
Citation: Mak, H.W.L.; Han, R.; Yin,

H.H.F. Application of Variational

AutoEncoder (VAE) Model and

Image Processing Approaches in

Game Design. Sensors 2023, 23, 3457.

https://doi.org/10.3390/s23073457

Academic Editor: Christoph M.

Friedrich

Received: 28 February 2023

Revised: 15 March 2023

Accepted: 23 March 2023

Published: 25 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Application of Variational AutoEncoder (VAE) Model and
Image Processing Approaches in Game Design
Hugo Wai Leung Mak 1,2,* , Runze Han 2 and Hoover H. F. Yin 3,4,*

1 Department of Mathematics, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong, China

2 Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay,
Kowloon, Hong Kong, China

3 Department of Information Engineering, The Chinese University of Hong Kong, Shatin, New Territories,
Hong Kong, China

4 Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, China

* Correspondence: hwlmak@ust.hk (H.W.L.M.); hfyin@ie.cuhk.edu.hk (H.H.F.Y.)

Abstract: In recent decades, the Variational AutoEncoder (VAE) model has shown good potential
and capability in image generation and dimensionality reduction. The combination of VAE and
various machine learning frameworks has also worked effectively in different daily life applications,
however its possible use and effectiveness in modern game design has seldom been explored nor
assessed. The use of its feature extractor for data clustering has also been minimally discussed in the
literature neither. This study first attempts to explore different mathematical properties of the VAE
model, in particular, the theoretical framework of the encoding and decoding processes, the possible
achievable lower bound and loss functions of different applications; then applies the established
VAE model to generate new game levels based on two well-known game settings; and to validate
the effectiveness of its data clustering mechanism with the aid of the Modified National Institute
of Standards and Technology (MNIST) database. Respective statistical metrics and assessments are
also utilized to evaluate the performance of the proposed VAE model in aforementioned case studies.
Based on the statistical and graphical results, several potential deficiencies, for example, difficulties in
handling high-dimensional and vast datasets, as well as insufficient clarity of outputs are discussed;
then measures of future enhancement, such as tokenization and the combination of VAE and GAN
models, are also outlined. Hopefully, this can ultimately maximize the strengths and advantages of
VAE for future game design tasks and relevant industrial missions.

Keywords: game design; variational autoencoder (VAE); image and video generation; Bayesian
algorithm; loss function; data clustering; data and image analytics; MNIST database; generator
and discriminator

1. Introduction

In the 21st century, enormous mathematical and data analytic techniques and algo-
rithms have been adopted in designing new video games and frames, for the purposes of
enhancing teaching and learning processes in a virtual environment, pushing the innova-
tion and specialty of gameplay mechanics to its furthest extent, and visualizing game scenes
in a human-crafted, realistic and dynamic manner [1–3]. The concerned subjects include
the investigation of 3-dimensional geometric properties of characters within a particular
frame [4], the capturing of geometric transformations and motion on a real-time basis [5],
and the use of simulation games for analyzing and building up complex systems that could
better reflect real world conditions [6]. Today, credited with the increment of computing
power and resources, the enhancement of data storage capability, and the massive data
volume for simultaneous processing [3], the advancement in machine learning (ML) and

Sensors 2023, 23, 3457. https://doi.org/10.3390/s23073457 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-7033-6218
https://orcid.org/0000-0002-0268-0500
https://doi.org/10.3390/s23073457
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073457?type=check_update&version=2

Sensors 2023, 23, 3457 2 of 24

artificial intelligence (AI) approaches are taking place and being widely adopted in different
practical disciplines, especially those related to image processing and computer vision, as
well as the emergence of generative models. This new digital era has also promoted the
use of these approaches in handling creative and artistic tasks, for example, a conditional
adversarial neural network has been applied for generating city maps from sketch [7]; a
Generative Adversarial Network (GAN) model was established to generate images based
on the simple sentence description of an object or a specific scenario [8]; the Game Design
via Creative Machine Learning (GDCML) mechanism was utilized for setting up an inter-
face with game modules and informing new systems [9]. In view of all these successes,
achieving “computational creativity” in the perspective of video game design has now
become a hotspot and new focus; while game companies and developers are seeking ways
to adopt ML and AI algorithms, so that the overall production cost of a game or related
products can be reduced, at the same time, brand new working procedures of the game can
also be implemented in the long run. A research report published by Netease has reviewed
that the incorporation of ML models into game design could reduce the development costs
by millions of Renminbi (RMB) dollars [10].

In the early days of video game development, most games were relatively simple
and “monotonous”, and were conducted via the “third-person shooting” mode, with
the aid of electronic machines. In 1962, Steve Russell and several student hobbyists at
Massachusetts Institute of Technology (MIT) developed the first ever video game in the
world, called Spacewar! [11], and this game was published on the Digital Equipment
Corporation (DEC) platform at a later time. Within the historical development stage,
Spacewar! was considered the first highly influential video game, because it motivated the
advancement of computing resources, reviewed the difficulties in transferring programs
and graphics between computing platforms at different places [11], and stimulated the
development of different game genres. In the early 1970s, the first home video game console
called the “Magnavox Odyssey” and the first arcade video game called the “Computer
Space and Pong” were respectively established. At the earlier stages, despite the effective
integration of technology, creativity and computing resources, there was a lack of uniform
standards for classifying game genres in terms of gameplay, however, games can generally
be categorized as in [12]. Some key examples include (1) Action Games that emphasize
physical challenges, particularly the coordination of hands and eyes; (2) First Person Shooter
Games that include the use of guns and weapons for competition and fighting against each
other from a first-person perspective; (3) Sports and Racing Games, which simulate the
practice of sports or racing originated from real or fantastical environments; (4) Simulation
Games that describe a diverse super-category of video games, so that real world activities
can be effectively simulated and displayed, for example, flight simulation and farming
simulation. With the combination of these genres and capabilities of algorithmic design
and data analytics, the importance and popularity of arcades and consoles had diminished,
and were gradually replaced by games that are compatible with personal computers,
smartphones and mobile devices. Some mainstream game platforms in the 21st century
are as shown in Table 1. Nowadays, most games released are not limited to a particular
genre, for example, “Need for Speed” is considered a Sports and Racing Game, as well as
a Simulation Game [13]; while many games can also be released on multiple platforms,
for example, the “Genshin Impact” is compatible with PC, mobile device, and PlayStation
simultaneously [14].

Apart from categorizing video games based on their genres and compatible platforms,
modern games all consist of three major components, namely (1) the program component;
(2) the gameplay component; and (3) the artistic component. Programs form the basis
of a video game, which determine the basic structure and logic of the game; gameplays
decide how the players and the surrounding environment could interact, via the aspects
of designing background settings, battles, balances and stages of the game itself; artistic
components lay down what the player can visualize and hear during the gameplay, which
can include the design of characters, environmental settings, design of background music

Sensors 2023, 23, 3457 3 of 24

and animations, and the ways of interaction [15]. In particular, when designers attempt
to produce artistic materials that put spice into the attractiveness of the video game, they
may either take reference of real world architectural and parametric settings, or create
objects and environments that may not exist in reality. All these have provided possibilities
for the utilization and application of image generation techniques within game design
processes [16,17].

Table 1. Mainstream game platforms and corresponding compatible device in the 21st century.

Game Platform Company Device

Personal Computer (PC) Microsoft Desktop/laptop computers

Mobile Phone Apple, Google, Samsung etc. Smartphones

Xbox [18] Microsoft Xbox game console

PlayStation (PS) [19] Sony PlayStation 1–5

Switch [20] Nintendo Nintendo 3DS/
Nintendo Switch

Recently, designers and scientists have started exploring how ML and combinatorial
algorithms could play systematic roles in different levels of game design, for example, data
preprocessing, clustering, decoding and encoding, as well as generating attractive and
sustainable image outputs in a specific game [21–24]. In particular, a concept called “game
blending” was adopted by Gow and Coreneli to establish a framework that effectively
produces new games from multiple existing games [25]; while the Long Short-Term Memory
(LSTM) technique has also been applied to blend computer game levels based on Mario
and Kid Icarus, then combine with the Variational AutoEncoder (VAE) model to generate
more controllable game levels [26,27]. In recent years, Generative Adversarial Network
(GAN) models have become popular, and have been incorporated into the framework of
generating game levels and images under specific conditions and settings [28,29]. These
black-box models allow users to design and generate levels in an automatic manner, thus
Schrum et al. [30] utilized such unique features to develop a latent model-based game
designing tool; while Torrado et al. [31] investigated the conditional GAN and established
a new GAN-based architecture called “Conditional Embedding Self-Attention GAN”, then
equipped it with the bootstrapping mechanism for the purpose of generating Role-Playing
Games (RPG) levels. On top of this, GANs have been combined with the transfer learning
method (e.g., WGAN-GP and BigGAN) to generate new game characters [32], and a 2D
game effect sprite generation technique called GESGAN was also established to generate
images of prescribed styles and features with a near real-time status [33]. All these have
shown the capabilities of ML or deep-learning models in generating game levels within
specific set-ups. Nevertheless, it is incredibly hard to obtain a thorough understanding
of the internal structure of ML-based models, as well as the statistical properties behind
the scene. Therefore, it is of utmost importance to develop and explore the use of a
mathematical model that can perform corresponding tasks, i.e., generate new game levels
that are applicable in modern game design and for future extension, and at the same time,
users can acquire a basic understanding of statistical properties of the model, for example,
time complexity, amount of loss during the model training process, and the relationship
between time consumption and size of the input dataset.

In this study, the effectiveness of the Variational AutoEncoder (VAE) model in generat-
ing images within game design was first explored and assessed. It is considered a deep
generative model that consists of a variational autoencoder, which is equipped with a prior
noise distribution. During the model training process, which is usually conducted based on
an Expectation-Maximization meta-algorithm, the encoding distribution was “regularized”,
so that the resulting latent space sufficed to generate new and meaningful datasets. The
detailed mathematical derivation will be discussed in Section 3, and readers can also refer

Sensors 2023, 23, 3457 4 of 24

to [34] for more technical details. The VAE model was first proposed by Kingma and
Welling [35], and has been widely applied in different disciplines, for example, image gener-
ation, data classification and dimensionality reduction [36–38]. In particular, Vuyyuru et al.
constructed a weather prediction model based on the combination of VAE and Multilayer
Perceptrons (MLP) models [39], and Lin et al. attempted to detect the anomaly of office
temperature within a prescribed period via LSTM and VAE models [40]. Furthermore, Bao
et al. had effectively combined the Convolutional Variational Autoencoder (cVAN) with the
GAN model to generate human photos by controlling the gender of required figures [41].
All these case studies have demonstrated the systematic and practical usages of the VAE
model, therefore, we expect that with a suitable data processing mechanism, fine-tuning of
model parameters, and minimization of the loss function during training, selected game
functions or level maps can be generated, as a result provide assistance to game developers
in the long run, in terms of auxiliary development, designing new games, and enhancing
the speed and time complexity of image generation within specific settings.

Section 2 includes the flowchart of how the VAE model was applied in this study,
and the description of datasets used in the three case studies. Then, the mathematical
theories and statistical properties of the VAE model are outlined in Section 3, and Section 4
showcases some numerical experiments conducted and their corresponding statistical
analyses. Section 5 discusses the deficiencies and limitations of the current study, as well as
some potential future research directions; then, a short conclusion is provided in Section 6.

2. Flowchart and Data Sources
2.1. Overview of This Study

Figure 1 shows an overall flowchart of the preprocessing and construction of the VAE
model adopted in this study. After raw data or attributes were obtained from games or
available databases, they were preprocessed whenever necessary. Upon the application of
specific scaling factors within each dimension, these processed datasets could be ingested
into a machine, where a sufficient number of datasets was used for model training. In
particular, the variational autoencoder within the VAE model was constructed, and the
VAE algorithm was iterated such that the optimization of lower bound was achieved under
some constraints, which might depend on the set-up of the corresponding game and/or
application. Such lower bound was called the “Evidence lower bound (ELBO)”. Further,
the loss function during machine learning processes was also minimized, with the aim of
estimating the amount of information that has been lost during model training processes.
For data clustering applications, an alternative form of the loss function was deemed
more appropriate than the aforementioned “loss” during training. After fine-tuning all
parameters of such a statistical model, the optimized VAE model was used to obtain some
graphical outputs after a series of geometric transformations. In this study, we focus on
analyzing the relationship between average loss figures with the number of epochs; the time
complexity with the size of input datasets; and the effects of scaling factors, etc. Respective
statistical figures are presented either in graphical or tabular formats, as in Section 4.

2.2. Data Sources and Description

Within this study, three different datasets have been used for model training and
assessing the effectiveness of the developed VAE model. Each of these datasets has its
significance, namely, (1) provides good references for game designers; (2) consists of a
“humanistic” character equipped with motion; and (3) is practical for image processing
and/or data clustering.

Sensors 2023, 23, 3457 5 of 24
Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 1. Overall flowchart of this study, from extraction of the original dataset, model construction,
and optimization to statistical analyses. CS: Case Study.

2.2. Data Sources and Description
Within this study, three different datasets have been used for model training and

assessing the effectiveness of the developed VAE model. Each of these datasets has its
significance, namely, (1) provides good references for game designers; (2) consists of a
“humanistic” character equipped with motion; and (3) is practical for image processing
and/or data clustering.

2.2.1. Game Map from Arknights
Arknights is a tower-defense puzzle game developed by Hypergraph [42]. The game

was first published in 2019, and soon became popular and welcomed by many citizens in
mainland China. In this study, we attempted to generate new maps based on existing
game maps extracted from the official site, which could hopefully provide a useful
reference to game designers, especially in updating of the motion and appearance of
characters and surrounding spatial features.

A tool called Unity Hub was adopted to dispatch the original game installation
package obtained from the official website of Arknights. In total, 180 different game maps
were extracted, and Figure 2 shows an example of an original game map image. The size
of the original image here is 500 × 500, with 300 pixels per inch (ppi). Detailed
documentation of Unity Hub can be found in [43].

Figure 2. An example of a game map obtained from Arknights via Unity Hub.

Figure 1. Overall flowchart of this study, from extraction of the original dataset, model construction,
and optimization to statistical analyses. CS: Case Study.

2.2.1. Game Map from Arknights

Arknights is a tower-defense puzzle game developed by Hypergraph [42]. The game
was first published in 2019, and soon became popular and welcomed by many citizens in
mainland China. In this study, we attempted to generate new maps based on existing game
maps extracted from the official site, which could hopefully provide a useful reference to
game designers, especially in updating of the motion and appearance of characters and
surrounding spatial features.

A tool called Unity Hub was adopted to dispatch the original game installation
package obtained from the official website of Arknights. In total, 180 different game maps
were extracted, and Figure 2 shows an example of an original game map image. The size of
the original image here is 500× 500, with 300 pixels per inch (ppi). Detailed documentation
of Unity Hub can be found in [43].

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

Figure 1. Overall flowchart of this study, from extraction of the original dataset, model construction,
and optimization to statistical analyses. CS: Case Study.

2.2. Data Sources and Description
Within this study, three different datasets have been used for model training and

assessing the effectiveness of the developed VAE model. Each of these datasets has its
significance, namely, (1) provides good references for game designers; (2) consists of a
“humanistic” character equipped with motion; and (3) is practical for image processing
and/or data clustering.

2.2.1. Game Map from Arknights
Arknights is a tower-defense puzzle game developed by Hypergraph [42]. The game

was first published in 2019, and soon became popular and welcomed by many citizens in
mainland China. In this study, we attempted to generate new maps based on existing
game maps extracted from the official site, which could hopefully provide a useful
reference to game designers, especially in updating of the motion and appearance of
characters and surrounding spatial features.

A tool called Unity Hub was adopted to dispatch the original game installation
package obtained from the official website of Arknights. In total, 180 different game maps
were extracted, and Figure 2 shows an example of an original game map image. The size
of the original image here is 500 × 500, with 300 pixels per inch (ppi). Detailed
documentation of Unity Hub can be found in [43].

Figure 2. An example of a game map obtained from Arknights via Unity Hub.

Figure 2. An example of a game map obtained from Arknights via Unity Hub.

2.2.2. Characters from Konachan

The second type of dataset(s) adopted in this study was obtained from the Konachan
site, which is an image board site that consists of more than 60,000 different anime or
manga wallpapers, as of February 2023 [44]. Figure 3 shows an example of an anime avatar
extracted from this official website. The size of this image is 512 × 512 digits, with 300 ppi.

Sensors 2023, 23, 3457 6 of 24

Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

2.2.2. Characters from Konachan
The second type of dataset(s) adopted in this study was obtained from the Konachan

site, which is an image board site that consists of more than 60,000 different anime or
manga wallpapers, as of February 2023 [44]. Figure 3 shows an example of an anime avatar
extracted from this official website. The size of this image is 512 × 512 digits, with 300 ppi.

Figure 3. An example of the anime avatar image, from [44].

2.2.3. Modified National Institute of Standards and Technology (MNIST) Database
The third type of dataset was extracted from the MNIST database, which was created

in 1998. The MNIST database contains binary images of handwritten digits and is divided
into the training set (Special Database 3) and test set (Special Database 1). The two sets
were collected from Census Bureau employees and high school students respectively [45].
This vast database of handwritten digits has been shown useful in pattern recognition and
training various image processing systems for classification, with the aid of convolution
neural network techniques [46,47]. Original images from MNIST were first being size-
normalized, with the corresponding aspect ratio remaining unchanged, so that they could
fit into a 20 × 20 pixel box; then, the center of mass of all pixels was computed, so that
these processed MNIST images could be positioned at the centre of a “28 × 28 pixel
grayscale image” [45]. The database that we adopted in this study consists of 60,000 such
grayscale images, each of which consists of 10 digits (from 0 to 9, inclusive), along with a
test set that consists of 10,000 images [48]. In this context, the MNIST database was selected
to test and validate the effects of clustering, because every data entry has already been
pre-labeled with classification labels.

3. Methodologies: Steps of the VAE Model
The important steps and statistical measures of the VAE model are provided in this

section, which provide readers with a crucial reference of how the VAE model was
constructed; the ideas of data preprocessing; and the important parameters that should be
optimized (i.e., maximized or minimized) during machine learning stages.

3.1. Data Preprocessing
First, the raw images were compressed by applying a specific scaling factor, which is

defined as the ratio of the length of a side of a desired output image to that of the original
image. In this study, a scaling factor of less than 1 was adopted to speed up the machine
learning and training processes, at the same time preventing the overflowing of memory.

Afterwards, the compressed images were decolorized using the optimization
approach proposed in [49], with the aim of preserving original color contrasts to the best
extent. In principle, the VAE model is applicable for handling RGB images, however, due
to the limitations of computer performance, the images obtained from datasets in Section
2 were converted into grayscale styles. Nevertheless, the texture, color contrast and pixel
properties were preserved as much as possible, so that the effectiveness of the VAE model
could be fairly assessed. In this study, the Intel(R) Xeon(R) CPU E5-2670 v3 (developed by

Figure 3. An example of the anime avatar image, from [44].

2.2.3. Modified National Institute of Standards and Technology (MNIST) Database

The third type of dataset was extracted from the MNIST database, which was created
in 1998. The MNIST database contains binary images of handwritten digits and is divided
into the training set (Special Database 3) and test set (Special Database 1). The two sets
were collected from Census Bureau employees and high school students respectively [45].
This vast database of handwritten digits has been shown useful in pattern recognition and
training various image processing systems for classification, with the aid of convolution
neural network techniques [46,47]. Original images from MNIST were first being size-
normalized, with the corresponding aspect ratio remaining unchanged, so that they could
fit into a 20× 20 pixel box; then, the center of mass of all pixels was computed, so that these
processed MNIST images could be positioned at the centre of a “28 × 28 pixel grayscale
image” [45]. The database that we adopted in this study consists of 60,000 such grayscale
images, each of which consists of 10 digits (from 0 to 9, inclusive), along with a test set that
consists of 10,000 images [48]. In this context, the MNIST database was selected to test and
validate the effects of clustering, because every data entry has already been pre-labeled
with classification labels.

3. Methodologies: Steps of the VAE Model

The important steps and statistical measures of the VAE model are provided in this
section, which provide readers with a crucial reference of how the VAE model was con-
structed; the ideas of data preprocessing; and the important parameters that should be
optimized (i.e., maximized or minimized) during machine learning stages.

3.1. Data Preprocessing

First, the raw images were compressed by applying a specific scaling factor, which is
defined as the ratio of the length of a side of a desired output image to that of the original
image. In this study, a scaling factor of less than 1 was adopted to speed up the machine
learning and training processes, at the same time preventing the overflowing of memory.

Afterwards, the compressed images were decolorized using the optimization approach
proposed in [49], with the aim of preserving original color contrasts to the best extent. In
principle, the VAE model is applicable for handling RGB images, however, due to the
limitations of computer performance, the images obtained from datasets in Section 2
were converted into grayscale styles. Nevertheless, the texture, color contrast and pixel
properties were preserved as much as possible, so that the effectiveness of the VAE model
could be fairly assessed. In this study, the Intel(R) Xeon(R) CPU E5-2670 v3 (developed
by Intel of United States in 2014) with two processors was adopted, and the system was
prescribed as a 64-bit operating system, with 128 GB RAM installed.

As for the Arknights game maps described in Section 2.2.1, since every game map
represents only a class label, while a maximum of 180 different images can be obtained
from the open data source, therefore, each of these 180 images was copied by 10 times, so
that a total of 1800 images were ingested into the VAE model, with most of them being

Sensors 2023, 23, 3457 7 of 24

grouped as the ‘training set’, and a small pile of these images was considered the ‘testing
set’. Further, the 10 versions of each image possessed different brightness, contrast and
gamma correction factors, so that a total of 1800 class labels could be used for conducting
statistical analyses.

3.2. Autoencoding, Variational AutoEncoder (VAE) and Decoding Processes

In analyzing large datasets that contain vast number of features within each ob-
servation, Principal Component Analysis (PCA) was widely adopted to visualize multi-
dimensional information, by reducing the dimension of the original dataset but keeping the
maximum amount of information in the output [50]. However, PCA was only applicable in
handling linear surfaces, thus the concept of “autoencoding” came in. An autoencoder is
capable of handling both linear and non-linear transformations, and is a model that can
reduce the dimension of complex datasets via neural network approaches [51]. It adopts
backpropagation for learning features at instant time during model training and building
stages, thus is more prone to achieve data overfitting when compared with PCA [52]. The
structure of an autoencoder is as shown in Figure 4, which includes mainly an encoder to
handle input datasets, some codes within the encoding process, and a decoder to produce
meaningful outputs.

Sensors 2023, 23, x FOR PEER REVIEW 7 of 24

Intel of United States in 2014) with two processors was adopted, and the system was
prescribed as a 64-bit operating system, with 128 GB RAM installed.

As for the Arknights game maps described in Section 2.2.1, since every game map
represents only a class label, while a maximum of 180 different images can be obtained
from the open data source, therefore, each of these 180 images was copied by 10 times, so
that a total of 1800 images were ingested into the VAE model, with most of them being
grouped as the ‘training set’, and a small pile of these images was considered the ‘testing
set’. Further, the 10 versions of each image possessed different brightness, contrast and
gamma correction factors, so that a total of 1800 class labels could be used for conducting
statistical analyses.

3.2. Autoencoding, Variational AutoEncoder (VAE) and Decoding Processes
In analyzing large datasets that contain vast number of features within each

observation, Principal Component Analysis (PCA) was widely adopted to visualize multi-
dimensional information, by reducing the dimension of the original dataset but keeping
the maximum amount of information in the output [50]. However, PCA was only
applicable in handling linear surfaces, thus the concept of “autoencoding” came in. An
autoencoder is capable of handling both linear and non-linear transformations, and is a
model that can reduce the dimension of complex datasets via neural network approaches
[51]. It adopts backpropagation for learning features at instant time during model training
and building stages, thus is more prone to achieve data overfitting when compared with
PCA [52]. The structure of an autoencoder is as shown in Figure 4, which includes mainly
an encoder to handle input datasets, some codes within the encoding process, and a
decoder to produce meaningful outputs.

Figure 4. Structure of an autoencoder adopted in the VAE model of this study.

Denote 𝑋 as the set of all samples in the original dataset, where 𝑥௜ represents the 𝑖 th sample. The encoder is a function 𝑔(𝑋) that encodes the original dataset to 𝑧 , i.e., 𝑧 = 𝑔(𝑋), where the dimension of 𝑧 is significantly less than that of 𝑋. Afterwards, the
simplified dataset 𝑧 is passed onto the decoder, which decodes 𝑧 and outputs 𝑋෨ .
Hence, the decoder is mathematically expressed as 𝑋෨ = 𝑓(𝑧) . The loss function 𝑙 =ฮ𝑋 − 𝑋෨ฮଶ under arbitrary norm (depending on the type of application) is then used to
estimate the closeness between 𝑋 and 𝑋෨ . If the magnitude of 𝑙 is small, the model is
considered effective. Here, we may assume that the encoded 𝑧 will include most valuable
information from 𝑋 , so that 𝑧 suffices to represent the original dataset even after
dimensionality reduction has been applied during the model training process. For
example, let 𝑋 ∈ ℝ஼×ு×ௐ be an image, where 𝐶,𝐻 and 𝑊 are the dimensions that store
the information of 𝑋. The overall goal is to train an autoencoder that encodes the image
into 𝑧 ∈ ℝௗ (i.e., dimensionality reduction), then apply a decoder that reformulates the
image as 𝑋෨ ∈ ℝ஼×ு×ௐ such that the loss function is minimized. In practice, this model

Figure 4. Structure of an autoencoder adopted in the VAE model of this study.

Denote X as the set of all samples in the original dataset, where xi represents the ith
sample. The encoder is a function g(X) that encodes the original dataset to z, i.e., z = g(X),
where the dimension of z is significantly less than that of X. Afterwards, the simplified
dataset z is passed onto the decoder, which decodes z and outputs X̃. Hence, the decoder is
mathematically expressed as X̃ = f (z). The loss function l =‖ X − X̃ ‖2 under arbitrary
norm (depending on the type of application) is then used to estimate the closeness between
X and X̃. If the magnitude of l is small, the model is considered effective. Here, we may
assume that the encoded z will include most valuable information from X, so that z suffices
to represent the original dataset even after dimensionality reduction has been applied
during the model training process. For example, let X ∈ RC×H×W be an image, where
C, H and W are the dimensions that store the information of X. The overall goal is to train
an autoencoder that encodes the image into z ∈ Rd (i.e., dimensionality reduction), then
apply a decoder that reformulates the image as X̃ ∈ RC×H×W such that the loss function is
minimized. In practice, this model will create not only useful attributes of the image, but
also unwanted noise components, because the distribution of z, as denoted by p(z), has not
been modeled. To complement such deficiency, the Variational AutoEncoder (VAE) was
adopted to first model the probabilistic distribution of z, before all useful attributes of X
were extracted to form a sampling space of z and passed into the decoder for image recovery.

Suppose z ∼ N(0, I), where I represents an identity matrix, which means that z can
be regarded as a multi-dimensional random variable that obeys the standard multivariate
Gaussian distribution. Denote z and X as random variables, and the corresponding ith

Sensors 2023, 23, 3457 8 of 24

samples are denoted by zi and xi respectively. With this set-up, the eventual output is
generated through a stochastic process of two steps, with z treated as the hidden variable:
(1) the prior distribution of X is encoded and sampled to obtain zi; then (2) based on the
conditional distribution p(X|zi), a data point or sample xi is achieved.

As for the decoding process, the samples zi obtained from the N(0, I) distribution
were ingested into the decoder, then the parametrized decoder established a mapping that
outputs the precise distribution of zi corresponding to X, which is denoted by pθ(X|zi).
To simplify the statistical complexity, we may assume that X obeys isotropic multivariate
Gaussian distribution for any given zi, i.e., Equation (1) holds. This means that after zi is
ingested into the decoder, the distribution of X|zi can be obtained after fitting µ′i and σ′i

2.

pθ(X|zi) = N
(

X|µ′i(zi; θ), σ′2i (zi; θ) ∗ I
)

(1)

By taking into account that z ∼ N(0, I), Equation (2) can be obtained, where m
represents the hyper-parameter within our VAE model.

pθ(X) =
∫

z
pθ(X|z)p(z)dz ≈ 1

m

m

∑
j=1

pθ(X|zj) (2)

Then, the Maximum Likelihood Estimation (MLE) is applied to estimate θ based on
the observed or inputted dataset X. The detailed formulation is as shown in Equation (3).

θ∗ = argminθ −
n

∑
i=1

log pθ(xi) = argminθ −
n

∑
i=1

ln

(
1
m

m

∑
j=1

pθ

(
X|zj

))
(3)

Generally speaking, the dimension of X is very large, while even after the dimension-
ality reduction process, the dimension of z is not extremely small. Thus, a sufficiently large
amount of samples zi have to be considered for achieving an accurate estimate of pθ(X).
To cope with this, the posterior distribution pθ(z|xi) has to be introduced into the encoder.
Equation (4) shows how the Bayes’ formula can be applied into computing pθ(z|xi). The
procedures here are designed and formulated with reference to the ideas proposed in [53].

pθ(z|xi) =
pθ(xi|z)p(z)

pθ(xi)
=

pθ(xi|z)p(z)∫
ẑ pθ(xi

∣∣ẑ)p(ẑ)dẑ
(4)

Next, the AutoEconding Variational Bayesian (AEVB) algorithm is applied to optimize
the parametrized encoder and θ. Denote qφ(z|xi) as the approximate posterior distribution
of the encoder (with parameter φ), if qφ(z|xi) ∼ pθ(z|xi), the encoder can be adopted to
obtain the probabilistic distribution of z|xi [35]. Since pθ(X|z) and p(z) are of multivariate
Gaussian distributions, so is pθ(z|xi). As a result, it suffices to acquire outputs of µ and
σ2 from the encoder to outline the posterior of the generative model. For any sample xi,
qφ(z|xi) should satisfy the distribution as shown in Equation (5).

qφ(z|xi) = N(z|µ(xi; φ), σ2(xi; φ) ∗ I) (5)

3.3. Steps of the VAE Model

Based on the methods reviewed and introduced in Section 3.2, the actual steps of the
VAE model in this study are outlined as follows (Steps 1–4):

Step 1: The encoder was assigned a data point/sample xi, and parameters of qφ(z|xi)
that the latent variable z obeys were obtained from neural network approaches. Since this
posterior distribution is of an isotropic Gaussian distribution, it suffices to find out the
parameters µi and σ2

i of the Gaussian distribution that z|xi obeys. As an example, xi here
may represent some images of orange cats.

Sensors 2023, 23, 3457 9 of 24

Step 2: Based on the parameters µi and σ2
i , a sample zi from the distribution was

obtained, which is considered a similar type of sample as xi. As an example, zi represents
all cats that are orange in color.

Step 3: Then, the decoder proceeded to fit the likelihood distribution pθ(X|zi), i.e.,
when zi was ingested into the decoder, the parameters of the distribution that X|zi obeys
could be achieved. Since the likelihood would also obey an isotropic Gaussian distribution,
we can denote the output parameters as µi

′ and σ2
i ′. As an example, pθ(X|zi) represents a

distribution of images of orange cats.
Step 4: After the statistical parameters of the distribution X|zi were acquired, a se-

quence of data points
{

x̃i
′} was obtained via sampling. Nevertheless, most people use µi

′

as an alternative representation of
{

x̃i
′}. An example here is to sample a new orange cat

image from a particular distribution of orange cats.
In addition, it was also widely recognized that pθ(X|zi) is an isotropic multivariate

Gaussian distribution with fixed variance, which could be mathematically expressed as in
Equation (6), where σ′2 is considered a hyper-parameter.

pθ(X|zi) = N
(

X|µ′i(zi; θ), σ′
2 ∗ I

)
(6)

The overall graphical structure of the VAE model is as shown in Figure 5.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 24

3.3. Steps of the VAE Model
Based on the methods reviewed and introduced in Section 3.2, the actual steps of the

VAE model in this study are outlined as follows (Steps 1–4):
Step 1: The encoder was assigned a data point/sample 𝑥௜ , and parameters of 𝑞థ(𝑧|𝑥௜) that the latent variable 𝑧 obeys were obtained from neural network approaches.

Since this posterior distribution is of an isotropic Gaussian distribution, it suffices to find
out the parameters 𝜇௜ and 𝜎௜ଶ of the Gaussian distribution that 𝑧|𝑥௜ obeys. As an
example, 𝑥௜ here may represent some images of orange cats.

Step 2: Based on the parameters 𝜇௜ and 𝜎௜ଶ, a sample 𝑧௜ from the distribution was
obtained, which is considered a similar type of sample as 𝑥௜ . As an example, 𝑧௜
represents all cats that are orange in color.

Step 3: Then, the decoder proceeded to fit the likelihood distribution 𝑝ఏ(𝑋|𝑧௜), i.e.,
when 𝑧௜ was ingested into the decoder, the parameters of the distribution that 𝑋|𝑧௜
obeys could be achieved. Since the likelihood would also obey an isotropic Gaussian
distribution, we can denote the output parameters as 𝜇௜′ and 𝜎௜ଶ′ . As an example, 𝑝𝜃(𝑋|𝑧𝑖) represents a distribution of images of orange cats.

Step 4: After the statistical parameters of the distribution 𝑋|𝑧௜ were acquired, a
sequence of data points ሼ𝑥ప෥ ᇱሽ was obtained via sampling. Nevertheless, most people use 𝜇௜′ as an alternative representation of ሼ𝑥ప෥ ᇱሽ. An example here is to sample a new orange
cat image from a particular distribution of orange cats.

In addition, it was also widely recognized that 𝑝ఏ(𝑋|𝑧௜) is an isotropic multivariate
Gaussian distribution with fixed variance, which could be mathematically expressed as in
Equation (6), where 𝜎ᇱଶ is considered a hyper-parameter. 𝑝ఏ(𝑋|𝑧௜) = 𝑁(𝑋|𝜇௜ᇱ(𝑧௜;𝜃),𝜎ᇱଶ ∗ 𝐈) (6)

The overall graphical structure of the VAE model is as shown in Figure 5.

Figure 5. Graphical representation and steps of the VAE model in this study.

3.4. Evidence Lower Bound (ELBO) of the VAE Model
After fixing the structure of the VAE model for handling datasets in Section 2, an

effective loss function for estimating the information loss during model construction
process was established. Following the idea of MLE and the application of variational
inference, the likelihood function ln𝑝ఏ(𝑋) can be expressed as in Equation (7), which is
bounded below by 𝑙൫𝑝ఏ, 𝑞థ൯ . This lower bound is called the “Evidence Lower Bound
(ELBO)”. ln𝑝ఏ(𝑋) =න𝑞థ(𝑧|𝑋) ln𝑝ఏ(𝑋)𝑑𝑧୸ = න𝑞థ(𝑧|𝑋)ln𝑝ఏ(𝑋, 𝑧)𝑝ఏ(𝑧|𝑋) 𝑑𝑧୸= න𝑞థ(𝑧|𝑋)ln 𝑝ఏ(𝑋, 𝑧)𝑞థ(𝑧|𝑋)𝑑𝑧 + න𝑞థ(𝑧|𝑋)ln 𝑞థ(𝑧|𝑋)𝑝ఏ(𝑧|𝑋) 𝑑𝑧௭௭

(7)

Figure 5. Graphical representation and steps of the VAE model in this study.

3.4. Evidence Lower Bound (ELBO) of the VAE Model

After fixing the structure of the VAE model for handling datasets in Section 2, an
effective loss function for estimating the information loss during model construction process
was established. Following the idea of MLE and the application of variational inference,
the likelihood function ln pθ(X) can be expressed as in Equation (7), which is bounded
below by l

(
pθ , qφ

)
. This lower bound is called the “Evidence Lower Bound (ELBO)”.

ln pθ(X) =
∫

z qφ(z|X) ln pθ(X)dz =
∫

z qφ(z|X) ln pθ(X,z)
pθ(z|X)

dz

=
∫

z qφ(z|X) ln pθ(X,z)
qφ(z|X)

dz +
∫

z qφ(z|X) ln qφ(z|X)

pθ(z|X)
dz

(7)

Here, the first integral of the last expression in Equation (7) is denoted as l
(

pθ , qφ

)
,

while the second integral is called the KL divergence (also known as relative entropy in infor-
mation theory) and is denoted by DKL

(
qφ, pθ

)
. Since KL divergence is always non-negative,

l
(

pθ , qφ

)
is considered the lower bound of ln pθ(X). Thus, we have Equation (8) below.

l
(

pθ , qφ

)
= ln pθ(X)− DKL

(
qφ, pθ

)
(8)

That is, to maximize l
(

pθ , qφ

)
is equivalent to maximize ln pθ(X) and to minimize

DKL
(
qφ, pθ

)
. To minimize DKL

(
qφ, pθ

)
, we further assume that the approximate posterior

distribution qφ(z|xi) converges to the posterior distribution pθ(z|xi), which is valid because
the encoder should only output meaningful distributions for further retrieval and signal
recovery in practical implementations.

Sensors 2023, 23, 3457 10 of 24

Expanding l
(

pθ , qφ

)
as shown in Equation (9), we have the following:

l
(

pθ , qφ

)
=
∫

z qφ(z|X) ln pθ(X,z)
qφ(z|X)

dz

=
∫

z qφ(z|X) ln p(z)
qφ(z|X)

dz +
∫

z qφ(z|X) ln pθ(X|z)dz
(9)

Again, the two terms in the last step of Equation (9) have their own physical meanings
and implications, where the first integral represents the “latent loss” and is denoted by
−DKL

(
qφ, p

)
; while the second integral is known as the “reconstruction loss” and is

denoted by the expectation quantity Eqφ [ln pθ(X|z)].
Based on our assumption of the VAE model, qφ(z|X) and p(z) both follow Gaussian

distribution; therefore, the analytical solution of DKL
(
qφ, p

)
can be obtained as follows:

DKL
(

N
(
µ, σ2)N(0, 1)

)
=
∫
z

1√
2πσ2 exp

(
− (z−µ)2

2σ2

)
ln

1√
2πσ2

exp
(
− (z−µ)2

2σ2

)
1√
2π

exp
(
− z2

2

) dz

= −
∫

z
(z−µ)2

2σ2 N
(
µ, σ2)dz +

∫
z

z2

2 N
(
µ, σ2)dz−

∫
z ln σN

(
µ, σ2)dz

= −E[(z−µ)2]
2σ2 +

E[z2]
2 − ln σ = 1

2
(
−1 + σ2 + µ2 − ln

(
σ2))

(10)

Here, DKL
(

N
(
µ, σ2)N(0, 1)

)
represents the relative entropy from N(0, 1) to N

(
µ, σ2)

for these two probability distributions defined on the same measurable sample space.
As for the second term, multiple zi’s from qφ(z|X) are sampled to approximate the

term Eqφ [ln pθ(X
∣∣∣∣z)] ≈ 1

m

m
∑

i=1
ln pθ(X|zi) , where

zi ∼ qφ(z|xi) = N
(

z|µ(xi; φ), σ2(xi; φ) ∗ I
)

Suppose the dimension of every data point xi is K, we can expand ln pθ(X|zi) as
shown in Equation (11) below.

ln pθ(X|zi) = ln
exp

(
− 1

2 (X−µ′)TΣ′−1(X−µ′)
)

√
(2π)K |Σ′|

= − 1
2 (X− µ′)TΣ′−1(X− µ′)− ln

√
(2π)K| Σ ′|

= − 1
2

K
∑

j=1

(X(j)−µ(j) ′)
2

σ(j) ′ − ln

√
(2π)K K

∏
j=1

σ(j)′

(11)

3.5. General Loss Function of the VAE Model

Based on the parameters introduced in Section 3.4, the loss function L in Equation (12)
should be minimized during the machine learning and model training processes:

L = − 1
n

n

∑
i=1

l
(

pθ , qφ

)
=

1
n

n

∑
i=1

DKL
(
qφ, pθ

)
− 1

nm

n

∑
i=1

m

∑
j=1

ln pθ(xi|zj) (12)

In the formula, zj’s are actually sampled from qφ(z|xi), however, only one such zj is
needed empirically, therefore, we simply consider the case of m = 1, thus Equation (12) can
be simplified as Equation (13).

L = 1
n

n
∑

i=1
DKL

(
qφ, pθ

)
− 1

n

n
∑

i=1
ln pθ(xi|zi)

where


∑n

i=1 DKL
(
qφ, pθ

)
= ∑n

i=1 ∑d
j=1

1
2

(
−1 + σ

(j)2

i + µ
(j)2

i − ln σ
(j)2

i

)

∑n
i=1 ln pθ(xi|zi) = ∑n

i=1

− 1
2 ∑K

j=1

(
x(j)

i −µ
(j)′
i

)2

σ
(j)′
i

− ln

√
(2π)K ∏K

j=1 σ
(j)′

i


(13)

Sensors 2023, 23, 3457 11 of 24

In our study, by considering that pθ(X|zi) is an isotropic multivariate Gaussian dis-
tribution with fixed variance, it is reasonable to set σ′2 as a K-dimensional vector, with
all elements being 0.5. With that, the corresponding loss function can be expressed as in
Equation (14).

L =
1
n

n

∑
i=1

d

∑
j=1

1
2
(−1 + σ

(j)2

i + µ
(j)2

i − ln σ
(j)2

i) +
1
n

n

∑
i=1
||xi − µ′2i || (14)

Here, xi represents the ith sample, which acts as the input of the encoder; µi and σ2
i

are the outputs of the encoder, which act as the parameters of the distribution of z|xi; zi is
sampled from z|xi and acts as the input of the decoder; and µ′i is the output of the decoder,
which precisely represents the ultimately generated data point x̃i.

3.6. Loss Function of the VAE Model in Clustering

As aforementioned, the KL-divergence for qφ and p is defined as DKL
(
qφ, p

)
=∫

z qφ(z|X) ln p(z)
qφ(z|X)

dz. Such an expression is only valid when we have the assumptions

that q(z) follows Gaussian distribution, and both p(z|X) and q(X|z) follow conditional
Gaussian distributions. If all these hold, the loss of the ordinary VAE model can be obtained
by a series of substitutions.

Nevertheless, in the case of data clustering, the hidden variables may not always be
continuous variables. Thus, we set the latent variable as (z, y), where z is a continuous
variable that represents a coding vector, and y is a discrete variable that represents the
category. After updating the latent variable, the resulting KL-divergence is as shown in
Equation (15), and such an expression is applicable for clustering within the VAE model of
this study.

DKL
(
qφ(x, z, y), p(x, z, y)

)
=
∫

z
qφ(z, y|X) ln

p(z, y)
qφ(z, y|X)

dz (15)

In practice,

qφ(z, y|x) = qφ(y|z)qφ(z|X) ; p(z, y) = p(z|y)p(y) (16)

Based on this, Equation (15) can be re-written as Equation (17), which can essentially
obtain the specific loss function of data clustering by following the procedures outlined in
preceding sub-sections.

DKL
(
qφ(x, z, y), p(x, z, y)

)
=
∫

z
qφ(y|z)qφ(z|X) ln

p(z|y)p(y)
qφ(y|z)qφ(z|X)

dz (17)

Equation (17) is also applicable for describing both encoding and decoding procedures.
First, a data point or dataset X is sampled, which represents an image formed by the original
data, then q(z|X) is applied to obtain the encoding characteristic z, followed by the usage
of the cluster qφ(y|z) that classifies the encoded information or attributes. Next, a category
y is selected from the distribution p(y), and a random hidden variable z is selected from
the distribution p(z|y). Finally, the decoding process can generate new images accordingly.
Through these theoretical procedures, images with specific class labels and of minimized
loss can be generated in a systematic manner.

3.7. Statistical Metrics and Spatial Assessment

After the VAE model was applied to different case studies, resulting graphical outputs
were generated. We first referred to the zoom-in version of these outputs and observed
its clarity and features, especially when a game figure or specified character has to be
generated. This is considered a type of spatial assessment. As for statistical assessments,
we collected and summarized different numerical quantities, including the number of
epochs, average loss of information during the image-generation process, the size of input

Sensors 2023, 23, 3457 12 of 24

datasets, the scaling factor imposed in the preprocessing stage, and the time consumed for
the entire VAE modeling and retrieval process. Then, for attributes that seem to be linearly
related, the least-square fitting approach was adopted to find out the best-fit line that
describes the relationship between the two concerned quantities. The resulting coefficient
of determination (R2) is a statistical parameter that ensures the order of accuracy of such a
least-squared fit. Such an approach was implemented in statistical analyses of Case Study 1,
where the linear fit was applied in investigating the relationship between time consumed
with the number of epochs and size of input dataset respectively, as well as the amount of
information loss with the choice of scaling factor.

As for numerical quantities that were not linearly related, we connected every two
neighboring data points and observed the resulting statistical trends (if any). If possible, the
convergence of such a statistical curve will also be our focus, for example, the convergence
of average information loss (Case Study 1) and average recognition accuracy (Case Study 3)
as the number of epochs increased. These threshold values could be particularly useful
for future game designers to determine the optimal settings before model simulations
are conducted.

4. Numerical Experiments and Results
4.1. Case Study 1: Generation of Video Game Maps

The Arknights game maps were downloaded from [42] and were preprocessed as
in Section 3.1, where a scaling factor of 0.2 was adopted. Further, the number of epochs
within the VAE model was pre-set to be 50, which means that each sample in the training
dataset would have 50 times to update its internal model parameters. The number “50”
was selected to ensure that the error from the model was sufficiently minimized, but at
the same time ensuring the affordability of our computing platform [54]. This number of
epochs in testing the effectiveness of a model had been adopted in many studies, such
as [55,56], for practical implementations, for example, forecasting power demand and the
smart utilization of power grids, and the classification of coronavirus. The VAE-based
outputs are as shown in Figures 6 and 7, where Figure 6 shows two outputs obtained after
the completion of model training within the VAE architecture and that after the mixing
process was conducted; while Figure 7 shows the detailed output game map obtained after
several original images were mixed together.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

(a) (b)

Figure 6. Resulting output game maps obtained after (a) the training of the VAE model, and (b) the
mixing process (based on raw game maps of Arknights obtained from [42]).

Figure 7. The zoom-in version of an output game map of Arknights after the mixing of several
processed images in the VAE model.

As observed from Figure 6, the images generated by the VAE model could retain the
characteristics and features of the original image, and a new image could be effectively
generated by mixing several original raw images from [42]. The mixing process was
feasible (as shown on Figure 6(b)). However, when zooming in the output and attempting
to visualize the fine details of an image, it was noticed that the sharpness of the output
image was rather insufficient, mainly due to the noise components induced during the
training process. It is suggested to apply a suitable Laplacian sharpening filter or Sobel
gradient for spatial enhancement, so that the edges of figures within the image can become
more obvious [57]. Nevertheless, the new output images from the VAE model can still
serve as good references for game designers when creating new game levels, or when
adding in new characters and spatial features into particular video frames.

After obtaining the output images, numerical experiments were conducted using the
same dataset for exploring the statistical properties of the VAE model. First, Figure 8
shows one of the most well-known learning curves, with the aim of illustrating the

Figure 6. Resulting output game maps obtained after (a) the training of the VAE model, and (b) the
mixing process (based on raw game maps of Arknights obtained from [42]).

Sensors 2023, 23, 3457 13 of 24

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

(a) (b)

Figure 6. Resulting output game maps obtained after (a) the training of the VAE model, and (b) the
mixing process (based on raw game maps of Arknights obtained from [42]).

Figure 7. The zoom-in version of an output game map of Arknights after the mixing of several
processed images in the VAE model.

As observed from Figure 6, the images generated by the VAE model could retain the
characteristics and features of the original image, and a new image could be effectively
generated by mixing several original raw images from [42]. The mixing process was
feasible (as shown on Figure 6(b)). However, when zooming in the output and attempting
to visualize the fine details of an image, it was noticed that the sharpness of the output
image was rather insufficient, mainly due to the noise components induced during the
training process. It is suggested to apply a suitable Laplacian sharpening filter or Sobel
gradient for spatial enhancement, so that the edges of figures within the image can become
more obvious [57]. Nevertheless, the new output images from the VAE model can still
serve as good references for game designers when creating new game levels, or when
adding in new characters and spatial features into particular video frames.

After obtaining the output images, numerical experiments were conducted using the
same dataset for exploring the statistical properties of the VAE model. First, Figure 8
shows one of the most well-known learning curves, with the aim of illustrating the

Figure 7. The zoom-in version of an output game map of Arknights after the mixing of several
processed images in the VAE model.

As observed from Figure 6, the images generated by the VAE model could retain the
characteristics and features of the original image, and a new image could be effectively
generated by mixing several original raw images from [42]. The mixing process was feasible
(as shown on Figure 6b). However, when zooming in the output and attempting to visualize
the fine details of an image, it was noticed that the sharpness of the output image was rather
insufficient, mainly due to the noise components induced during the training process. It
is suggested to apply a suitable Laplacian sharpening filter or Sobel gradient for spatial
enhancement, so that the edges of figures within the image can become more obvious [57].
Nevertheless, the new output images from the VAE model can still serve as good references
for game designers when creating new game levels, or when adding in new characters and
spatial features into particular video frames.

After obtaining the output images, numerical experiments were conducted using the
same dataset for exploring the statistical properties of the VAE model. First, Figure 8 shows
one of the most well-known learning curves, with the aim of illustrating the relationship
between average loss of the ten image-generation process and the number of epochs
within the machine learning stage. In general, the average loss of the model decreased as
the number of epochs increased, but the rate of decrease of average loss was gradually
decreasing with the increase in epochs. Exact statistical figures of average loss within
different number of epochs (ranging from 1 to 16, inclusive) are provided in Table 2. The
average loss when using 1 epoch was 1259.3, which then decreased to 1122.4 and 1025.6
when 2 and 10 epochs were respectively adopted. Continuing such process, it was observed
that at the 21st epoch, the average loss would decrease to 999.0; while after 50 epochs, the
resulting average loss would only be 968.24. Overall, both graphical and statistical results
have shown that the VAE model is fit to the training dataset extracted from the game map
in [42], and 50 epochs is a reasonable number of epochs to be adopted in the VAE model.

Sensors 2023, 23, 3457 14 of 24

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

relationship between average loss of the ten image-generation process and the number of
epochs within the machine learning stage. In general, the average loss of the model
decreased as the number of epochs increased, but the rate of decrease of average loss was
gradually decreasing with the increase in epochs. Exact statistical figures of average loss
within different number of epochs (ranging from 1 to 16, inclusive) are provided in Table
2. The average loss when using 1 epoch was 1259.3, which then decreased to 1122.4 and
1025.6 when 2 and 10 epochs were respectively adopted. Continuing such process, it was
observed that at the 21st epoch, the average loss would decrease to 999.0; while after 50
epochs, the resulting average loss would only be 968.24. Overall, both graphical and
statistical results have shown that the VAE model is fit to the training dataset extracted
from the game map in [42], and 50 epochs is a reasonable number of epochs to be adopted
in the VAE model.

Figure 8. Average loss of the ten image-generation process vs. number of epochs in Case Study 1.

Table 2. Statistical figures of average loss at different number of epochs within the VAE model.

Number of Epochs Average Loss Decrease in Average Loss
with 1 more Epoch

1 1259.3 Not applicable
2 1122.4 136.9
3 1091.5 30.9
4 1072.9 18.6
5 1059.7 13.2
6 1049.2 10.5
7 1041.1 6.9
8 1034.8 6.3
9 1029.8 5.0

10 1025.6 4.2
11 1021.9 3.7
12 1018.7 3.2
13 1015.5 3.2
14 1013.1 2.4
15 1010.7 2.4
16 1008.4 2.3

Apart from investigating the average loss figures, the amount of time consumed for
processing the VAE model is also crucial if one wants to extend the current VAE

Figure 8. Average loss of the ten image-generation process vs. number of epochs in Case Study 1.

Table 2. Statistical figures of average loss at different number of epochs within the VAE model.

Number of Epochs Average Loss Decrease in Average Loss
with 1 More Epoch

1 1259.3 Not applicable
2 1122.4 136.9
3 1091.5 30.9
4 1072.9 18.6
5 1059.7 13.2
6 1049.2 10.5
7 1041.1 6.9
8 1034.8 6.3
9 1029.8 5.0
10 1025.6 4.2
11 1021.9 3.7
12 1018.7 3.2
13 1015.5 3.2
14 1013.1 2.4
15 1010.7 2.4
16 1008.4 2.3

Apart from investigating the average loss figures, the amount of time consumed for
processing the VAE model is also crucial if one wants to extend the current VAE formulation
to handle massive, big datasets in the future. Figure 9a shows the time consumed for
training the VAE model against the number of epochs used. The “time” quantity was
obtained by taking the average of 10 times of training, with the use of the same dataset
and other external parameters for training purposes. The graphical result shows that by
fixing all other conditions, the time consumed for VAE model training was linearly related
to the number of epochs imposed. For evaluating the time complexity of the VAE model,
the number of attributes (i.e., the size of the ingested dataset) was resampled, and the
corresponding dataset was ingested into the VAE model, with 50 epochs used during the
training process. Then, the time taken for VAE model training was calculated. Figure 9b
shows that the R2 value of such linear fit between these two quantities is 0.979, which
implicates that the time consumed for VAE model training is very likely to be linearly
related to data size, thus, the time complexity of the VAE model adopted is of O(n).

Sensors 2023, 23, 3457 15 of 24

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

formulation to handle massive, big datasets in the future. Figure 9(a) shows the time
consumed for training the VAE model against the number of epochs used. The “time”
quantity was obtained by taking the average of 10 times of training, with the use of the
same dataset and other external parameters for training purposes. The graphical result
shows that by fixing all other conditions, the time consumed for VAE model training was
linearly related to the number of epochs imposed. For evaluating the time complexity of
the VAE model, the number of attributes (i.e., the size of the ingested dataset) was
resampled, and the corresponding dataset was ingested into the VAE model, with 50
epochs used during the training process. Then, the time taken for VAE model training was
calculated. Figure 9(b) shows that the R2 value of such linear fit between these two
quantities is 0.979, which implicates that the time consumed for VAE model training is
very likely to be linearly related to data size, thus, the time complexity of the VAE model
adopted is of O(n).

(a) (b)

Figure 9. (a) Time consumed for VAE model training (in s) versus the number of epochs adopted in
the model; (b) Time consumed for VAE model training (in s) versus the size of dataset ingested into
the model.

Further, a scaling factor of 0.2 was adopted in this case study. In order to validate the
use of such a scaling factor in the VAE formulation, we varied the scaling factor from 0.15
to 0.5 (which was affordable based on the computing platform). For each scaling factor, 10
trial experiments via the application of the VAE model were conducted, and the
corresponding time consumed and average loss values were recorded. Figure 10 shows
the respective relationship between time consumed for ten image-generation process /
average loss figures with respect to the use of different scaling factors.

(a) (b)

Figure 9. (a) Time consumed for VAE model training (in s) versus the number of epochs adopted in
the model; (b) Time consumed for VAE model training (in s) versus the size of dataset ingested into
the model.

Further, a scaling factor of 0.2 was adopted in this case study. In order to validate
the use of such a scaling factor in the VAE formulation, we varied the scaling factor from
0.15 to 0.5 (which was affordable based on the computing platform). For each scaling
factor, 10 trial experiments via the application of the VAE model were conducted, and the
corresponding time consumed and average loss values were recorded. Figure 10 shows the
respective relationship between time consumed for ten image-generation process/average
loss figures with respect to the use of different scaling factors.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

formulation to handle massive, big datasets in the future. Figure 9(a) shows the time
consumed for training the VAE model against the number of epochs used. The “time”
quantity was obtained by taking the average of 10 times of training, with the use of the
same dataset and other external parameters for training purposes. The graphical result
shows that by fixing all other conditions, the time consumed for VAE model training was
linearly related to the number of epochs imposed. For evaluating the time complexity of
the VAE model, the number of attributes (i.e., the size of the ingested dataset) was
resampled, and the corresponding dataset was ingested into the VAE model, with 50
epochs used during the training process. Then, the time taken for VAE model training was
calculated. Figure 9(b) shows that the R2 value of such linear fit between these two
quantities is 0.979, which implicates that the time consumed for VAE model training is
very likely to be linearly related to data size, thus, the time complexity of the VAE model
adopted is of O(n).

(a) (b)

Figure 9. (a) Time consumed for VAE model training (in s) versus the number of epochs adopted in
the model; (b) Time consumed for VAE model training (in s) versus the size of dataset ingested into
the model.

Further, a scaling factor of 0.2 was adopted in this case study. In order to validate the
use of such a scaling factor in the VAE formulation, we varied the scaling factor from 0.15
to 0.5 (which was affordable based on the computing platform). For each scaling factor, 10
trial experiments via the application of the VAE model were conducted, and the
corresponding time consumed and average loss values were recorded. Figure 10 shows
the respective relationship between time consumed for ten image-generation process /
average loss figures with respect to the use of different scaling factors.

(a) (b)

Figure 10. (a) Time consumed for ten image-generation process (in s) versus scaling factor imposed
in the model; (b) Average loss of the ten image-generation process versus scaling factor imposed in
the model.

As observed, the time consumption was not linearly related to the scaling factor
imposed in the VAE model. Instead, the plot shown almost converges to a quadratic or
exponential relationship. Nevertheless, as the scaling factor increased from 0.2 to 0.3, the
time consumed would exceed double the original time; while when a scaling factor of 0.4
was applied to the VAE model, it took 75 s for processing the VAE model and generating

Sensors 2023, 23, 3457 16 of 24

the eventual image. In this case study, there are only limited number of game maps, and the
data size of each raw game map is 500× 500. Therefore, if this model is extended to handle
a large-scale dataset, say those originated from satellite observations [58,59], then it would
likely take days or even months for data processing; the same will take place when we
extend the VAE algorithm to handle multi-dimensional datasets. Combining this concept
with the amount of loss as shown in Figure 10b, a factor of 0.2 was adopted, because a
reasonably low average loss was induced by the VAE model, and the computation time
for the entire process was not exceptionally long even when dealing with input datasets
of larger size. Further, from Figure 10b, the R2 value of the resulting linear fit is 0.965;
therefore, there is a high possibility that the average loss of the VAE model was linearly
related to the scaling factor imposed.

Despite obtaining all these meaningful conclusions from the correlations between
different statistical quantities, we cannot conclude that when a smaller scaling factor is
adopted, the model output must be better and of higher clarity. This is because the loss
function derived in Section 3.5 only estimates the information loss when comparing the
input and output datasets after both encoding and decoding were conducted, but may
have ignored the information loss during the preprocessing stage. In actual industrial
applications, the information loss of all aspects should be considered, so that an optimal
scaling factor can be selected to balance the quality of outputs and model training efficiency.

4.2. Case Study 2: Generating Anime Avatars via the VAE Model

VAE model is not only useful and applicable in generating a mixture of images or
combined game levels from an input dataset, but can also be used to obtain new outputs: If
we consider a set of images as the input, after encoding and decoding processes, a totally
brand-new image can be created as the eventual output. In this case study, a dataset that
consists of 60,000 different anime-girls (an example is shown in Figure 3) was ingested into
the VAE model, and the two possible outputs of the model are as shown in Figure 11.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

Figure 10. (a) Time consumed for ten image-generation process (in s) versus scaling factor imposed
in the model; (b) Average loss of the ten image-generation process versus scaling factor imposed in
the model.

As observed, the time consumption was not linearly related to the scaling factor
imposed in the VAE model. Instead, the plot shown almost converges to a quadratic or
exponential relationship. Nevertheless, as the scaling factor increased from 0.2 to 0.3, the
time consumed would exceed double the original time; while when a scaling factor of 0.4
was applied to the VAE model, it took 75 s for processing the VAE model and generating
the eventual image. In this case study, there are only limited number of game maps, and
the data size of each raw game map is 500 × 500. Therefore, if this model is extended to
handle a large-scale dataset, say those originated from satellite observations [58,59], then
it would likely take days or even months for data processing; the same will take place
when we extend the VAE algorithm to handle multi-dimensional datasets. Combining this
concept with the amount of loss as shown in Figure 10(b), a factor of 0.2 was adopted,
because a reasonably low average loss was induced by the VAE model, and the
computation time for the entire process was not exceptionally long even when dealing
with input datasets of larger size. Further, from Figure 10(b), the R2 value of the resulting
linear fit is 0.965; therefore, there is a high possibility that the average loss of the VAE
model was linearly related to the scaling factor imposed.

Despite obtaining all these meaningful conclusions from the correlations between
different statistical quantities, we cannot conclude that when a smaller scaling factor is
adopted, the model output must be better and of higher clarity. This is because the loss
function derived in Section 3.5 only estimates the information loss when comparing the
input and output datasets after both encoding and decoding were conducted, but may
have ignored the information loss during the preprocessing stage. In actual industrial
applications, the information loss of all aspects should be considered, so that an optimal
scaling factor can be selected to balance the quality of outputs and model training
efficiency.

4.2. Case Study 2: Generating Anime Avatars via the VAE Model
VAE model is not only useful and applicable in generating a mixture of images or

combined game levels from an input dataset, but can also be used to obtain new outputs:
If we consider a set of images as the input, after encoding and decoding processes, a totally
brand-new image can be created as the eventual output. In this case study, a dataset that
consists of 60,000 different anime-girls (an example is shown in Figure 3) was ingested
into the VAE model, and the two possible outputs of the model are as shown in Figure 11.

Figure 11. Two sample output images obtained from the VAE model based on the anime-girl dataset
(Section 2.2.2).

In principle, the creation of new figures or images is not only limited to grayscale
representation, but can also be feasible when colored images are desired. The VAE model
can generate different new images simply by altering the training dataset, and our purpose
within this case study is merely to illustrate the possibility of using the VAE model for
generating new datasets or frames. In practice, when colored images are of interests, the

Sensors 2023, 23, 3457 17 of 24

computer memory needed will almost be tripled, because the RGB color space requires a
3-dimensional array to record the pixel values (i.e., intensities) of all three different colors.

4.3. Case Study 3: Application of VAE Model to Data Clustering

The VAE model is considered both a generative model and a feature extractor, be-
cause it consists of an encoder and a decoder (which is treated as a generator), and the
distribution of the latent variable can approximately be encoded as a standard normal
distribution. Therefore, the effectiveness of the VAE model in performing data clustering
was tested, because in principle, the feature extractor could conduct the task without any
external supervision.

In this study, the MINST dataset of handwritten numbers (described in Section 2.2.3)
was used to illustrate the applicability of the VAE model in data clustering. Figure 12a
shows the sampled numbers “6, 2, 7”, while Figure 12b showcases the corresponding
numbers generated by the VAE model after data clustering was applied to all numbers
shown in Figure 12a. Obviously, the VAE model had reasonably good performance in
terms of data clustering, and was capable of classifying different data types without any
supervision, then generating appropriate images that correspond to the clustered datasets.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

Figure 11. Two sample output images obtained from the VAE model based on the anime-girl dataset
(Section 2.2.2).

In principle, the creation of new figures or images is not only limited to grayscale
representation, but can also be feasible when colored images are desired. The VAE model
can generate different new images simply by altering the training dataset, and our
purpose within this case study is merely to illustrate the possibility of using the VAE
model for generating new datasets or frames. In practice, when colored images are of
interests, the computer memory needed will almost be tripled, because the RGB color
space requires a 3-dimensional array to record the pixel values (i.e., intensities) of all three
different colors.

4.3. Case Study 3: Application of VAE Model to Data Clustering
The VAE model is considered both a generative model and a feature extractor,

because it consists of an encoder and a decoder (which is treated as a generator), and the
distribution of the latent variable can approximately be encoded as a standard normal
distribution. Therefore, the effectiveness of the VAE model in performing data clustering
was tested, because in principle, the feature extractor could conduct the task without any
external supervision.

In this study, the MINST dataset of handwritten numbers (described in Section 2.2.3)
was used to illustrate the applicability of the VAE model in data clustering. Figure 12(a)
shows the sampled numbers “6, 2, 7”, while Figure 12(b) showcases the corresponding
numbers generated by the VAE model after data clustering was applied to all numbers
shown in Figure 12(a). Obviously, the VAE model had reasonably good performance in
terms of data clustering, and was capable of classifying different data types without any
supervision, then generating appropriate images that correspond to the clustered
datasets.

(a)

(b)

Figure 12. (a) Sampled datasets of “6, 2, 7” ingested into the VAE model; (b) Output datasets
obtained from the VAE model.

Within this case study, 50 epochs was adopted, and the averaged recognition
accuracy based on conducting 10 similar experiments via the VAE model was 85.4%. The

Figure 12. (a) Sampled datasets of “6, 2, 7” ingested into the VAE model; (b) Output datasets obtained
from the VAE model.

Within this case study, 50 epochs was adopted, and the averaged recognition accuracy
based on conducting 10 similar experiments via the VAE model was 85.4%. The corre-
sponding training accuracy was around 83.7%. Table 3 shows the average accuracy of data
clustering when different numbers of epochs were applied.

Sensors 2023, 23, 3457 18 of 24

Table 3. Relationship between average accuracy (%) in data clustering and the number of epochs
used in the VAE model.

Number of Epochs Average Accuracy

3 29.7
5 57.2
8 69.7
10 69.9
20 74.3
30 80.7
40 83.7
50 85.4

When the number of epochs increased from 3 to 5, significant improvement with
respect to the performance of data clustering was achieved, where the average accuracy
increased abruptly from 29.7% to 57.2%. Figure 13 displays the associated graphical
relationship between these two quantities, which verifies that (1) the average recognition
accuracy was enhanced as the number of epochs increased; and (2) as the number of
epochs increased, the increment in average accuracy decreased, and the average accuracy
converged to a threshold bounded above by 0.9 in this case study.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

corresponding training accuracy was around 83.7%. Table 3 shows the average accuracy
of data clustering when different numbers of epochs were applied.

Table 3. Relationship between average accuracy (%) in data clustering and the number of epochs
used in the VAE model.

Number of Epochs Average Accuracy
3 29.7
5 57.2
8 69.7

10 69.9
20 74.3
30 80.7
40 83.7
50 85.4

When the number of epochs increased from 3 to 5, significant improvement with

respect to the performance of data clustering was achieved, where the average accuracy
increased abruptly from 29.7% to 57.2%. Figure 13 displays the associated graphical
relationship between these two quantities, which verifies that (1) the average recognition
accuracy was enhanced as the number of epochs increased; and (2) as the number of
epochs increased, the increment in average accuracy decreased, and the average accuracy
converged to a threshold bounded above by 0.9 in this case study.

Figure 13. Average recognition accuracy versus the number of epochs used in the model.

In actual gameplay, game designers can make use of the VAE model to recognize
specific patterns of images or video frames, for example, the automatic recognition of
sketches from game players. On top, the VAE model is also capable of performing data
augmentation, which is particularly useful for puzzle games, where players are required
to “draw” an object or “write down” an answer. Once the pattern resembles the model
answer, the game will treat the player as “correct” and give out an award, or upgrade the
player to more advanced stages of the game. The VAE model can be fully utilized to serve
related purposes, for example, pattern recognition and the clustering of objects or datasets.

4.4. Insights from Results of Case Studies & Practical Implementation
Figure 8 and Table 2 in Section 4.1 associate the average loss figure induced with the

number of epochs. The data were obtained based on a scaling factor of 0.2, and the number
of epochs adopted in the VAE model (for training and prediction, etc.) was 50. It was
observed that when formulating new game levels or creating new frames, the average loss

Figure 13. Average recognition accuracy versus the number of epochs used in the model.

In actual gameplay, game designers can make use of the VAE model to recognize
specific patterns of images or video frames, for example, the automatic recognition of
sketches from game players. On top, the VAE model is also capable of performing data
augmentation, which is particularly useful for puzzle games, where players are required
to “draw” an object or “write down” an answer. Once the pattern resembles the model
answer, the game will treat the player as “correct” and give out an award, or upgrade the
player to more advanced stages of the game. The VAE model can be fully utilized to serve
related purposes, for example, pattern recognition and the clustering of objects or datasets.

4.4. Insights from Results of Case Studies & Practical Implementation

Figure 8 and Table 2 in Section 4.1 associate the average loss figure induced with
the number of epochs. The data were obtained based on a scaling factor of 0.2, and the
number of epochs adopted in the VAE model (for training and prediction, etc.) was 50.
It was observed that when formulating new game levels or creating new frames, the
average loss figure would have become steady and eventually converged to a limiting
value (around 950). This indicates that the use of these parameters in VAE modeling is
generally acceptable. Nevertheless, as shown in Figure 9a, the time consumed for VAE
model training was linearly related to the number of epochs. This means that a larger

Sensors 2023, 23, 3457 19 of 24

number of epochs is feasible in real-life implementation if one can wait for a longer period
of time. In terms of data clustering in Section 4.3, the average accuracy had a sharp increase
when the number of epochs increased from 3 to 30 (from around 0.3 to 0.8), but then, the
increasing trend became steadier when the number of epochs increased from 30 to 50, and
the average accuracy eventually converged to around 0.85 (as shown in Figure 13). This
indicates that 50 epochs or above would be practical enough for image generation, creation
of new game levels, and even data clustering.

As for the choice of scaling factor, as shown in Figure 10a, when it ranged from 0.15
to around 0.4, the time taken for new image generation was increasing at an almost linear
trend. However, when the scaling factor exceeded 0.4, an excessive increment of time
would have taken place. Further, from Figure 10b, when the scaling factor was 0.18 or
0.2, the average loss of information or input attributes would be similar, however, when
the scaling factor increased to 0.3, the average loss was tripled. Such an experimental
testing could explain why the scaling factor of 0.2 should be adopted when designing
new game levels, and such a factor must not exceed 0.4 in all practical implementations
when the VAE model is going to be involved in model development or training processes.
Regarding the model explainability of VAE, since all images or video frames that we
considered were obtained from real observations of corresponding games, corresponding
sub-centroids could be summarized and treated as actual training images within the
model, then these data points or features could also be of practical usage during feature
classification. This “ad-hoc explainability” concept was validated in the recently established
deep nearest centroids (DNCs) model [60], where human-understandable explanations
could be effectively derived. This was actually quite similar in our VAE model, where the
sub-centroids of each image pixel could also be computed and identified.

5. Discussions and Limitations
5.1. Deficiencies of a Low-Dimensional Manifold & Tokenization

Although the applicability of the VAE model in modern game design, pattern recog-
nition, and data clustering was clearly illustrated in this study, there is some room for
improvements based on the graphical results obtained from some of our case studies. In
particular, in the case study of Arknights, when zooming Figure 7 into details, the image
quality at specific pixels or regions could be dissatisfactory. This is because the input
image consisted of some discrete pixels or point clouds in a high-dimensional space, and
VAE attempted to first compress them into a low-dimensional continuous space (which
was denoted as a “latent space”), then restore the original space via the decoding pro-
cess. It was observed that VAE could work very well when the input dataset is actually a
low-dimensional manifold embedded in a higher-dimensional space [61], however, some
graphics, such as those in Arknights, are obviously not a low-dimensional manifold itself
in nature. This has led to some potential errors within the VAE-based retrieval process.
Further, some features of images, such as texture, are relatively hard to be described with
a low data volume, but texture can indeed play an important role in computer vision
applications, for example, surface detection and medical imaging [62]. Therefore, to en-
hance the quality of outputs from the VAE model in these industrial applications, other
deep-learning networks and transform-based methods can be adopted to distinguish these
features at an early stage, either via the use of a smooth function for transformation, or
extracting the concerned features in another space, with the aid of wavelet transforms [63],
ridgelet transform [64], or a Gabor filter [65]. Then, the corresponding attribute(s) can be
combined with the latent space vector in VAE to produce better numerical results, and the
information lost during encoding and decoding processes of VAE can also be minimized.
For label distribution construction, the spherical Fibonacci lattice algorithm proposed by
González [66] can be used for point sampling and obtaining a distribution that possesses
unbiased expectation. Afterwards, the loss function introduced in [67] can be introduced
into the modeling framework, with an attempt to understand the corresponding parameters
of each input sample.

Sensors 2023, 23, 3457 20 of 24

Further, in order to filter off the invalid attributes and simplify the useful information
from the original input dataset, instead of generating low-dimensional images in all sce-
narios, researchers have proposed dividing a particular game map into the combination of
different map elements or components, then replacing these components by some tokens.
This process is known as “tokenization”, as described in [68]. Much simplified new images
that retain all useful attributes could be constructed, then the prescribed machine learning
or VAE model can be used to train these images and produce combined outputs. In the
future, this technique can be incorporated into the existing VAE model for enhancing image
resolution and producing images with better quality, especially for images similar to our
Case Study 1.

5.2. Image Compression, Clarity of Outputs & Model Training

In the VAE model, a scaling factor has to be applied to raw datasets during the
data preprocessing stage. If one excessively compresses the original image, much useful
information will be lost, and fine details cannot be effectively kept during the model
training stage, which could result in outputs of insufficient clarity. On the other hand, if the
compression was not conducted, huge computing resources would be occupied especially
when we are handling large-scale datasets, for example, the database from ImageNet [69]
or remotely sensed imageries for object detection or environmental monitoring [70,71]. In
most desktops, the memory is only of 4–48 G [72]; therefore, memory overflow will easily
take place, thus limiting the overall efficiency and reliability of a model. The time consumed
for model training and image retrieval will be excessively long as well. On top of that, in
terms of model training, it will take many rounds of data analytic experiments in order to
optimize the hyper-parameters of the VAE model, and as a result, increase the overall time
consumed. Therefore, it is of utmost importance to strike a balance between the quality of
outputs and the time consumed for generating the outputs via modeling approaches.

For the purposes of game design and creating new game levels, in order to alleviate
the problem of insufficient clarity caused by the VAE model, and to avoid the occurrence
of “mode collapse” (i.e., only one or several image types will be generated) that often
takes place in traditional GAN models, the combination of VAE and GAN models can be
adopted. The VAE model only consists of one generator, while the GAN model consists
of both a generator and a discriminator. These two “machines” oppose each other, where
the generator is continuously attempting to generate images and frames that can fool the
discriminator; as a result, the probability for a discriminator to make mistakes will increase;
while the discriminator tries its best to distinguish between real and useful data from fake
ones via appropriate neural network mechanisms [73]. As a result, better outputs can be
generated after a series of to and fro opposed checking. For enhancing the clarity of images
in Case Studies 1 and 2 of this paper, we propose adopting the VAE model as the generator
and simultaneously develop a discriminator to supervise the VAE model, i.e., a combined
version of VAE and GAN models is to be established. As a result, the generator of the
VAE-GAN model will consist of the statistical or probabilistic distribution of the original
input dataset, and at the same time, it can effectively reduce the training time throughout
the entire process and minimize the chance of the model suffering from “mode collapse”.

6. Conclusions

In this study, we illustrated the possibility and statistical feasibility of using the
combination of a VAE model and machine learning strategies for modern game design,
with the aid of three case studies arising from different natural scenarios and applications.
The mathematical principles and assumptions of the VAE model, as well as its Evidence
Lower Bound (ELBO), loss function during model construction, and loss function in data
clustering, were first explored and derived. Then, the VAE model was applied to generate
new game maps based on existing maps obtained from Arknights, create and retrieve anime
avatars, and cluster a group of MNIST datasets that consist of numerals. The output images
and datasets could retain and re-combine information from the inputs to a certain extent,

Sensors 2023, 23, 3457 21 of 24

however, in the case study of Arknights (Case Study 1), there was room for improvements
due to the lack of clarity in terms of the output image, which could essentially represent a
new game level in practice.

Some statistical features of the model and the relationship between different param-
eters were also reviewed from these three case studies, for example, there was a high
possibility that the time complexity of this VAE model is O(n); the loss of the VAE model
decreased as the number of epochs applied increased, but the rate of change of such loss
was also declining in general; and the time consumed for performing the VAE model was
positively and linearly related to the number of epochs. For preventing memory overflow
and saving computing resources, an appropriate scaling factor had been applied to each
input dataset or image at the preprocessing stage. It was found that the time consumed
increased as the scaling factor increased, and it was quite clear that the loss derived from
the loss function was positively and linearly related to this scaling factor.

Despite showing some technical deficiencies in generating new game levels (as re-
viewed in Case Study 1), the VAE model has shown its capability in data clustering. Further,
for image attributes (or data points) with obviously different characteristics or spatial fea-
tures, the VAE model can also successfully distinguish one class from another via the model
training process, then generate images of a specific class. On average, the recognition
accuracy under 50 epochs is 85.4%, which is considered satisfactory.

Generally speaking, the VAE model is most effective in generating images with a spe-
cific graphical pattern, or handling and producing images of low resolution requirements,
for example, clouds, grass and distant views in our nature. It is particularly promising in
terms of clustering and creating new characters within a game.

In view of the technical shortcoming of the current VAE model, we have learnt that
the future enhancement should focus on increasing the resolution of images generated, for
example, via the combination of the VAE model with other machine learning mechanisms,
such as GAN and LSTM, ensuring sufficiency with regard to the amount of information in
the model training set, so that all output images will contain more useful information and
attributes, but at the same time consist of the least amount of noise components. This may
be possible by tracing back to the techniques adopted in data preprocessing stages. This
study has opened a new window for utilizing the strengths of VAE for future game design
missions within the industry, at the same time identifying some potential weaknesses of
VAE and proposing potential ways to remedy these deficiencies in the foreseeable future.

Author Contributions: Conceptualization, H.W.L.M. and R.H.; methodology, H.W.L.M. and R.H.;
software, R.H.; validation, H.W.L.M. and H.H.F.Y.; formal analysis, H.W.L.M. and R.H.; inves-
tigation, H.W.L.M., R.H. and H.H.F.Y.; writing—original draft preparation, H.W.L.M. and R.H.;
writing—review and editing, H.W.L.M. and H.H.F.Y.; supervision, H.W.L.M.; project administration,
H.W.L.M. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Acknowledgments: This paper is an extended and modified version of the master project report of
R.H., which was supervised by H.W.L.M.

Conflicts of Interest: The authors declare no conflict of interest. There was no funder involved in
this study and this paper.

Sensors 2023, 23, 3457 22 of 24

References
1. Moyer-Packenham, P.S.; Lommatsch, C.W.; Litster, K.; Ashby, J.; Bullock, E.K.; Roxburgh, A.L.; Shumway, J.F.; Speed, E.;

Covington, B.; Hartmann, C.; et al. How design features in digital math games support learning and mathematics connections.
Comput. Hum. Behav. 2019, 91, 316–332. [CrossRef]

2. Berglund, A.; Berglund, E.; Siliberto, F.; Prytz, E. Effects of reactive and strategic game mechanics in motion-based games. In
Proceedings of the 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), Perth,
Australia, 2–4 April 2017; pp. 1–8.

3. Petrovas, A.; Bausys, R. Procedural Video Game Scene Generation by Genetic and Neutrosophic WASPAS Algorithms. Appl. Sci.
2022, 12, 772. [CrossRef]

4. Amani, N.; Yuly, A.R. 3D modeling and animating of characters in educational game. In Journal of Physics: Conference Series; IOP
Publishing: Bristol, UK, 2019; p. 012025.

5. Patoli, M.Z.; Gkion, M.; Newbury, P.; White, M. Real time online motion capture for entertainment applications. In Proceedings of
the 2010 Third IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, Kaohsiung, Taiwan, 12–16
April 2010; pp. 139–145.

6. Lukosch, H.K.; Bekebrede, G.; Kurapati, S.; Lukosch, S.G. A scientific foundation of simulation games for the analysis and design
of complex systems. Simul. Gaming 2018, 49, 279–314. [CrossRef] [PubMed]

7. OpenDotLab. Invisible Cities. Available online: https://opendot.github.io/ml4ainvisible-cities/ (accessed on 24 February 2023).
8. Li, W.; Zhang, P.; Zhang, L.; Huang, Q.; He, X.; Lyu, S.; Gao, J. Object-driven text-to-image synthesis via adversarial training. In

Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 12166–12174.

9. Sarkar, A.; Cooper, S. Towards Game Design via Creative Machine Learning (GDCML). In Proceedings of the IEEE Conference on
Games (CoG), Osaka, Japan, 24–27 August 2020; pp. 1–6.

10. GameLook. Netease Game Artificial Intelligence Laboratory Sharing: AI Technology Applied in Games. Available online:
http://www.gamelook.com.cn/2019/03/353413/ (accessed on 24 February 2023).

11. History of Video Games. Available online: https://en.wikipedia.org/wiki/History_of_video_games (accessed on 24 Febru-
ary 2023).

12. Wang, Q. Video game classification inventory. Cult. Mon. 2018, 4, 30–31.
13. Need for Speed™ on Steam. Available online: https://store.steampowered.com/app/1262540/Need_for_Speed/ (accessed on

24 February 2023).
14. Genshin Impact. Available online: https://genshin.hoyoverse.com/en/ (accessed on 24 February 2023).
15. Game Design Basics: How to Start Creating Video Games. Available online: https://www.cgspectrum.com/blog/game-design-

basics-how-to-start-building-video-games (accessed on 24 February 2023).
16. Zhang, B. Design of mobile augmented reality game based on image recognition. J. Image Video Proc. 2017, 90. [CrossRef]
17. Tilson, A.R. An Image Generation Methodology for Game Engines in Real-Time Using Generative Deep Learning Inference

Frameworks. Master’s Thesis, University of Regina, Regina, Canada, 2021.
18. Xbox Official Site. Available online: https://www.xbox.com/en-HK/ (accessed on 24 February 2023).
19. PlayStation®Official Site. Available online: https://www.playstation.com/en-hk/ (accessed on 24 February 2023).
20. Nintendo Switch Lite. Available online: https://www.nintendo.co.jp/hardware/detail/switch-lite/ (accessed on 24 Febru-

ary 2023).
21. Edwards, G.; Subianto, N.; Englund, D.; Goh, J.W.; Coughran, N.; Milton, Z.; Mirnateghi, N.; Ali Shah, S.A. The role of machine

learning in game development domain—A review of current trends and future directions. In Proceedings of the 2021 Digital
Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 16–30 July 2021; pp. 1–7.

22. Elasri, M.; Elharrouss, O.; Al-Maadeed, S.; Tairi, H. Image generation: A review. Neural Process Lett. 2022, 54, 4609–4646.
[CrossRef]

23. Yin, H.H.F.; Ng, K.H.; Ma, S.K.; Wong, H.W.H.; Mak, H.W.L. Two-state alien tiles: A coding-theoretical perspective. Mathematics
2022, 10, 2994. [CrossRef]

24. Justesen, N.; Bontrager, P.; Togelius, J.; Risi, S. Deep learning for video game playing. IEEE Trans. Games 2020, 12, 1–20. [CrossRef]
25. Gow, J.; Corneli, J. Towards generating novel games using conceptual blending. In Proceedings of the Eleventh Artificial

Intelligence and Interactive Digital Entertainment Conference, Santa Cruz, CA, USA, 14–18 November 2015.
26. Sarkar, A.; Cooper, S. Blending levels from different games using LSTMs. In Proceedings of the AIIDE Workshop on Experimental

AI in Games, Edmonton, AB, Canada, 13–17 November 2018.
27. Sarkar, A.; Yang, Z.; Cooper, S. Controllable level blending between games using variational autoencoders. In Proceedings of the

AIIDE Workshop on Experimental AI in Games, Atlanta, GA, USA, 8–9 October 2019.
28. Moghaddam, M.M.; Boroomand, M.; Jalali, M.; Zareian, A.; Daeijavad, A.; Manshaei, M.H.; Krunz, M. Games of GANs:

Game-theoretical models for generative adversarial networks. Artif Intell Rev. 2023. [CrossRef]
29. Awiszus, M.; Schubert, F.; Rosenhahn, B. TOAD-GAN: Coherent style level generation from a single example. In Proceed-

ings of the Sixteenth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-20), Virtual,
19–23 October 2020.

http://doi.org/10.1016/j.chb.2018.09.036
http://doi.org/10.3390/app12020772
http://doi.org/10.1177/1046878118768858
http://www.ncbi.nlm.nih.gov/pubmed/30369775
https://opendot.github.io/ml4ainvisible-cities/
http://www.gamelook.com.cn/2019/03/353413/
https://en.wikipedia.org/wiki/History_of_video_games
https://store.steampowered.com/app/1262540/Need_for_Speed/
https://genshin.hoyoverse.com/en/
https://www.cgspectrum.com/blog/game-design-basics-how-to-start-building-video-games
https://www.cgspectrum.com/blog/game-design-basics-how-to-start-building-video-games
http://doi.org/10.1186/s13640-017-0238-6
https://www.xbox.com/en-HK/
https://www.playstation.com/en-hk/
https://www.nintendo.co.jp/hardware/detail/switch-lite/
http://doi.org/10.1007/s11063-022-10777-x
http://doi.org/10.3390/math10162994
http://doi.org/10.1109/TG.2019.2896986
http://doi.org/10.1007/s10462-023-10395-6

Sensors 2023, 23, 3457 23 of 24

30. Schrum, J.; Gutierrez, J.; Volz, V.; Liu, J.; Lucas, S.; Risi, S. Interactive evolution and exploration within latent level-design space of
generative adversarial networks. In Proceedings of the 2020 Genetic and Evolutionary Computation Conference, Cancún, Mexico,
8–12 July 2020.

31. Torrado, R.E.; Khalifa, A.; Green, M.C.; Justesen, N.; Risi, S.; Togelius, J. Bootstrapping conditional GANs for video game level
generation. In Proceedings of the 2020 IEEE Conference on Games (CoG), Osaka, Japan, 24 February 2020.

32. Emekligil, F.G.A.; Öksüz, İ. Game character generation with generative adversarial networks. In Proceedings of the 2022 30th
Signal Processing and Communications Applications Conference (SIU), Safranbolu, Turkey, 1 March 2022; pp. 1–4.

33. Kim, J.; Jin, H.; Jang, S.; Kang, S.; Kim, Y. Game effect sprite generation with minimal data via conditional GAN. Expert Syst. Appl.
2023, 211, 118491. [CrossRef]

34. Cinelli, L.P.; Marins, M.A.; da Silva, E.A.B.; Netto, S.L. Variational Autoencoder. In Variational Methods for Machine Learning with
Applications to Deep Networks; Springer: Cham, Switzerland, 2021; pp. 111–149.

35. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. In Proceedings of the International Conference on Learning
Representations (ICLR), Banff, AB, Canada, 14–16 April 2014.

36. Cai, L.; Gao, H.; Ji, S. Multi-stage variational auto-encoders for coarse-to-fine image generation. In Proceedings of the 2019 SIAM
International Conference on Data Mining, Edmonton, AB, Canada, 2–4 May 2019; pp. 630–638.

37. Cai, F.; Ozdagli, A.I.; Koutsoukos, X. Variational autoencoder for classification and regression for out-of-distribution detection in
learning-enabled cyber-physical systems. Appl. Artif. Intell. 2022, 36, 2131056. [CrossRef]

38. Kaur, D.; Islam, S.N.; Mahmud, M.A. A variational autoencoder-based dimensionality reduction technique for generation
forecasting in cyber-physical smart grids. In Proceedings of the 2021 IEEE International Conference on Communications
Workshops (ICC Workshops), Montreal, QC, Canada, 18 June 2021; pp. 1–6.

39. Vuyyuru, V.A.; Rao, G.A.; Murthy, Y.V.S. A novel weather prediction model using a hybrid mechanism based on MLP and VAE
with fire-fly optimization algorithm. Evol. Intel. 2021, 14, 1173–1185. [CrossRef]

40. Lin, S.; Clark, R.; Birke, R.; Schonborn, S.; Trigoni, N.; Roberts, S. Anomaly detection for time series using VAE-LSTM hybrid
model. In Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona,
Spain, 4–8 May 2020; pp. 4322–4326.

41. Bao, J.; Chen, D.; Wen, F.; Li, H.; Hua, G. CVAE-GAN: Fine-grained image generation through asymmetric training. In Proceedings
of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2764–2773.

42. Arknights. Available online: https://www.arknights.global/ (accessed on 25 February 2023).
43. Installing the Unity Hub. Available online: https://docs.unity3d.com/2020.1/Documentation/Manual/GettingStartedInstallingHub.

html (accessed on 25 February 2023).
44. Anime Wallpapers. Available online: https://konachan.com/ (accessed on 25 February 2023).
45. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/mnist/ (accessed on 13 March 2023).
46. Kaplun, V.; Shevlyakov, A. Contour Pattern Recognition with MNIST Dataset. In Proceedings of the Dynamics of Systems,

Mechanisms and Machines (Dynamics), Omsk, Russia, 15–17 November 2022; pp. 1–3.
47. Nocentini, O.; Kim, J.; Bashir, M.Z.; Cavallo, F. Image classification using multiple convolutional neural networks on the

fashion-MNIST dataset. Sensors 2022, 22, 9544. [CrossRef] [PubMed]
48. How to Develop a CNN for MNIST Handwritten Digit Classification. Available online: https://machinelearningmastery.

com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/ (accessed on 26
February 2023).

49. Lu, C.; Xu, L.; Jia, J. Contrast preserving decolorization. In Proceedings of the IEEE International Conference on Computational
Photography (ICCP), Seattle, WA, USA, 28–29 April 2012.

50. Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Phil. Trans. R. Soc. A 2016, 374, 20150202.
[CrossRef]

51. Baldi, P. Autoencoders, unsupervised learning, and deep architectures. J. Mach. Learn. Res. 2012, 27, 37–50.
52. Balodi, T. 3 Difference Between PCA and Autoencoder with Python Code. Available online: https://www.analyticssteps.com/

blogs/3-difference-between-pca-and-autoencoder-python-code (accessed on 26 February 2023).
53. Ding, M. The road from MLE to EM to VAE: A brief tutorial. AI Open 2022, 3, 29–34. [CrossRef]
54. Difference Between a Batch and an Epoch in a Neural Network. Available online: https://machinelearningmastery.com/

difference-between-a-batch-and-an-epoch/ (accessed on 26 February 2023).
55. Roy, K.; Ishmam, A.; Taher, K.A. Demand forecasting in smart grid using long short-term memory. In Proceedings of the 2021

International Conference on Automation, Control and Mechatronics for Industry 4.0 (ACMI), Rajshahi, Bangladesh, 8–9 July 2021;
pp. 1–5.

56. Jawahar, M.; Anbarasi, L.J.; Ravi, V.; Prassanna, J.; Graceline Jasmine, S.; Manikandan, R.; Sekaran, R.; Kannan, S. CovMnet–Deep
Learning Model for classifying Coronavirus (COVID-19). Health Technol. 2022, 12, 1009–1024. [CrossRef]

57. Gupta, S.; Porwal, R. Combining laplacian and sobel gradient for greater sharpening. IJIVP 2016, 6, 1239–1243. [CrossRef]
58. Ul Din, S.; Mak, H.W.L. Retrieval of Land-Use/Land Cover Change (LUCC) maps and urban expansion dynamics of hyderabad,

pakistan via landsat datasets and support vector machine framework. Remote Sens. 2021, 13, 3337. [CrossRef]
59. Drouyer, S. VehSat: A large-scale dataset for vehicle detection in satellite images. In Proceedings of the IGARSS 2020—2020 IEEE

International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 268–271.

http://doi.org/10.1016/j.eswa.2022.118491
http://doi.org/10.1080/08839514.2022.2131056
http://doi.org/10.1007/s12065-021-00589-8
https://www.arknights.global/
https://docs.unity3d.com/2020.1/Documentation/Manual/GettingStartedInstallingHub.html
https://docs.unity3d.com/2020.1/Documentation/Manual/GettingStartedInstallingHub.html
https://konachan.com/
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.3390/s22239544
http://www.ncbi.nlm.nih.gov/pubmed/36502243
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
https://machinelearningmastery.com/how-to-develop-a-convolutional-neural-network-from-scratch-for-mnist-handwritten-digit-classification/
http://doi.org/10.1098/rsta.2015.0202
https://www.analyticssteps.com/blogs/3-difference-between-pca-and-autoencoder-python-code
https://www.analyticssteps.com/blogs/3-difference-between-pca-and-autoencoder-python-code
http://doi.org/10.1016/j.aiopen.2021.10.001
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
https://machinelearningmastery.com/difference-between-a-batch-and-an-epoch/
http://doi.org/10.1007/s12553-022-00688-1
http://doi.org/10.21917/ijivp.2016.0180
http://doi.org/10.3390/rs13163337

Sensors 2023, 23, 3457 24 of 24

60. Wang, W.; Han, C.; Zhou, T.; Liu, D. Visual recognition with deep nearest centroids. In Proceedings of the Eleventh International
Conference on Learning Representations (ICLR 2023), Kigali, Rwanda, 1–5 May 2023.

61. Kalatzis, D.; Eklund, D.; Arvanitidis, G.; Hauberg, S. Variational autoencoders with Riemannian Brownian motion priors. In
Proceedings of the 37th International Conference on Machine Learning, Online, 13–18 July 2020; Volume 119.

62. Armi, L.; Fekri-Ershad, S. Texture image analysis and texture classification methods. Int. J. Image Process. Pattern Recognit. 2019, 2,
1–29.

63. Scheunders, P.; Livens, S.; van-de-Wouwer, G.; Vautrot, P.; Van-Dyck, D. Wavelet-based texture analysis. Int. J. Comput. Sci. Inf.
Manag. 1998, 1, 22–34.

64. Arivazhagan, S.; Ganesan, L.; Kumar, T.S. Texture classification using ridgelet transform. Pattern Recognit. Lett. 2006, 27, 1875–1883.
[CrossRef]

65. Idrissa, M.; Acheroy, M. Texture classification using Gabor filters. Pattern Recognit. Lett. 2002, 23, 1095–1102. [CrossRef]
66. González, A. Measurement of areas on a sphere using fibonacci and latitude–longitude lattices. Math. Geosci. 2010, 42, 49–64.

[CrossRef]
67. Cao, Z.; Liu, D.; Wang, Q.; Chen, Y. Towards unbiased label distribution learning for facial pose estimation using anisotropic spher-

ical gaussian. In Proceedings of the European Conference on Computer Vision (ECCV 2022), Tel Aviv, Israel, 23–27 October 2022.
68. Xenopoulos, P.; Rulff, J.; Silva, C. ggViz: Accelerating large-scale esports game analysis. Proc. ACM Hum. Comput. Interact. 2022,

6, 238. [CrossRef]
69. ImageNet. Available online: https://www.image-net.org/ (accessed on 28 February 2023).
70. Xie, D.; Cheng, J.; Tao, D. A new remote sensing image dataset for large-scale remote sensing detection. In Proceedings of the 2019

IEEE International Conference on Real-Time Computing and Robotics (RCAR), Irkutsk, Russia, 4–9 August 2019; pp. 153–157.
71. Mak, H.W.L.; Laughner, J.L.; Fung, J.C.H.; Zhu, Q.; Cohen, R.C. Improved satellite retrieval of tropospheric NO2 column density

via updating of Air Mass Factor (AMF): Case study of Southern China. Remote Sens. 2018, 10, 1789. [CrossRef]
72. Lin, Y.; Lv, F.; Zhu, S.; Yang, M.; Cour, T.; Yu, K.; Cao, L.; Huang, T. Large-scale image classification: Fast feature extraction and

SVM training. In CVPR 2011; IEEE: New York, NY, USA, 2011; pp. 1689–1696.
73. Biswal, A. What are Generative Adversarial Networks (GANs). Available online: https://www.simplilearn.com/tutorials/deep-

learning-tutorial/generative-adversarial-networks-gans (accessed on 28 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.patrec.2006.04.013
http://doi.org/10.1016/S0167-8655(02)00056-9
http://doi.org/10.1007/s11004-009-9257-x
http://doi.org/10.1145/3549501
https://www.image-net.org/
http://doi.org/10.3390/rs10111789
https://www.simplilearn.com/tutorials/deep-learning-tutorial/generative-adversarial-networks-gans
https://www.simplilearn.com/tutorials/deep-learning-tutorial/generative-adversarial-networks-gans

	Introduction
	Flowchart and Data Sources
	Overview of This Study
	Data Sources and Description
	Game Map from Arknights
	Characters from Konachan
	Modified National Institute of Standards and Technology (MNIST) Database

	Methodologies: Steps of the VAE Model
	Data Preprocessing
	Autoencoding, Variational AutoEncoder (VAE) and Decoding Processes
	Steps of the VAE Model
	Evidence Lower Bound (ELBO) of the VAE Model
	General Loss Function of the VAE Model
	Loss Function of the VAE Model in Clustering
	Statistical Metrics and Spatial Assessment

	Numerical Experiments and Results
	Case Study 1: Generation of Video Game Maps
	Case Study 2: Generating Anime Avatars via the VAE Model
	Case Study 3: Application of VAE Model to Data Clustering
	Insights from Results of Case Studies & Practical Implementation

	Discussions and Limitations
	Deficiencies of a Low-Dimensional Manifold & Tokenization
	Image Compression, Clarity of Outputs & Model Training

	Conclusions
	References

