researchers have investigated various localization algorithms to mitigate the negative
effects of NLOS transmissions. These studies are primarily focused on suppressing or
eliminating the adverse effects of non-direct paths. AOA and TOA are two common key
factors in localization technologies, and many scholars have studied the related methods to
eliminate the NLOS error based on those two factors. A new localization algorithm based
on AOA was proposed in [11]. This algorithm uses a Bayesian probabilistic framework to
estimate the target location, models the angle error as a Gaussian distribution, and performs
NLOS error correction on AOA measurement. Research of TOA-based NLOS mitigation
algorithms are aimed at mitigating the effects of NLOS errors on TOA measurement. One
of the studies [12] advanced the TOA NLOS mitigation cooperative localization algorithm
based on a topological unit, which has higher scalability and robustness, and can obtain the
target node with fewer anchor nodes. Another study [9] proposed the TOA measurements
localization algorithm, which uses a semidefinite programming problem to mitigate NLOS
errors without the statistical information of the NLOS error. Additionally, other methods
using mathematical models or filter technology have also achieved the aim of mitigating
the effect of NLOS. The author in [13] presents a NLOS mitigation algorithm that employs
an equality-constrained Taylor series robust least squares method to mitigate error, which
does not depend on much prior environment knowledge. A linear regression model based
on hybrid filtering techniques is used to estimate and correct NLOS errors in a localization
algorithm proposed by another study [14]. The expression model of the error caused
by NLOS and the covariance of the location error was established in [15] using small
error analysis, to estimate the multi-path effect. However, while these methods effectively
handle NLOS errors, they also lose the location information contained in the multi-path
propagation of the signal.

In a wireless localization system, the target location information exists not only in the
direct path signal but also in the non-direct path signals. Therefore, it is necessary to explore
multi-paths to obtain additional useful information regarding the location [16]. Multi-path
assist positioning is a technique that uses signal propagation characteristics to estimate
distance and angle. Xie indicates that multi-path signals reflect the geometry information
and target location, and proposed a localization method based on the collaboration of
multiple base stations [17]. Multi-path signal information is also be used in [18] to develop
a searching algorithm to estimate the location of the target, and the simulation result in the
actual environment shows that the median location error is about 1.5. A further study [19]
proposed a multipath-assisted localization method, considering the scattering as Gaussian
distribution in NLOS environments, using AOA and information from multi-paths to
calculate the scatterers with different weights, and finally, optimizing the localization
objective function and obtaining the final result of the estimated position. Multi-path data
still has some limitations, and they may not be sufficient to support information accuracy,
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because the number, distribution, and strength of the signal may vary with environmental
changes. Therefore, it is necessary to fuse more data to assist positioning.

Data fusion has become a popular topic in recent research in the wireless localization
field as single domain information is unable to meet the increasing demand for accuracy.
An information fusion method was proposed in reference [10] that utilized a maximum
likelihood estimator based on energy, time, and frequency domain fusion to precisely
estimate the localization of the target. The combination of spatial and time parameters is
also an active research area for target localization. The author of [20] used multi-sensor
combined received signal strength (RSS), AOA, and TOA for single target localization,
and optimized sensor placement strategies to obtain the best estimate result. The time
difference of arrival (TDOA) and AOA fusion algorithm were developed in [21] by intro-
ducing a constrained total least squares framework. The proposed algorithm had better
performance in both localization accuracy and robustness. The target position was es-
timated in [22] using multi-source information fusion in 6G location-based services via
Gaussian kernel density estimation. Multi-source RSS information was merged in line
with Dempster–Shafer evidence theory, and the ideal reference points were chosen as the
target position. This method has advantages in processing incomplete RSS information.
A multi-source information fusion algorithm was also proposed in another study [23].
Information from sensors and geometric data of the building were fused, and an adaptive
complementary filtering algorithm was used to obtain the estimated information, which
contributed to a higher accuracy of orientation. A fusion of pedestrian dead-reckoning
(PDR) and ultra-wideband (UWB) was utilized in [24] based on incremental smoothing.
Additionally, the relative merits of the Huber kernel and Tukey kernel were compared,
and the proposed method achieved high-accuracy positioning under NLOS conditions.
Angular and distance information were combined for localization in [25] to evaluate single
base station positioning performance in a practical environment. The TOA information in
the 4G network rounding reference signal was used to estimate the distance, and the AOA
information was obtained using the multi-signal classification (MUSIC) algorithm. The
results showed a median location error of around 2 m. The author in [26] demonstrated
that estimates of the position of an unknown node can be determined using data fusion of
AOA and path loss. The bandwidth of 800 MHz showed better localization performance
with the proposed algorithm.

Other studies [27–29] have shown that data fusion combined with RSS can enhance
overall positioning performance. Machine learning was used as a solution in [27], where
the proposed neural network model obtained better localization performance by fusing the
position data in GNSS and user equipment position from RSS. The results showed the lo-
calization error was reduced by up to 49%. Direction of arrival (DOA) and TOA were fused
with RSS by the authors in [28], and an iterative algorithm using RSS and TOA was used
in [29]. The non-convex estimation problem was converted into a generalized trust region
subproblem to solve the problem in directional target localization in NLOS environments.

3. Spatial Multi-Path Array Fusion Localization Model

In this section, we present the spatial multi-path array fusion localization model,
which is used to construct a mathematical model of the received signal, including the AOA
and TOA information of the signal, to improve localization accuracy.

Signal attenuation can occur in a NLOS environment where the signal is being re-
flected off of obstacles, such as walls, trees, and buildings. With each reflection, the signal
experiences a decrease in power, resulting in a weaker signal at the receiver that may be
too weak to observe. Hence, this paper focuses on the multi-path localization scenario
with a single reflection, as shown in Figure 1, where the signal reflects only once for each
reflector. In this scenario, if the reflector is far from both the target and the localization
station, the distance is much greater than the wavelength of the signal. In this case, the
reflector appears as a single point in the localization system, and the reflector’s size and
shape have a negligible effect on the signal. Therefore, the reflector’s position can be used
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in the location calculation, instead of the reflection point of the electromagnetic wave.
This approach simplifies the localization process. In practical applications, the reflector
position can be obtained through measurement or by referring to a geographic information
system (GIS).
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The construction of a multipath signal reception model is an important step in devel-
oping accurate localization algorithms for NLOS environments. In the case of considering
the reflector as a point, the multi-path signal reception model can be constructed as follows.

Assume that the localization station consists of a linear array of M elements, and the
distance between every array element is dm. The localization station receives the target
signal P times, the coordinate of the localization station is up = (up,x, up,y), p = 1, 2, · · · , P.
The model assumes that the target signal reaches the localization station through one
direct path and L reflection paths. The reflection point coordinate of each reflection path
is µl = (µl,x, µl,y), l = 1, 2, · · · , L, and the coordinate of the target to be estimated is
ν = (νx, νy), therefore, the received signal rp of the localization station at p time can be
expressed as follows:

rp(t) =
L

∑
l=0

βlal(θl)s(t− τl − t(0)) + w(t) (1)

where the parameter with subscript l indicates the relevant parameter of the l th target
path, l = 0 represents the direct path; βl is the channel plural fading factor of the l th path;
θl is the angle of incidence of the l th path; τl is the time delay of the l th path; t(0) is the
launch time of the target; s is the target transmit signal; al indicates array manifold vector
of the localization station; and w(t) is uncorrelated zero-mean Gaussian white noise with
variance σ2

w.
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Suppose the total reception time of the signal is T and divide it into K parts, where
each part has a length of T/K. By taking a sample at each part with a period of Ts, a total
of N sampling points can be obtained. Hence, Equation (1) can be expressed as:

rp(n, k) =
L
∑

l=0
βlal(θl)s(nTs − τl − t(0), k) + w(n, k)

n = 1, 2, · · · , N, k = 1, 2, · · · , K
(2)

Taking the Fourier transform to rp(n, k) for every K part, and adding the time delay
information, gives us:

r̃p(n, k) =
L

∑
l=0

βlal(θl)e
−j2πnτl /NTs s̃(n, k)e−j2πnt(0)/NTs + w̃(n, k) (3)

where s̃ and w̃ represent the Fourier coefficients of the signal and noise, respectively.
Substituting Equation (2) into Equation (3), we obtain:

al(n, ν) = al(θl)e−j2πnτl /NTs

A(n, ν) = [a0(n, ν), a1(n, ν), · · · , aL(n, ν)]

β = [β0, β2, · · · , βL]
T

S(n, k) = s̃(n, k)e−j2πnt(0)/NTs

(4)

Equation (3) can be represented as:

r̃p(n, k) = A(n, ν)βS(n, k) + w̃(n, k) = Φ(n)S(n, k) + w̃(n, k) (5)

where:
Φ(n) = A(n, ν)β (6)

By constructing this multi-path signal reception model, the proposed algorithm in the
next section can estimate the location of the target using the received signals, the known
position of the localization station, and the position of the reflector. This model serves as a
basis for developing the proposed spatial multi-path array fusion localization algorithm.

4. Spatial Multi-Path Array Fusion Localization Algorithm

In this section, a novel localization algorithm for ground NLOS situations was pro-
posed. The algorithm is based on a joint localization method that incorporates spatial
information from multiple sources, AOA, and TOA to improve the localization accuracy.

Using conditions in which the reflector point model considers the reflector as a point,
there is an unknown bias ∆µl between the measured position of the reflector and its actual
position. The bias is caused by the fact that the reflector is not a point, but rather a physical
object with a finite size. As a result, the measured position of the reflector is not the same as

its actual position. The actual coordinates of the reflector can be expressed as
¯
µl = µl + ∆µl .

The bias ∆µl is called the point error. The angle and time delay parameters of the signal
after reflect denoted as θ̄l and τ̄l , respectively, and they can be written as:{

θl = θl + ∆θl
τl = τl + ∆τl

(7)

where θl and τl are the signal angle and time delay calculated from the measured value of
the reflector position; ∆θl and ∆τl are the angle and time error caused by the point error. By
incorporating Equation (7) into (2), the signal model with the error is obtained as:

rp(n, k) =
L

∑
l=1

βlal(θl)s(nTs − τl − t(0), k) + β0a0(θ0)s(nTs − τ0 − t(0), k) + w(n, k) (8)
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It is assumed that the reflector is distant from the localization station and the target,
and as a result the bias error of the reflector position is small, and ∆τl can be combined into
the signal’s plural decay. Applying the Fourier transform to rp gives us:

r̃p(n, k) =

(
L

∑
l=1

_
β lal(θl)e

−j2πnτl /NTs + β0a0(θ0)e
−j2πnτ0/NTs

)
· s̃(n, k)e−j2πnt(0)/NTs + w̃(n, k) (9)

where
_
β l = βle

−j2πn∆τl /NTs . al(θl) is the function that relates to the reflector angular bias
error. The first-order Taylor series expansion is used under the assumption of small bias
error, which can be represented as:

al(θl) ≈ al(θl) + bl(θl)∆θl (10)

where bl(θl) =
∂al(θ)

∂θ

∣∣∣
θ=θl

is the first order value of al(θ) when θ = θl . Combining

Equation (10) with Equation (9), r̃p(n, k) can be expressed as:

r̃p(n, k) ≈
(

L
∑

l=1

_
β lal(θl)e−j2πnτl/NTs +

_
β l∆θlbl(θl)e−j2πnτl/NTs+

β0a0(θ0)e
−j2πnτ0/NTs

)
s̃(n, k)e−j2πnt(0)/NTs + w̃(n, k)

(11)

Since ∆θl is irrelevant to the target location, the relationship between the time delay,
angle parameter, and the target location are:{

θ0 = arccos νx−up,x

‖ν−up‖
τ0 = 1

c

∥∥ν− up
∥∥{

θl = arccos µl,x−up,x

‖µl−up‖
τl =

1
c (‖ν− µl‖+

∥∥µl − up
∥∥) l = 1, 2, . . . , L

(12)

Combining Equation (12) with Equation (11), gives us:
¯
b l(n, ν) = bl(θl)e

−j2πnτl/NTs

B(n, ν) = [A(n, ν),
¯
b1(n, ν),

¯
b2(n, ν), · · · ,

¯
bL(n, ν)]

^
β = [β0,

_
β 1, · · · ,

_
β L, ∆θl

_
β 1, · · · , ∆θL

_
β L]

T

(13)

Thus Equation (11) can be expressed as:

~
rp(n, k) = B(n, ν)

^
βs(n, k) + w̃(n, k) = F(n)

¯
S(n, k) + w̃(n, k) (14)

For the subspace-based fusion localization algorithm when the signal is unknown, the
covariance matrix of the received signal is:

Rp = E[ r̃p r̃H
p ] = F(n)RsF(n)

H + σ2
wI (15)

In this equation, I is a unit matrix and Rs is the self-covariance matrix of the signal.
The subspace decomposition is performed on Rp to obtain the noise subspace Up,w. Based
on the orthogonality of the signal subspace and the noise subspace:

^
β

H
BH(n, ν)Up,wUH

p,wB(n, ν)
^
β = 0 (16)
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The target function can be written as:

gp(ν) =
N

∑
n=1

^
β

H
BH(n, ν)Up,wUH

p,wB(n, ν)
^
β =

^
β

H
Cp(ν)

^
β (17)

where Cp(ν) =
N
∑

n=1
BH(n, ν)Up,wUH

p,wB(n, ν). The estimated target location corresponds to

the minimum value obtained from gp(ν). This can be expressed using the Rayleigh quotient:

mingp(ν) = min
^
β

H
Cp

^
β = λmin(Cp(ν)) (18)

where λmin is the minimum value of the matrix eigenvalues. By fusing the information
of the location station from P moment, the final estimate position of the target can be
expressed as:

v̂ = argmin
ν

P

∑
p=1

λmin(Cp(ν)) (19)

where ν is the target location and v̂ is its estimated value. Equation (19) can be used to
estimate the target location. There are two advantages to this equation. The first advantage
of this equation is that it does not need to consider the effect of multi-path fading, which
reduces the number of estimation parameters, simplifying the algorithm and making it
more efficient. Secondly, the equation use the Taylor series expansion to mitigate the impact
of reflector position bias errors. This aligns with the real-world localization environment
that has small errors in reflector location.

A simulation experiment will analyze the performance of the algorithm and compare
it with existing algorithms to prove its effectiveness of the algorithm.

The implementation of the proposed algorithm is described in Table 2.

Table 2. The proposed algorithm steps.

Step 1 Calculate the covariance matrix of the received signal using Formula (15).

Step 2 Perform subspace decomposition on the covariance matrix Rp to obtain the noise
subspace Up,w.

Step 3 Construct the target function by utilizing the orthogonality of the signal subspace
and the noise subspace using Formula (17).

Step 4 Obtain the estimate value of the target position by finding the minimum value of the
target function using Formula (18).

Step 5 Combine the information form P moments of the localization station to obtain the
final estimate value using Formula (19).

5. Derivation of the Cramer–Rao Lower Bound

In this section, we derivate the CRLB to further analyze the localization performance
of the algorithm proposed in this paper. The CRLB is a theoretical lower bound on the
variance of any unbiased estimator of a parameter, and it represents the best possible
performance that can be achieved by any estimator.

Under the model that we proposed in the Section 4, the parameter to be estimated can
be set as:

ρ = [
¯
ν

T
, Re

{
¯
β

T}
, Im

{
¯
β

T}
,
¯
σ

T

s ]

T

(20)
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where
¯
σs represents the power of the signal. The Fisher information matrix (FIM) of the

unknown parameters can be expressed as:

Ji,j =
K
2

P

∑
p=1

N

∑
n=1

tr

{
R−1

p
∂Rp

∂]ρi
R−1

p
∂Rp

∂ρj

}
(21)

where ρi and ρj are the i th and j th parameter of the unknown vector. The covariance
matrix of the received signal is expressed as:

Rp = F(n)RsF(n)
H + σ2

wI (22)

Then:
∂Rp

∂ν
=

∂F(n)
∂ν

RsF(n)H + F(n)Rs
∂F(n)

∂ν
(23)

Allowing [B(n, ν)]m,l , m = 1, 2, · · · , M, l = 0, 1, · · · , 2L to represent the number (m, l)
element of the matrix, and assuming the distance between every array element dm equals a
half wavelength, then:{

[B(n, ν)]m,l = exp(−jπ(m− 1) cos(θl)) · exp(−j2π fsτln/N) l ≤ L
[B(n, ν)]m,l = jπ(m− 1) sin(θl−L) exp(−jπ(m− 1) · cos(θl−L)) exp(−j2π fsτl−Ln/N) l > L

(24)

where: 

∂[B(n,ν)]m,l
∂νx

=
[
−jπ(m− 1) ∂ cos(θl)

∂νx
− j2π fs

∂τl
∂νx

n/N
]
·

[B(n, ν)]m,l l ≤ L
∂[B(n,ν)]m,l

∂νx
=

[
1

sin(θl−L)

∂ sin(θl−L)

∂νx
− jπ(m− 1)

∂ cos(θl−L)

∂νx
−

j2π fs
∂τl−L
∂νx

n/N
]
[B(n, ν)]m,l l > L

(25)

∂[B(n,ν)]m,l
∂νy

can be obtained in the same way. The expressions of the angle and time
delay are different for the direct and non-direct paths. When l = 0 represents the direct
path, there is: 

∂ cos(θl)
∂νx

=
(νy−up,y)

2

d3
p

∂ cos(θl)
∂νy

= − (νy−up,y)(νx−up,x)

d3
p

l = 0


∂ cos(θl)

∂νx
= 0

∂ cos(θl)
∂νy

= −0
l 6= 0

(26)


∂τl
∂νx

=
(νx−up,x)

cdp
∂τl
∂νy

=
(νy−up,y)

cdp

l = 0;


∂τl
∂νx

=
(νx−µl,x)

cdl
∂τl
∂νy

=
(νy−µl,y)

cdl

l 6= 0 (27)

The derivative for the multi-path attenuation of the target signal is:

∂Rp

∂Re(
^
β

T
)

=
∂F(n)

∂Re(
^
β

T
)

RsF(n)H + F(n)Rs
∂F(n)

∂Re(
^
β

T
)

(28)

where:
∂F(n)

∂Re(
^
β

T
)

= [0, 0, · · · , B(n, ν)
∂
^
β

∂Re(
^
β

T
)

, · · · , 0] (29)
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Then there is:
∂
^
β

∂Re(
^
β

T
)

= [0, 0, · · · , 0, 1, 0, · · · , 0] (30)

Only the l th element is 1 and the remaining are 0. Therefore:

∂Rp

∂Im
{
^
β

T} = j
∂Rp

∂Re(
^
β

T
)

(31)

where:
∂Rp

∂σ2
s
= F(n)

∂Rs
∂σ2

s
F(n)H (32)

∂Rs
∂σ2

s
= [0, 0, · · · , 1, · · · , 0, 0] (33)

Given the above derivation, we can obtain the derivative
∂Rp
∂ρi

for any element of ρ.
FIM can be obtained according to Equation (21), and thus we can express CRLB as:

CBLB = J−1 (34)

The CRLB can be derived by calculating the inverse of the FIM, which provides a
lower bound on the variance of any unbiased estimator of the target location. The CRLB
can be used to compare the performance of different localization algorithms and to evaluate
the efficiency of our proposed algorithm.

6. Algorithm Simulation and Verification

In this section, the performance of our proposed spatial multi-source information
fusion localization algorithm (IFLA) is evaluated and compared to the traditional two-
step localization algorithm. The traditional AOA/TOA localization algorithm is based
on the least square method (ML_AOA/TOA), and estimates the location of a target by
combining AOA and TOA information, and utilizes the multiple signal classification
(MUSIC) algorithm for AOA parameter estimation and the maximum likelihood time-delay
estimation algorithm for TOA parameter estimation [30]. After obtaining the AOA and
TOA parameters, the target localization is achieved through the least squares method [30].

In the simulation, two targets are placed in the plan-coordinate system with coor-
dinates of (500, 3500) m and (−2000, 2800) m. Three localization stations are placed at
coordinates (−3000, −1000) m, (0, −1000) m, and (3000, −1000) m, to receive signals from
the target. Additionally, two reflectors are located in the localization area with coordinates
of (−4000, 1000) m, (4000, 1000) m. The simulation parameters include an initial number of
array elements (7), the received signal divided into 32 segments with each segment having
16 sampling points, a signal carrier frequency of 1 GHz, and the sampling frequency of
0.5 MHz. The parameters described above are shown in Table 3.

Table 3. Simulation parameters.

Parameter Unit Value

Target coordinates m (500, 3500) and (−2000, 2800)
Localization station coordinates m (−3000, −1000), (0, −1000), and (3000, −1000)

Reflector coordinates m (−4000, 1000) and (4000, 1000)
Initial number of array elements - 7

Number of segments for received signal - 32
Number of sapling points per segment - 16

Signal carrier frequency GHz 1
Sampling frequency MHz 0.5
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The spatial spectrum of the proposed IFLA algorithm and ML_AOA/TOA algorithm
are compared. The spatial spectrum is a common tool used in signal processing to analyze
and visualize the spatial spectrum to analyze the accuracy of a localization algorithm.
A sharp peak in the spatial spectrum plot indicates that the signal has a strong spatial
frequency component at that particular frequency. This can be interpreted as the presence of
a spatial pattern or feature in the signal at that frequency. To demonstrate the effectiveness
of the proposed IFLA algorithm, Figures 2–5 shows the stereogram and top view of the
spatial spectrum of both the IFLA and ML_AOA/TOA algorithms with a signal to noise
ratio (SNR) of 0 dB. The simulation results indicate that the IFLA achieves a sharp peak at
the true position of the target with a smaller fuzzy area, which indicates that IFLA has a
higher localization accuracy compared to ML_AOA/TOA.
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To further illustrate the performance of IFLA algorithms, we contrast the localization
performance of each algorithm with their CRLBs. The CRLB and root mean square error
(RMSE) of each algorithm were obtained through 500 Monte Carlo simulation experiments
as a function of SNR. The SNR was calculated using the received signal power and the
noise power, as shown in Equation (35). The formula for RMSE is show in Equation (36),
where N is the number of Monte Carlo simulations, ŷi represent the estimate value of the
target and yi represent the real value of it:

SNR = 10lg(
Psignal

Pnoise
)(dB) (35)

RMSE =

√
1
N

n

∑
i=1

(ŷi − yi)
2 (36)
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The results are presented in Figure 6 and show that both IFLA and the ML_AOA/TOA
improve with increasing SNR. However, the IFLA outperforms the ML_AOA/TOA through-
out the entire range of SNR values. These results indicate that the IFLA algorithm is able to
provide more accurate localization of the target.
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Figure 6. Estimation accuracy comparison of IFLA (blue) and ML_AOA (orange)/TOA (green) for
target 1 (a) and target 2 (b).

To verify the fusion localization performance of the IFLA for antenna array element
data, and to further simulate the error under a different number of array element, IFLA
was used to perform 500 Monte Carlo simulation experiments for different numbers of
array elements (M), including 7, 11, 15, 19, and 31. The results in Figure 7 show that when
the value of SNR is constant, the RMSE decreases with the increase of the array element
number, which indicates that the localization performance of IFLA improves as the number
of array elements increases. This simulation also demonstrates the IFLA algorithm has
effective information fusion capability for measuring multi-array element antenna data.
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To verify the fusion localization performance of the IFLA for the number of spatial
propagation paths, and to further simulate the error with a different number of signal
paths, IFLA was used to perform 500 Monte Carlo simulation experiments with a different
numbers of reflectors, represent as paths, including 2, 3, and 5 reflectors. The results in
Figure 8 shows that when the value of SNR is the same, the RMSE decreases with the
increase of reflection paths, which indicates that the localization performance of IFLA
improves as the number of signal reflection paths increases. This simulation results also
demonstrate that the algorithm has effective information fusion capability for spatial signal
multi-path data.
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7. Discussion

In NLOS environments, traditional localization algorithms face challenges, such as
multipath fading, signal attenuation, and interference, which degrade the accuracy of
the localization process. Spatial multi-path information fusion has been proposed as
a promising approach to address the challenges of NLOS localization. This approach
fuses multi-array element antenna data and spatial signal multi-path data to improve
localization accuracy. The IFLA algorithm proposed in this paper utilizes this approach
and outperforms the traditional ML_AOA/TOA algorithm, and has effective information
fusion capability for measuring multi-array element antenna data and spatial signal multi-
path data. However, despite its advantages, the accuracy of the localization process is still
restricted by various external factors. The complexity of the environment and the accuracy
of prior environmental information, as well as the signal bandwidth, SNR, and data
sampling time, can all affect the algorithm’s performance. Moreover, the IFLA algorithm
is limited to recognizing only one target in a 2D plane and relies on assumptions about
the environment, such as the existence of only one reflection path for one reflector. In the
real-world scenarios, the presence of multiple targets may interfere with the target to be
located, and the IFLA algorithm may not be applicable.

8. Conclusions

This paper presents a novel algorithm aimed at improving localization accuracy in
ground NLOS environments. A spatial multi-path information fusion localization model is
proposed by analyzing NLOS error mitigation localization algorithms. The model is further
improved by incorporating path, array element, and geospatial multi-data using the signal
noise subspace decomposition in a fusion localization algorithm. The CRLB of the algorithm
is derived, which shows the localization accuracy is better compared with the existing
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traditional algorithm. Simulation experiments are conducted to verify the effectiveness of
the proposed localization algorithm. The results show that the proposed method effectively
leverages spatial multi-source information to achieve precise localization in complex ground
environments and improves the locatable probability. This algorithm can be applied in
various localization scenarios, such as indoor, complex urban environments, factories,
underground tunnels, and other applications scenarios. Future research directions include
investigating the 3D localization, multi-target scenarios, dynamic target scenarios, and
studying the mutual influence between multiple targets and the localization station on the
localization performance.
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