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Abstract: In recent decades, the Variational AutoEncoder (VAE) model has shown good potential
and capability in image generation and dimensionality reduction. The combination of VAE and
various machine learning frameworks has also worked effectively in different daily life applications,
however its possible use and effectiveness in modern game design has seldom been explored nor
assessed. The use of its feature extractor for data clustering has also been minimally discussed in the
literature neither. This study first attempts to explore different mathematical properties of the VAE
model, in particular, the theoretical framework of the encoding and decoding processes, the possible
achievable lower bound and loss functions of different applications; then applies the established
VAE model to generate new game levels based on two well-known game settings; and to validate
the effectiveness of its data clustering mechanism with the aid of the Modified National Institute
of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are
also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies.
Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in
handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed;
then measures of future enhancement, such as tokenization and the combination of VAE and GAN
models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of
VAE for future game design tasks and relevant industrial missions.

Keywords: game design; variational autoencoder (VAE); image and video generation; Bayesian
algorithm; loss function; data clustering; data and image analytics; MNIST database; generator
and discriminator

1. Introduction

In the 21st century, enormous mathematical and data analytic techniques and algo-
rithms have been adopted in designing new video games and frames, for the purposes of
enhancing teaching and learning processes in a virtual environment, pushing the innova-
tion and specialty of gameplay mechanics to its furthest extent, and visualizing game scenes
in a human-crafted, realistic and dynamic manner [1–3]. The concerned subjects include
the investigation of 3-dimensional geometric properties of characters within a particular
frame [4], the capturing of geometric transformations and motion on a real-time basis [5],
and the use of simulation games for analyzing and building up complex systems that could
better reflect real world conditions [6]. Today, credited with the increment of computing
power and resources, the enhancement of data storage capability, and the massive data
volume for simultaneous processing [3], the advancement in machine learning (ML) and
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artificial intelligence (AI) approaches are taking place and being widely adopted in different
practical disciplines, especially those related to image processing and computer vision, as
well as the emergence of generative models. This new digital era has also promoted the
use of these approaches in handling creative and artistic tasks, for example, a conditional
adversarial neural network has been applied for generating city maps from sketch [7]; a
Generative Adversarial Network (GAN) model was established to generate images based
on the simple sentence description of an object or a specific scenario [8]; the Game Design
via Creative Machine Learning (GDCML) mechanism was utilized for setting up an inter-
face with game modules and informing new systems [9]. In view of all these successes,
achieving “computational creativity” in the perspective of video game design has now
become a hotspot and new focus; while game companies and developers are seeking ways
to adopt ML and AI algorithms, so that the overall production cost of a game or related
products can be reduced, at the same time, brand new working procedures of the game can
also be implemented in the long run. A research report published by Netease has reviewed
that the incorporation of ML models into game design could reduce the development costs
by millions of Renminbi (RMB) dollars [10].

In the early days of video game development, most games were relatively simple
and “monotonous”, and were conducted via the “third-person shooting” mode, with
the aid of electronic machines. In 1962, Steve Russell and several student hobbyists at
Massachusetts Institute of Technology (MIT) developed the first ever video game in the
world, called Spacewar! [11], and this game was published on the Digital Equipment
Corporation (DEC) platform at a later time. Within the historical development stage,
Spacewar! was considered the first highly influential video game, because it motivated the
advancement of computing resources, reviewed the difficulties in transferring programs
and graphics between computing platforms at different places [11], and stimulated the
development of different game genres. In the early 1970s, the first home video game console
called the “Magnavox Odyssey” and the first arcade video game called the “Computer
Space and Pong” were respectively established. At the earlier stages, despite the effective
integration of technology, creativity and computing resources, there was a lack of uniform
standards for classifying game genres in terms of gameplay, however, games can generally
be categorized as in [12]. Some key examples include (1) Action Games that emphasize
physical challenges, particularly the coordination of hands and eyes; (2) First Person Shooter
Games that include the use of guns and weapons for competition and fighting against each
other from a first-person perspective; (3) Sports and Racing Games, which simulate the
practice of sports or racing originated from real or fantastical environments; (4) Simulation
Games that describe a diverse super-category of video games, so that real world activities
can be effectively simulated and displayed, for example, flight simulation and farming
simulation. With the combination of these genres and capabilities of algorithmic design
and data analytics, the importance and popularity of arcades and consoles had diminished,
and were gradually replaced by games that are compatible with personal computers,
smartphones and mobile devices. Some mainstream game platforms in the 21st century
are as shown in Table 1. Nowadays, most games released are not limited to a particular
genre, for example, “Need for Speed” is considered a Sports and Racing Game, as well as
a Simulation Game [13]; while many games can also be released on multiple platforms,
for example, the “Genshin Impact” is compatible with PC, mobile device, and PlayStation
simultaneously [14].

Apart from categorizing video games based on their genres and compatible platforms,
modern games all consist of three major components, namely (1) the program component;
(2) the gameplay component; and (3) the artistic component. Programs form the basis
of a video game, which determine the basic structure and logic of the game; gameplays
decide how the players and the surrounding environment could interact, via the aspects
of designing background settings, battles, balances and stages of the game itself; artistic
components lay down what the player can visualize and hear during the gameplay, which
can include the design of characters, environmental settings, design of background music
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and animations, and the ways of interaction [15]. In particular, when designers attempt
to produce artistic materials that put spice into the attractiveness of the video game, they
may either take reference of real world architectural and parametric settings, or create
objects and environments that may not exist in reality. All these have provided possibilities
for the utilization and application of image generation techniques within game design
processes [16,17].

Table 1. Mainstream game platforms and corresponding compatible device in the 21st century.

Game Platform Company Device

Personal Computer (PC) Microsoft Desktop/laptop computers

Mobile Phone Apple, Google, Samsung etc. Smartphones

Xbox [18] Microsoft Xbox game console

PlayStation (PS) [19] Sony PlayStation 1–5

Switch [20] Nintendo Nintendo 3DS/
Nintendo Switch

Recently, designers and scientists have started exploring how ML and combinatorial
algorithms could play systematic roles in different levels of game design, for example, data
preprocessing, clustering, decoding and encoding, as well as generating attractive and
sustainable image outputs in a specific game [21–24]. In particular, a concept called “game
blending” was adopted by Gow and Coreneli to establish a framework that effectively
produces new games from multiple existing games [25]; while the Long Short-Term Memory
(LSTM) technique has also been applied to blend computer game levels based on Mario
and Kid Icarus, then combine with the Variational AutoEncoder (VAE) model to generate
more controllable game levels [26,27]. In recent years, Generative Adversarial Network
(GAN) models have become popular, and have been incorporated into the framework of
generating game levels and images under specific conditions and settings [28,29]. These
black-box models allow users to design and generate levels in an automatic manner, thus
Schrum et al. [30] utilized such unique features to develop a latent model-based game
designing tool; while Torrado et al. [31] investigated the conditional GAN and established
a new GAN-based architecture called “Conditional Embedding Self-Attention GAN”, then
equipped it with the bootstrapping mechanism for the purpose of generating Role-Playing
Games (RPG) levels. On top of this, GANs have been combined with the transfer learning
method (e.g., WGAN-GP and BigGAN) to generate new game characters [32], and a 2D
game effect sprite generation technique called GESGAN was also established to generate
images of prescribed styles and features with a near real-time status [33]. All these have
shown the capabilities of ML or deep-learning models in generating game levels within
specific set-ups. Nevertheless, it is incredibly hard to obtain a thorough understanding
of the internal structure of ML-based models, as well as the statistical properties behind
the scene. Therefore, it is of utmost importance to develop and explore the use of a
mathematical model that can perform corresponding tasks, i.e., generate new game levels
that are applicable in modern game design and for future extension, and at the same time,
users can acquire a basic understanding of statistical properties of the model, for example,
time complexity, amount of loss during the model training process, and the relationship
between time consumption and size of the input dataset.

In this study, the effectiveness of the Variational AutoEncoder (VAE) model in generat-
ing images within game design was first explored and assessed. It is considered a deep
generative model that consists of a variational autoencoder, which is equipped with a prior
noise distribution. During the model training process, which is usually conducted based on
an Expectation-Maximization meta-algorithm, the encoding distribution was “regularized”,
so that the resulting latent space sufficed to generate new and meaningful datasets. The
detailed mathematical derivation will be discussed in Section 3, and readers can also refer



Sensors 2023, 23, 3457 4 of 24

to [34] for more technical details. The VAE model was first proposed by Kingma and
Welling [35], and has been widely applied in different disciplines, for example, image gener-
ation, data classification and dimensionality reduction [36–38]. In particular, Vuyyuru et al.
constructed a weather prediction model based on the combination of VAE and Multilayer
Perceptrons (MLP) models [39], and Lin et al. attempted to detect the anomaly of office
temperature within a prescribed period via LSTM and VAE models [40]. Furthermore, Bao
et al. had effectively combined the Convolutional Variational Autoencoder (cVAN) with the
GAN model to generate human photos by controlling the gender of required figures [41].
All these case studies have demonstrated the systematic and practical usages of the VAE
model, therefore, we expect that with a suitable data processing mechanism, fine-tuning of
model parameters, and minimization of the loss function during training, selected game
functions or level maps can be generated, as a result provide assistance to game developers
in the long run, in terms of auxiliary development, designing new games, and enhancing
the speed and time complexity of image generation within specific settings.

Section 2 includes the flowchart of how the VAE model was applied in this study,
and the description of datasets used in the three case studies. Then, the mathematical
theories and statistical properties of the VAE model are outlined in Section 3, and Section 4
showcases some numerical experiments conducted and their corresponding statistical
analyses. Section 5 discusses the deficiencies and limitations of the current study, as well as
some potential future research directions; then, a short conclusion is provided in Section 6.

2. Flowchart and Data Sources
2.1. Overview of This Study

Figure 1 shows an overall flowchart of the preprocessing and construction of the VAE
model adopted in this study. After raw data or attributes were obtained from games or
available databases, they were preprocessed whenever necessary. Upon the application of
specific scaling factors within each dimension, these processed datasets could be ingested
into a machine, where a sufficient number of datasets was used for model training. In
particular, the variational autoencoder within the VAE model was constructed, and the
VAE algorithm was iterated such that the optimization of lower bound was achieved under
some constraints, which might depend on the set-up of the corresponding game and/or
application. Such lower bound was called the “Evidence lower bound (ELBO)”. Further,
the loss function during machine learning processes was also minimized, with the aim of
estimating the amount of information that has been lost during model training processes.
For data clustering applications, an alternative form of the loss function was deemed
more appropriate than the aforementioned “loss” during training. After fine-tuning all
parameters of such a statistical model, the optimized VAE model was used to obtain some
graphical outputs after a series of geometric transformations. In this study, we focus on
analyzing the relationship between average loss figures with the number of epochs; the time
complexity with the size of input datasets; and the effects of scaling factors, etc. Respective
statistical figures are presented either in graphical or tabular formats, as in Section 4.

2.2. Data Sources and Description

Within this study, three different datasets have been used for model training and
assessing the effectiveness of the developed VAE model. Each of these datasets has its
significance, namely, (1) provides good references for game designers; (2) consists of a
“humanistic” character equipped with motion; and (3) is practical for image processing
and/or data clustering.
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2.2.1. Game Map from Arknights

Arknights is a tower-defense puzzle game developed by Hypergraph [42]. The game
was first published in 2019, and soon became popular and welcomed by many citizens in
mainland China. In this study, we attempted to generate new maps based on existing game
maps extracted from the official site, which could hopefully provide a useful reference to
game designers, especially in updating of the motion and appearance of characters and
surrounding spatial features.

A tool called Unity Hub was adopted to dispatch the original game installation
package obtained from the official website of Arknights. In total, 180 different game maps
were extracted, and Figure 2 shows an example of an original game map image. The size of
the original image here is 500× 500, with 300 pixels per inch (ppi). Detailed documentation
of Unity Hub can be found in [43].
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2.2.2. Characters from Konachan

The second type of dataset(s) adopted in this study was obtained from the Konachan
site, which is an image board site that consists of more than 60,000 different anime or
manga wallpapers, as of February 2023 [44]. Figure 3 shows an example of an anime avatar
extracted from this official website. The size of this image is 512 × 512 digits, with 300 ppi.
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2.2.3. Modified National Institute of Standards and Technology (MNIST) Database

The third type of dataset was extracted from the MNIST database, which was created
in 1998. The MNIST database contains binary images of handwritten digits and is divided
into the training set (Special Database 3) and test set (Special Database 1). The two sets
were collected from Census Bureau employees and high school students respectively [45].
This vast database of handwritten digits has been shown useful in pattern recognition and
training various image processing systems for classification, with the aid of convolution
neural network techniques [46,47]. Original images from MNIST were first being size-
normalized, with the corresponding aspect ratio remaining unchanged, so that they could
fit into a 20× 20 pixel box; then, the center of mass of all pixels was computed, so that these
processed MNIST images could be positioned at the centre of a “28 × 28 pixel grayscale
image” [45]. The database that we adopted in this study consists of 60,000 such grayscale
images, each of which consists of 10 digits (from 0 to 9, inclusive), along with a test set that
consists of 10,000 images [48]. In this context, the MNIST database was selected to test and
validate the effects of clustering, because every data entry has already been pre-labeled
with classification labels.

3. Methodologies: Steps of the VAE Model

The important steps and statistical measures of the VAE model are provided in this
section, which provide readers with a crucial reference of how the VAE model was con-
structed; the ideas of data preprocessing; and the important parameters that should be
optimized (i.e., maximized or minimized) during machine learning stages.

3.1. Data Preprocessing

First, the raw images were compressed by applying a specific scaling factor, which is
defined as the ratio of the length of a side of a desired output image to that of the original
image. In this study, a scaling factor of less than 1 was adopted to speed up the machine
learning and training processes, at the same time preventing the overflowing of memory.

Afterwards, the compressed images were decolorized using the optimization approach
proposed in [49], with the aim of preserving original color contrasts to the best extent. In
principle, the VAE model is applicable for handling RGB images, however, due to the
limitations of computer performance, the images obtained from datasets in Section 2
were converted into grayscale styles. Nevertheless, the texture, color contrast and pixel
properties were preserved as much as possible, so that the effectiveness of the VAE model
could be fairly assessed. In this study, the Intel(R) Xeon(R) CPU E5-2670 v3 (developed
by Intel of United States in 2014) with two processors was adopted, and the system was
prescribed as a 64-bit operating system, with 128 GB RAM installed.

As for the Arknights game maps described in Section 2.2.1, since every game map
represents only a class label, while a maximum of 180 different images can be obtained
from the open data source, therefore, each of these 180 images was copied by 10 times, so
that a total of 1800 images were ingested into the VAE model, with most of them being
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grouped as the ‘training set’, and a small pile of these images was considered the ‘testing
set’. Further, the 10 versions of each image possessed different brightness, contrast and
gamma correction factors, so that a total of 1800 class labels could be used for conducting
statistical analyses.

3.2. Autoencoding, Variational AutoEncoder (VAE) and Decoding Processes

In analyzing large datasets that contain vast number of features within each ob-
servation, Principal Component Analysis (PCA) was widely adopted to visualize multi-
dimensional information, by reducing the dimension of the original dataset but keeping the
maximum amount of information in the output [50]. However, PCA was only applicable in
handling linear surfaces, thus the concept of “autoencoding” came in. An autoencoder is
capable of handling both linear and non-linear transformations, and is a model that can
reduce the dimension of complex datasets via neural network approaches [51]. It adopts
backpropagation for learning features at instant time during model training and building
stages, thus is more prone to achieve data overfitting when compared with PCA [52]. The
structure of an autoencoder is as shown in Figure 4, which includes mainly an encoder to
handle input datasets, some codes within the encoding process, and a decoder to produce
meaningful outputs.
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Denote X as the set of all samples in the original dataset, where xi represents the ith
sample. The encoder is a function g(X) that encodes the original dataset to z, i.e., z = g(X),
where the dimension of z is significantly less than that of X. Afterwards, the simplified
dataset z is passed onto the decoder, which decodes z and outputs X̃. Hence, the decoder is
mathematically expressed as X̃ = f (z). The loss function l =‖ X − X̃ ‖2 under arbitrary
norm (depending on the type of application) is then used to estimate the closeness between
X and X̃. If the magnitude of l is small, the model is considered effective. Here, we may
assume that the encoded z will include most valuable information from X, so that z suffices
to represent the original dataset even after dimensionality reduction has been applied
during the model training process. For example, let X ∈ RC×H×W be an image, where
C, H and W are the dimensions that store the information of X. The overall goal is to train
an autoencoder that encodes the image into z ∈ Rd (i.e., dimensionality reduction), then
apply a decoder that reformulates the image as X̃ ∈ RC×H×W such that the loss function is
minimized. In practice, this model will create not only useful attributes of the image, but
also unwanted noise components, because the distribution of z, as denoted by p(z), has not
been modeled. To complement such deficiency, the Variational AutoEncoder (VAE) was
adopted to first model the probabilistic distribution of z, before all useful attributes of X
were extracted to form a sampling space of z and passed into the decoder for image recovery.

Suppose z ∼ N(0, I), where I represents an identity matrix, which means that z can
be regarded as a multi-dimensional random variable that obeys the standard multivariate
Gaussian distribution. Denote z and X as random variables, and the corresponding ith
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samples are denoted by zi and xi respectively. With this set-up, the eventual output is
generated through a stochastic process of two steps, with z treated as the hidden variable:
(1) the prior distribution of X is encoded and sampled to obtain zi; then (2) based on the
conditional distribution p(X|zi), a data point or sample xi is achieved.

As for the decoding process, the samples zi obtained from the N(0, I) distribution
were ingested into the decoder, then the parametrized decoder established a mapping that
outputs the precise distribution of zi corresponding to X, which is denoted by pθ(X|zi).
To simplify the statistical complexity, we may assume that X obeys isotropic multivariate
Gaussian distribution for any given zi, i.e., Equation (1) holds. This means that after zi is
ingested into the decoder, the distribution of X|zi can be obtained after fitting µ′i and σ′i

2.

pθ(X|zi) = N
(

X|µ′i(zi; θ), σ′2i (zi; θ) ∗ I
)

(1)

By taking into account that z ∼ N(0, I), Equation (2) can be obtained, where m
represents the hyper-parameter within our VAE model.

pθ(X) =
∫

z
pθ(X|z)p(z)dz ≈ 1

m

m

∑
j=1

pθ(X|zj) (2)

Then, the Maximum Likelihood Estimation (MLE) is applied to estimate θ based on
the observed or inputted dataset X. The detailed formulation is as shown in Equation (3).

θ∗ = argminθ −
n

∑
i=1

log pθ(xi) = argminθ −
n

∑
i=1

ln

(
1
m

m

∑
j=1

pθ

(
X|zj

))
(3)

Generally speaking, the dimension of X is very large, while even after the dimension-
ality reduction process, the dimension of z is not extremely small. Thus, a sufficiently large
amount of samples zi have to be considered for achieving an accurate estimate of pθ(X).
To cope with this, the posterior distribution pθ(z|xi) has to be introduced into the encoder.
Equation (4) shows how the Bayes’ formula can be applied into computing pθ(z|xi). The
procedures here are designed and formulated with reference to the ideas proposed in [53].

pθ(z|xi) =
pθ(xi|z)p(z)

pθ(xi)
=

pθ(xi|z)p(z)∫
ẑ pθ(xi

∣∣ẑ)p(ẑ)dẑ
(4)

Next, the AutoEconding Variational Bayesian (AEVB) algorithm is applied to optimize
the parametrized encoder and θ. Denote qφ(z|xi) as the approximate posterior distribution
of the encoder (with parameter φ), if qφ(z|xi) ∼ pθ(z|xi), the encoder can be adopted to
obtain the probabilistic distribution of z|xi [35]. Since pθ(X|z) and p(z) are of multivariate
Gaussian distributions, so is pθ(z|xi). As a result, it suffices to acquire outputs of µ and
σ2 from the encoder to outline the posterior of the generative model. For any sample xi,
qφ(z|xi) should satisfy the distribution as shown in Equation (5).

qφ(z|xi) = N(z|µ(xi; φ), σ2(xi; φ) ∗ I) (5)

3.3. Steps of the VAE Model

Based on the methods reviewed and introduced in Section 3.2, the actual steps of the
VAE model in this study are outlined as follows (Steps 1–4):

Step 1: The encoder was assigned a data point/sample xi, and parameters of qφ(z|xi)
that the latent variable z obeys were obtained from neural network approaches. Since this
posterior distribution is of an isotropic Gaussian distribution, it suffices to find out the
parameters µi and σ2

i of the Gaussian distribution that z|xi obeys. As an example, xi here
may represent some images of orange cats.
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Step 2: Based on the parameters µi and σ2
i , a sample zi from the distribution was

obtained, which is considered a similar type of sample as xi. As an example, zi represents
all cats that are orange in color.

Step 3: Then, the decoder proceeded to fit the likelihood distribution pθ(X|zi), i.e.,
when zi was ingested into the decoder, the parameters of the distribution that X|zi obeys
could be achieved. Since the likelihood would also obey an isotropic Gaussian distribution,
we can denote the output parameters as µi

′ and σ2
i ′. As an example, pθ(X|zi) represents a

distribution of images of orange cats.
Step 4: After the statistical parameters of the distribution X|zi were acquired, a se-

quence of data points
{

x̃i
′} was obtained via sampling. Nevertheless, most people use µi

′

as an alternative representation of
{

x̃i
′}. An example here is to sample a new orange cat

image from a particular distribution of orange cats.
In addition, it was also widely recognized that pθ(X|zi) is an isotropic multivariate

Gaussian distribution with fixed variance, which could be mathematically expressed as in
Equation (6), where σ′2 is considered a hyper-parameter.

pθ(X|zi) = N
(

X|µ′i(zi; θ), σ′
2 ∗ I

)
(6)

The overall graphical structure of the VAE model is as shown in Figure 5.
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3.4. Evidence Lower Bound (ELBO) of the VAE Model

After fixing the structure of the VAE model for handling datasets in Section 2, an
effective loss function for estimating the information loss during model construction process
was established. Following the idea of MLE and the application of variational inference,
the likelihood function ln pθ(X) can be expressed as in Equation (7), which is bounded
below by l

(
pθ , qφ

)
. This lower bound is called the “Evidence Lower Bound (ELBO)”.

ln pθ(X) =
∫

z qφ(z|X) ln pθ(X)dz =
∫

z qφ(z|X) ln pθ(X,z)
pθ(z|X)

dz

=
∫

z qφ(z|X) ln pθ(X,z)
qφ(z|X)

dz +
∫

z qφ(z|X) ln qφ(z|X)

pθ(z|X)
dz

(7)

Here, the first integral of the last expression in Equation (7) is denoted as l
(

pθ , qφ

)
,

while the second integral is called the KL divergence (also known as relative entropy in infor-
mation theory) and is denoted by DKL

(
qφ, pθ

)
. Since KL divergence is always non-negative,

l
(

pθ , qφ

)
is considered the lower bound of ln pθ(X). Thus, we have Equation (8) below.

l
(

pθ , qφ

)
= ln pθ(X)− DKL

(
qφ, pθ

)
(8)

That is, to maximize l
(

pθ , qφ

)
is equivalent to maximize ln pθ(X) and to minimize

DKL
(
qφ, pθ

)
. To minimize DKL

(
qφ, pθ

)
, we further assume that the approximate posterior

distribution qφ(z|xi) converges to the posterior distribution pθ(z|xi), which is valid because
the encoder should only output meaningful distributions for further retrieval and signal
recovery in practical implementations.
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Expanding l
(

pθ , qφ

)
as shown in Equation (9), we have the following:

l
(

pθ , qφ

)
=
∫

z qφ(z|X) ln pθ(X,z)
qφ(z|X)

dz

=
∫

z qφ(z|X) ln p(z)
qφ(z|X)

dz +
∫

z qφ(z|X) ln pθ(X|z)dz
(9)

Again, the two terms in the last step of Equation (9) have their own physical meanings
and implications, where the first integral represents the “latent loss” and is denoted by
−DKL

(
qφ, p

)
; while the second integral is known as the “reconstruction loss” and is

denoted by the expectation quantity Eqφ [ln pθ(X|z)].
Based on our assumption of the VAE model, qφ(z|X) and p(z) both follow Gaussian

distribution; therefore, the analytical solution of DKL
(
qφ, p

)
can be obtained as follows:

DKL
(

N
(
µ, σ2)N(0, 1)

)
=
∫
z

1√
2πσ2 exp

(
− (z−µ)2

2σ2

)
ln

1√
2πσ2

exp
(
− (z−µ)2

2σ2

)
1√
2π

exp
(
− z2

2

) dz

= −
∫

z
(z−µ)2

2σ2 N
(
µ, σ2)dz +

∫
z

z2

2 N
(
µ, σ2)dz−

∫
z ln σN

(
µ, σ2)dz

= −E[(z−µ)2]
2σ2 +

E[z2]
2 − ln σ = 1

2
(
−1 + σ2 + µ2 − ln

(
σ2))

(10)

Here, DKL
(

N
(
µ, σ2)N(0, 1)

)
represents the relative entropy from N(0, 1) to N

(
µ, σ2)

for these two probability distributions defined on the same measurable sample space.
As for the second term, multiple zi’s from qφ(z|X) are sampled to approximate the

term Eqφ [ln pθ(X
∣∣∣∣z)] ≈ 1

m

m
∑

i=1
ln pθ(X|zi) , where

zi ∼ qφ(z|xi) = N
(

z|µ(xi; φ), σ2(xi; φ) ∗ I
)

Suppose the dimension of every data point xi is K, we can expand ln pθ(X|zi) as
shown in Equation (11) below.

ln pθ(X|zi) = ln
exp

(
− 1

2 (X−µ′)TΣ′−1(X−µ′)
)

√
(2π)K |Σ′|

= − 1
2 (X− µ′)TΣ′−1(X− µ′)− ln

√
(2π)K| Σ ′|

= − 1
2

K
∑

j=1

(X(j)−µ(j) ′)
2

σ(j) ′ − ln

√
(2π)K K

∏
j=1

σ(j)′

(11)

3.5. General Loss Function of the VAE Model

Based on the parameters introduced in Section 3.4, the loss function L in Equation (12)
should be minimized during the machine learning and model training processes:

L = − 1
n

n

∑
i=1

l
(

pθ , qφ

)
=

1
n

n

∑
i=1

DKL
(
qφ, pθ

)
− 1

nm

n

∑
i=1

m

∑
j=1

ln pθ(xi|zj) (12)

In the formula, zj’s are actually sampled from qφ(z|xi), however, only one such zj is
needed empirically, therefore, we simply consider the case of m = 1, thus Equation (12) can
be simplified as Equation (13).

L = 1
n

n
∑

i=1
DKL

(
qφ, pθ

)
− 1

n

n
∑

i=1
ln pθ(xi|zi)

where


∑n

i=1 DKL
(
qφ, pθ

)
= ∑n

i=1 ∑d
j=1

1
2

(
−1 + σ

(j)2

i + µ
(j)2

i − ln σ
(j)2

i

)

∑n
i=1 ln pθ(xi|zi) = ∑n

i=1

− 1
2 ∑K

j=1

(
x(j)

i −µ
(j)′
i

)2

σ
(j)′
i

− ln

√
(2π)K ∏K

j=1 σ
(j)′

i


(13)
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In our study, by considering that pθ(X|zi) is an isotropic multivariate Gaussian dis-
tribution with fixed variance, it is reasonable to set σ′2 as a K-dimensional vector, with
all elements being 0.5. With that, the corresponding loss function can be expressed as in
Equation (14).

L =
1
n

n

∑
i=1

d

∑
j=1

1
2
(−1 + σ

(j)2

i + µ
(j)2

i − ln σ
(j)2

i ) +
1
n

n

∑
i=1
||xi − µ′2i || (14)

Here, xi represents the ith sample, which acts as the input of the encoder; µi and σ2
i

are the outputs of the encoder, which act as the parameters of the distribution of z|xi; zi is
sampled from z|xi and acts as the input of the decoder; and µ′i is the output of the decoder,
which precisely represents the ultimately generated data point x̃i.

3.6. Loss Function of the VAE Model in Clustering

As aforementioned, the KL-divergence for qφ and p is defined as DKL
(
qφ, p

)
=∫

z qφ(z|X) ln p(z)
qφ(z|X)

dz. Such an expression is only valid when we have the assumptions

that q(z) follows Gaussian distribution, and both p(z|X) and q(X|z) follow conditional
Gaussian distributions. If all these hold, the loss of the ordinary VAE model can be obtained
by a series of substitutions.

Nevertheless, in the case of data clustering, the hidden variables may not always be
continuous variables. Thus, we set the latent variable as (z, y), where z is a continuous
variable that represents a coding vector, and y is a discrete variable that represents the
category. After updating the latent variable, the resulting KL-divergence is as shown in
Equation (15), and such an expression is applicable for clustering within the VAE model of
this study.

DKL
(
qφ(x, z, y), p(x, z, y)

)
=
∫

z
qφ(z, y|X) ln

p(z, y)
qφ(z, y|X)

dz (15)

In practice,

qφ(z, y|x) = qφ(y|z)qφ(z|X) ; p(z, y) = p(z|y)p(y) (16)

Based on this, Equation (15) can be re-written as Equation (17), which can essentially
obtain the specific loss function of data clustering by following the procedures outlined in
preceding sub-sections.

DKL
(
qφ(x, z, y), p(x, z, y)

)
=
∫

z
qφ(y|z)qφ(z|X) ln

p(z|y)p(y)
qφ(y|z)qφ(z|X)

dz (17)

Equation (17) is also applicable for describing both encoding and decoding procedures.
First, a data point or dataset X is sampled, which represents an image formed by the original
data, then q(z|X) is applied to obtain the encoding characteristic z, followed by the usage
of the cluster qφ(y|z) that classifies the encoded information or attributes. Next, a category
y is selected from the distribution p(y), and a random hidden variable z is selected from
the distribution p(z|y). Finally, the decoding process can generate new images accordingly.
Through these theoretical procedures, images with specific class labels and of minimized
loss can be generated in a systematic manner.

3.7. Statistical Metrics and Spatial Assessment

After the VAE model was applied to different case studies, resulting graphical outputs
were generated. We first referred to the zoom-in version of these outputs and observed
its clarity and features, especially when a game figure or specified character has to be
generated. This is considered a type of spatial assessment. As for statistical assessments,
we collected and summarized different numerical quantities, including the number of
epochs, average loss of information during the image-generation process, the size of input
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datasets, the scaling factor imposed in the preprocessing stage, and the time consumed for
the entire VAE modeling and retrieval process. Then, for attributes that seem to be linearly
related, the least-square fitting approach was adopted to find out the best-fit line that
describes the relationship between the two concerned quantities. The resulting coefficient
of determination (R2) is a statistical parameter that ensures the order of accuracy of such a
least-squared fit. Such an approach was implemented in statistical analyses of Case Study 1,
where the linear fit was applied in investigating the relationship between time consumed
with the number of epochs and size of input dataset respectively, as well as the amount of
information loss with the choice of scaling factor.

As for numerical quantities that were not linearly related, we connected every two
neighboring data points and observed the resulting statistical trends (if any). If possible, the
convergence of such a statistical curve will also be our focus, for example, the convergence
of average information loss (Case Study 1) and average recognition accuracy (Case Study 3)
as the number of epochs increased. These threshold values could be particularly useful
for future game designers to determine the optimal settings before model simulations
are conducted.

4. Numerical Experiments and Results
4.1. Case Study 1: Generation of Video Game Maps

The Arknights game maps were downloaded from [42] and were preprocessed as
in Section 3.1, where a scaling factor of 0.2 was adopted. Further, the number of epochs
within the VAE model was pre-set to be 50, which means that each sample in the training
dataset would have 50 times to update its internal model parameters. The number “50”
was selected to ensure that the error from the model was sufficiently minimized, but at
the same time ensuring the affordability of our computing platform [54]. This number of
epochs in testing the effectiveness of a model had been adopted in many studies, such
as [55,56], for practical implementations, for example, forecasting power demand and the
smart utilization of power grids, and the classification of coronavirus. The VAE-based
outputs are as shown in Figures 6 and 7, where Figure 6 shows two outputs obtained after
the completion of model training within the VAE architecture and that after the mixing
process was conducted; while Figure 7 shows the detailed output game map obtained after
several original images were mixed together.
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Figure 7. The zoom-in version of an output game map of Arknights after the mixing of several
processed images in the VAE model.

As observed from Figure 6, the images generated by the VAE model could retain the
characteristics and features of the original image, and a new image could be effectively
generated by mixing several original raw images from [42]. The mixing process was feasible
(as shown on Figure 6b). However, when zooming in the output and attempting to visualize
the fine details of an image, it was noticed that the sharpness of the output image was rather
insufficient, mainly due to the noise components induced during the training process. It
is suggested to apply a suitable Laplacian sharpening filter or Sobel gradient for spatial
enhancement, so that the edges of figures within the image can become more obvious [57].
Nevertheless, the new output images from the VAE model can still serve as good references
for game designers when creating new game levels, or when adding in new characters and
spatial features into particular video frames.

After obtaining the output images, numerical experiments were conducted using the
same dataset for exploring the statistical properties of the VAE model. First, Figure 8 shows
one of the most well-known learning curves, with the aim of illustrating the relationship
between average loss of the ten image-generation process and the number of epochs
within the machine learning stage. In general, the average loss of the model decreased as
the number of epochs increased, but the rate of decrease of average loss was gradually
decreasing with the increase in epochs. Exact statistical figures of average loss within
different number of epochs (ranging from 1 to 16, inclusive) are provided in Table 2. The
average loss when using 1 epoch was 1259.3, which then decreased to 1122.4 and 1025.6
when 2 and 10 epochs were respectively adopted. Continuing such process, it was observed
that at the 21st epoch, the average loss would decrease to 999.0; while after 50 epochs, the
resulting average loss would only be 968.24. Overall, both graphical and statistical results
have shown that the VAE model is fit to the training dataset extracted from the game map
in [42], and 50 epochs is a reasonable number of epochs to be adopted in the VAE model.
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Table 2. Statistical figures of average loss at different number of epochs within the VAE model.

Number of Epochs Average Loss Decrease in Average Loss
with 1 More Epoch

1 1259.3 Not applicable
2 1122.4 136.9
3 1091.5 30.9
4 1072.9 18.6
5 1059.7 13.2
6 1049.2 10.5
7 1041.1 6.9
8 1034.8 6.3
9 1029.8 5.0
10 1025.6 4.2
11 1021.9 3.7
12 1018.7 3.2
13 1015.5 3.2
14 1013.1 2.4
15 1010.7 2.4
16 1008.4 2.3

Apart from investigating the average loss figures, the amount of time consumed for
processing the VAE model is also crucial if one wants to extend the current VAE formulation
to handle massive, big datasets in the future. Figure 9a shows the time consumed for
training the VAE model against the number of epochs used. The “time” quantity was
obtained by taking the average of 10 times of training, with the use of the same dataset
and other external parameters for training purposes. The graphical result shows that by
fixing all other conditions, the time consumed for VAE model training was linearly related
to the number of epochs imposed. For evaluating the time complexity of the VAE model,
the number of attributes (i.e., the size of the ingested dataset) was resampled, and the
corresponding dataset was ingested into the VAE model, with 50 epochs used during the
training process. Then, the time taken for VAE model training was calculated. Figure 9b
shows that the R2 value of such linear fit between these two quantities is 0.979, which
implicates that the time consumed for VAE model training is very likely to be linearly
related to data size, thus, the time complexity of the VAE model adopted is of O(n).
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Figure 9. (a) Time consumed for VAE model training (in s) versus the number of epochs adopted in
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Further, a scaling factor of 0.2 was adopted in this case study. In order to validate
the use of such a scaling factor in the VAE formulation, we varied the scaling factor from
0.15 to 0.5 (which was affordable based on the computing platform). For each scaling
factor, 10 trial experiments via the application of the VAE model were conducted, and the
corresponding time consumed and average loss values were recorded. Figure 10 shows the
respective relationship between time consumed for ten image-generation process/average
loss figures with respect to the use of different scaling factors.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24 
 

 

formulation to handle massive, big datasets in the future. Figure 9(a) shows the time 
consumed for training the VAE model against the number of epochs used. The “time” 
quantity was obtained by taking the average of 10 times of training, with the use of the 
same dataset and other external parameters for training purposes. The graphical result 
shows that by fixing all other conditions, the time consumed for VAE model training was 
linearly related to the number of epochs imposed. For evaluating the time complexity of 
the VAE model, the number of attributes (i.e., the size of the ingested dataset) was 
resampled, and the corresponding dataset was ingested into the VAE model, with 50 
epochs used during the training process. Then, the time taken for VAE model training was 
calculated. Figure 9(b) shows that the R2 value of such linear fit between these two 
quantities is 0.979, which implicates that the time consumed for VAE model training is 
very likely to be linearly related to data size, thus, the time complexity of the VAE model 
adopted is of O(n). 

 
(a) (b) 

Figure 9. (a) Time consumed for VAE model training (in s) versus the number of epochs adopted in 
the model; (b) Time consumed for VAE model training (in s) versus the size of dataset ingested into 
the model. 

Further, a scaling factor of 0.2 was adopted in this case study. In order to validate the 
use of such a scaling factor in the VAE formulation, we varied the scaling factor from 0.15 
to 0.5 (which was affordable based on the computing platform). For each scaling factor, 10 
trial experiments via the application of the VAE model were conducted, and the 
corresponding time consumed and average loss values were recorded. Figure 10 shows 
the respective relationship between time consumed for ten image-generation process / 
average loss figures with respect to the use of different scaling factors.  

  
(a) (b) 

Figure 10. (a) Time consumed for ten image-generation process (in s) versus scaling factor imposed
in the model; (b) Average loss of the ten image-generation process versus scaling factor imposed in
the model.

As observed, the time consumption was not linearly related to the scaling factor
imposed in the VAE model. Instead, the plot shown almost converges to a quadratic or
exponential relationship. Nevertheless, as the scaling factor increased from 0.2 to 0.3, the
time consumed would exceed double the original time; while when a scaling factor of 0.4
was applied to the VAE model, it took 75 s for processing the VAE model and generating
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the eventual image. In this case study, there are only limited number of game maps, and the
data size of each raw game map is 500× 500. Therefore, if this model is extended to handle
a large-scale dataset, say those originated from satellite observations [58,59], then it would
likely take days or even months for data processing; the same will take place when we
extend the VAE algorithm to handle multi-dimensional datasets. Combining this concept
with the amount of loss as shown in Figure 10b, a factor of 0.2 was adopted, because a
reasonably low average loss was induced by the VAE model, and the computation time
for the entire process was not exceptionally long even when dealing with input datasets
of larger size. Further, from Figure 10b, the R2 value of the resulting linear fit is 0.965;
therefore, there is a high possibility that the average loss of the VAE model was linearly
related to the scaling factor imposed.

Despite obtaining all these meaningful conclusions from the correlations between
different statistical quantities, we cannot conclude that when a smaller scaling factor is
adopted, the model output must be better and of higher clarity. This is because the loss
function derived in Section 3.5 only estimates the information loss when comparing the
input and output datasets after both encoding and decoding were conducted, but may
have ignored the information loss during the preprocessing stage. In actual industrial
applications, the information loss of all aspects should be considered, so that an optimal
scaling factor can be selected to balance the quality of outputs and model training efficiency.

4.2. Case Study 2: Generating Anime Avatars via the VAE Model

VAE model is not only useful and applicable in generating a mixture of images or
combined game levels from an input dataset, but can also be used to obtain new outputs: If
we consider a set of images as the input, after encoding and decoding processes, a totally
brand-new image can be created as the eventual output. In this case study, a dataset that
consists of 60,000 different anime-girls (an example is shown in Figure 3) was ingested into
the VAE model, and the two possible outputs of the model are as shown in Figure 11.
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Figure 11. Two sample output images obtained from the VAE model based on the anime-girl dataset
(Section 2.2.2).

In principle, the creation of new figures or images is not only limited to grayscale
representation, but can also be feasible when colored images are desired. The VAE model
can generate different new images simply by altering the training dataset, and our purpose
within this case study is merely to illustrate the possibility of using the VAE model for
generating new datasets or frames. In practice, when colored images are of interests, the
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computer memory needed will almost be tripled, because the RGB color space requires a
3-dimensional array to record the pixel values (i.e., intensities) of all three different colors.

4.3. Case Study 3: Application of VAE Model to Data Clustering

The VAE model is considered both a generative model and a feature extractor, be-
cause it consists of an encoder and a decoder (which is treated as a generator), and the
distribution of the latent variable can approximately be encoded as a standard normal
distribution. Therefore, the effectiveness of the VAE model in performing data clustering
was tested, because in principle, the feature extractor could conduct the task without any
external supervision.

In this study, the MINST dataset of handwritten numbers (described in Section 2.2.3)
was used to illustrate the applicability of the VAE model in data clustering. Figure 12a
shows the sampled numbers “6, 2, 7”, while Figure 12b showcases the corresponding
numbers generated by the VAE model after data clustering was applied to all numbers
shown in Figure 12a. Obviously, the VAE model had reasonably good performance in
terms of data clustering, and was capable of classifying different data types without any
supervision, then generating appropriate images that correspond to the clustered datasets.
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from the VAE model.

Within this case study, 50 epochs was adopted, and the averaged recognition accuracy
based on conducting 10 similar experiments via the VAE model was 85.4%. The corre-
sponding training accuracy was around 83.7%. Table 3 shows the average accuracy of data
clustering when different numbers of epochs were applied.
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Table 3. Relationship between average accuracy (%) in data clustering and the number of epochs
used in the VAE model.

Number of Epochs Average Accuracy

3 29.7
5 57.2
8 69.7
10 69.9
20 74.3
30 80.7
40 83.7
50 85.4

When the number of epochs increased from 3 to 5, significant improvement with
respect to the performance of data clustering was achieved, where the average accuracy
increased abruptly from 29.7% to 57.2%. Figure 13 displays the associated graphical
relationship between these two quantities, which verifies that (1) the average recognition
accuracy was enhanced as the number of epochs increased; and (2) as the number of
epochs increased, the increment in average accuracy decreased, and the average accuracy
converged to a threshold bounded above by 0.9 in this case study.
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In actual gameplay, game designers can make use of the VAE model to recognize
specific patterns of images or video frames, for example, the automatic recognition of
sketches from game players. On top, the VAE model is also capable of performing data
augmentation, which is particularly useful for puzzle games, where players are required
to “draw” an object or “write down” an answer. Once the pattern resembles the model
answer, the game will treat the player as “correct” and give out an award, or upgrade the
player to more advanced stages of the game. The VAE model can be fully utilized to serve
related purposes, for example, pattern recognition and the clustering of objects or datasets.

4.4. Insights from Results of Case Studies & Practical Implementation

Figure 8 and Table 2 in Section 4.1 associate the average loss figure induced with
the number of epochs. The data were obtained based on a scaling factor of 0.2, and the
number of epochs adopted in the VAE model (for training and prediction, etc.) was 50.
It was observed that when formulating new game levels or creating new frames, the
average loss figure would have become steady and eventually converged to a limiting
value (around 950). This indicates that the use of these parameters in VAE modeling is
generally acceptable. Nevertheless, as shown in Figure 9a, the time consumed for VAE
model training was linearly related to the number of epochs. This means that a larger
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number of epochs is feasible in real-life implementation if one can wait for a longer period
of time. In terms of data clustering in Section 4.3, the average accuracy had a sharp increase
when the number of epochs increased from 3 to 30 (from around 0.3 to 0.8), but then, the
increasing trend became steadier when the number of epochs increased from 30 to 50, and
the average accuracy eventually converged to around 0.85 (as shown in Figure 13). This
indicates that 50 epochs or above would be practical enough for image generation, creation
of new game levels, and even data clustering.

As for the choice of scaling factor, as shown in Figure 10a, when it ranged from 0.15
to around 0.4, the time taken for new image generation was increasing at an almost linear
trend. However, when the scaling factor exceeded 0.4, an excessive increment of time
would have taken place. Further, from Figure 10b, when the scaling factor was 0.18 or
0.2, the average loss of information or input attributes would be similar, however, when
the scaling factor increased to 0.3, the average loss was tripled. Such an experimental
testing could explain why the scaling factor of 0.2 should be adopted when designing
new game levels, and such a factor must not exceed 0.4 in all practical implementations
when the VAE model is going to be involved in model development or training processes.
Regarding the model explainability of VAE, since all images or video frames that we
considered were obtained from real observations of corresponding games, corresponding
sub-centroids could be summarized and treated as actual training images within the
model, then these data points or features could also be of practical usage during feature
classification. This “ad-hoc explainability” concept was validated in the recently established
deep nearest centroids (DNCs) model [60], where human-understandable explanations
could be effectively derived. This was actually quite similar in our VAE model, where the
sub-centroids of each image pixel could also be computed and identified.

5. Discussions and Limitations
5.1. Deficiencies of a Low-Dimensional Manifold & Tokenization

Although the applicability of the VAE model in modern game design, pattern recog-
nition, and data clustering was clearly illustrated in this study, there is some room for
improvements based on the graphical results obtained from some of our case studies. In
particular, in the case study of Arknights, when zooming Figure 7 into details, the image
quality at specific pixels or regions could be dissatisfactory. This is because the input
image consisted of some discrete pixels or point clouds in a high-dimensional space, and
VAE attempted to first compress them into a low-dimensional continuous space (which
was denoted as a “latent space”), then restore the original space via the decoding pro-
cess. It was observed that VAE could work very well when the input dataset is actually a
low-dimensional manifold embedded in a higher-dimensional space [61], however, some
graphics, such as those in Arknights, are obviously not a low-dimensional manifold itself
in nature. This has led to some potential errors within the VAE-based retrieval process.
Further, some features of images, such as texture, are relatively hard to be described with
a low data volume, but texture can indeed play an important role in computer vision
applications, for example, surface detection and medical imaging [62]. Therefore, to en-
hance the quality of outputs from the VAE model in these industrial applications, other
deep-learning networks and transform-based methods can be adopted to distinguish these
features at an early stage, either via the use of a smooth function for transformation, or
extracting the concerned features in another space, with the aid of wavelet transforms [63],
ridgelet transform [64], or a Gabor filter [65]. Then, the corresponding attribute(s) can be
combined with the latent space vector in VAE to produce better numerical results, and the
information lost during encoding and decoding processes of VAE can also be minimized.
For label distribution construction, the spherical Fibonacci lattice algorithm proposed by
González [66] can be used for point sampling and obtaining a distribution that possesses
unbiased expectation. Afterwards, the loss function introduced in [67] can be introduced
into the modeling framework, with an attempt to understand the corresponding parameters
of each input sample.
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Further, in order to filter off the invalid attributes and simplify the useful information
from the original input dataset, instead of generating low-dimensional images in all sce-
narios, researchers have proposed dividing a particular game map into the combination of
different map elements or components, then replacing these components by some tokens.
This process is known as “tokenization”, as described in [68]. Much simplified new images
that retain all useful attributes could be constructed, then the prescribed machine learning
or VAE model can be used to train these images and produce combined outputs. In the
future, this technique can be incorporated into the existing VAE model for enhancing image
resolution and producing images with better quality, especially for images similar to our
Case Study 1.

5.2. Image Compression, Clarity of Outputs & Model Training

In the VAE model, a scaling factor has to be applied to raw datasets during the
data preprocessing stage. If one excessively compresses the original image, much useful
information will be lost, and fine details cannot be effectively kept during the model
training stage, which could result in outputs of insufficient clarity. On the other hand, if the
compression was not conducted, huge computing resources would be occupied especially
when we are handling large-scale datasets, for example, the database from ImageNet [69]
or remotely sensed imageries for object detection or environmental monitoring [70,71]. In
most desktops, the memory is only of 4–48 G [72]; therefore, memory overflow will easily
take place, thus limiting the overall efficiency and reliability of a model. The time consumed
for model training and image retrieval will be excessively long as well. On top of that, in
terms of model training, it will take many rounds of data analytic experiments in order to
optimize the hyper-parameters of the VAE model, and as a result, increase the overall time
consumed. Therefore, it is of utmost importance to strike a balance between the quality of
outputs and the time consumed for generating the outputs via modeling approaches.

For the purposes of game design and creating new game levels, in order to alleviate
the problem of insufficient clarity caused by the VAE model, and to avoid the occurrence
of “mode collapse” (i.e., only one or several image types will be generated) that often
takes place in traditional GAN models, the combination of VAE and GAN models can be
adopted. The VAE model only consists of one generator, while the GAN model consists
of both a generator and a discriminator. These two “machines” oppose each other, where
the generator is continuously attempting to generate images and frames that can fool the
discriminator; as a result, the probability for a discriminator to make mistakes will increase;
while the discriminator tries its best to distinguish between real and useful data from fake
ones via appropriate neural network mechanisms [73]. As a result, better outputs can be
generated after a series of to and fro opposed checking. For enhancing the clarity of images
in Case Studies 1 and 2 of this paper, we propose adopting the VAE model as the generator
and simultaneously develop a discriminator to supervise the VAE model, i.e., a combined
version of VAE and GAN models is to be established. As a result, the generator of the
VAE-GAN model will consist of the statistical or probabilistic distribution of the original
input dataset, and at the same time, it can effectively reduce the training time throughout
the entire process and minimize the chance of the model suffering from “mode collapse”.

6. Conclusions

In this study, we illustrated the possibility and statistical feasibility of using the
combination of a VAE model and machine learning strategies for modern game design,
with the aid of three case studies arising from different natural scenarios and applications.
The mathematical principles and assumptions of the VAE model, as well as its Evidence
Lower Bound (ELBO), loss function during model construction, and loss function in data
clustering, were first explored and derived. Then, the VAE model was applied to generate
new game maps based on existing maps obtained from Arknights, create and retrieve anime
avatars, and cluster a group of MNIST datasets that consist of numerals. The output images
and datasets could retain and re-combine information from the inputs to a certain extent,
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however, in the case study of Arknights (Case Study 1), there was room for improvements
due to the lack of clarity in terms of the output image, which could essentially represent a
new game level in practice.

Some statistical features of the model and the relationship between different param-
eters were also reviewed from these three case studies, for example, there was a high
possibility that the time complexity of this VAE model is O(n); the loss of the VAE model
decreased as the number of epochs applied increased, but the rate of change of such loss
was also declining in general; and the time consumed for performing the VAE model was
positively and linearly related to the number of epochs. For preventing memory overflow
and saving computing resources, an appropriate scaling factor had been applied to each
input dataset or image at the preprocessing stage. It was found that the time consumed
increased as the scaling factor increased, and it was quite clear that the loss derived from
the loss function was positively and linearly related to this scaling factor.

Despite showing some technical deficiencies in generating new game levels (as re-
viewed in Case Study 1), the VAE model has shown its capability in data clustering. Further,
for image attributes (or data points) with obviously different characteristics or spatial fea-
tures, the VAE model can also successfully distinguish one class from another via the model
training process, then generate images of a specific class. On average, the recognition
accuracy under 50 epochs is 85.4%, which is considered satisfactory.

Generally speaking, the VAE model is most effective in generating images with a spe-
cific graphical pattern, or handling and producing images of low resolution requirements,
for example, clouds, grass and distant views in our nature. It is particularly promising in
terms of clustering and creating new characters within a game.

In view of the technical shortcoming of the current VAE model, we have learnt that
the future enhancement should focus on increasing the resolution of images generated, for
example, via the combination of the VAE model with other machine learning mechanisms,
such as GAN and LSTM, ensuring sufficiency with regard to the amount of information in
the model training set, so that all output images will contain more useful information and
attributes, but at the same time consist of the least amount of noise components. This may
be possible by tracing back to the techniques adopted in data preprocessing stages. This
study has opened a new window for utilizing the strengths of VAE for future game design
missions within the industry, at the same time identifying some potential weaknesses of
VAE and proposing potential ways to remedy these deficiencies in the foreseeable future.
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